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Abstract: Innovative technologies and traffic data sources provide great potential to extend advanced
strategies and methods in travel behaviour research. Considering the increasing availability of
real-time vehicle trajectory data and stimulated by the advances in the modelling and analysis of big
data, this paper developed a hybrid unsupervised deep learning model to study driving bahaviour
and risk patterns. The approach combines Autoencoder and Self-organized Maps (AESOM), to extract
latent features and classify driving behaviour. The specialized neural networks are applied to data
from 4032 observations collected from Global Positioning System (GPS) sensors in Shenzhen, China.
In two case studies, improper vehicle lateral position maintenance, speeding and inconsistent or
excessive acceleration and deceleration have been identified. The experiments have shown that
back propagation through multi-layer autoencoders is effective for non-linear and multi-modal
dimensionality reduction, giving low reconstruction errors from big GPS datasets.
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1. Introduction

Road accidents impose serious problems on society in terms of human, economic, medical and
environmental costs. As the World Health Organization (WHO) announced, the total number of road
fatalities was approximately 1.25 million in 2016 [1]. To understand the various factors associated with
fatal and non-fatal road accidents is very crucial [2,3]. Intensive efforts have been made to understand
human driving styles and the classification of drivers’ risk patterns [4,5]. For example, the relationship
between the sensitivity of the driver to complex driving situations and the vehicle control has been
acknowledged as a major contributing factor in accidents [6]. Driving patterns and their influence on
environment and fuel-use were also well studied [7]. In industry, automotive insurance companies
integrate pay-as-you-drive or pay-how-you-drive modes for pricing. Based on driving aggressiveness,
prices can be adapted to the individuals [8]. Moreover, characterizing driving behaviour can be
particularly helpful for the development of vehicle automation [9,10].

Many studies on road safety have primarily focused on investigating factors associated with
fatal and serious injuries and so less effort has been made on slight injuries or pre-crash scenarios
mainly due to underreporting [3]. This fact may lead to biased conclusions in injury control and
safety management. Although this topic has attracted great attention in the past, there is still much
to be investigated, for example, the dimensions of driving patterns and their potential influence on
road safety.

Traditionally, driving data are collected via travel surveys, simulator-based experiments or
naturalistic driving studies. These contribute to the understanding of correlations between individual
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demographics, road and traffic conditions, as well as safety. However, these experiments are costly
and time consuming [11]. Innovative technologies and traffic data sources provide great potential to
extend advanced strategies and methods in travel behaviour research. For instance, using smartphone
sensors, we have an opportunity to incorporate data from classic techniques with data extracted from
GPS (Global Positioning System), camera and accelerometer gyroscope [12]. Compared with other
automobile sensors, such as OBD (On-Board Diagnostic), CAN (Controller Area Network) buses and
cameras, GPS sensor data are often easier to collect, making them popular in large-scale research [13].
Typically, driving behaviour can be measured as multi-dimensional time-series data. In this paper,
we focus on studying vehicle movement operations including speed change, acceleration/deceleration,
turning, and their temporal combinations derived from GPS sensor data in a short and regular time
interval (e.g., 1 s). Also, GPS data have plentiful characteristics in both time and space domains.

The main objectives of this study are:

• to develop the method which can extract highly correlated low-dimensional features in massive
sensor data,

• the proposed hybrid method can also detect and reduce the negative effect of data noise
and defects,

• based on the unsupervised pre-training, then to classify and cluster various driving patterns
associated with higher road risk.

Deep learning has been recognized as the representative advance in the new statistical and
computational paradigm for the new data era [14]. Data requirements are no longer an obstacle with
the big GPS datasets, but the difficulties in network design and its interpretation are still the common
bottlenecks. So far, applications of deep learning to large scale GPS data are limited. Motivated by
the success of deep neural networks and considering the time and space characteristics of GPS
data, we propose an unsupervised deep learning architecture to learn drivers’ behaviour patterns
from GPS data. The approach consists of two model components: feature learning by especially
designed Autoencoder networks and feature clustering by SOM (Self-Organized Mapping) networks.
The developed networks have been applied to a real large-scale GPS dataset to provide insight into
driver behaviour and potential impacts in Shenzhen, South China.

The remainder of this paper is organized as follows. Section 2 reviews related works in the
literature, with an emphasis on comparing statistical methods and neural networks in driving
behaviour analysis. Section 3 presents the proposed deep learning approach. Then experimental
studies on a large-scale GPS dataset in Shenzhen are discussed in Section 4. Section 5 presents a
discussion and concludes the paper.

2. Related Works

2.1. Global Positioning System Data in a Travel Survey

In terms of data contents, driving simulations and naturalistic driving studies are the main
sources on behaviour. Simulators allow for repetitive experiments and well-defined scenarios.
Naturalistic driving studies, undertaken in natural conditions (no interference, no appearance of
administrators and during daily driving) [15,16] provide the opportunity to observe the actual driving
process with an unobtrusive high-precision data acquisition system. However, both approaches are
costly and require a long-time frame. Novel vehicle technologies and the increasing degree of vehicle
automation are changing driving patterns relatively quickly. Meantime, drivers generate continuous
real-time vehicle trajectory data while using smartphone applications.

Big data era offers great opportunities to discover latent behaviour heterogeneities that are
impossible with small samples. On the other hand, the huge sample size and high dimensionality
bring statistical and computational challenges. For example, the identification of travel behaviour
characteristics by means of GPS-based data has received intensive research effort in the last decade [17].
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Compared with work on the social aspects of transportation which has been typically historical
and off-line, new sensor technologies offer real-time computing and embedded applications with
interactive big data for transportation studies. Zheng et al. [18] have suggested that the new social
transportation field should focus on traffic analytics with big data using data mining, machine learning,
and crowdsourcing mechanisms. Smartphone-based travel surveys are generally conducted using
personal devices and navigation apps; they offer a key benefit in reducing both the cost of
data collection and that of distributing and retrieving the hardware [19–21]. Most navigation
applications utilize the mobile device, built-in GPS, to provide real-time location, route, traffic, parking,
energy consumption and ride-sharing information [22].

The main advantages of GPS sensor data are: (i) unobtrusive data collection; (ii) large-scale
of sample, e.g., millions of drivers; (iii) real-time and continuous dataset. Meanwhile, GPS sensors
typically suffer two problems: high level of noise compared with dedicated instruments used in
simulators and naturalistic driving studies and heterogeneous data sources. Some studies on data
fusing have been conducted to integrate GPS data, accelerometer, gyroscope measurements for
denoising and filtering [23]. It is also common to combine smartphone data with the data from
CAN via the on-board diagnostic [24]. However, it is challenging to have a robust and generic
approach to characterize behavioral patterns from GPS data.

2.2. Statistical Methods Versus Neural Networks in Driving Behaviour Analysis

In this section, two most popular approaches in driving behaviour analysis are compared:
classic statistical algorithms e.g., [25,26] and computational intelligence e.g., [27]. Statistics covers
collecting, organizing and interpreting data, as well as the mathematical analysis required to establish
the statistical properties, distributions and parameters, and also to mine the spatio-temporal pattern
from a probabilistic perspective [28]. Principal Component Analysis (PCA) has been identified as
a successful method to learn essential features with the assumption that the input is independent
as a Gaussian distribution [29]. Factor analysis is another widely used inter-dependency technique
when the relevant set of variables shows a systematic inter-dependence and the objective is to search
the underlying factors that create a commonality. For the results to be useful, the factors must be
interpretable [7]. By using a nonlinear kernel function, Kernel Principal Component Analysis (KPCA)
showed a higher accuracy rater than PCA and factor analysis in driving behaviour analysis [30].
However, when dealing with highly nonlinear data, computational intelligence may be considered
more generic, accurate and intelligent [31].

Computational intelligence approaches combine learning, adaption, evolution, and fuzzy
logic [6,32]. Neural networks with deep architectures are a major approach and have been widely
applied in travel studies. Deep learning has been systematically compared to classical statistical
models in comparative studies of classification and clustering, function approximation, and prediction
problems [14,33]. For example, the Recurrent Neural Networks (RNN) is a dynamic classification
algorithm used for recognizing time-series patterns in several domains [34]. One of the most successful
deep learning neural networks to model big data in the space domain can be the Convolutional
Neural Networks (CNN) which uses filters to find relationships between neighboring inputs [35].
In general, the literature suggested that Neural Networks (NN) are better performed when the idealized
assumptions of statistical models (e.g., linearity, normality, Independent and identically distributed
(IID) are not valid, or the results from the statistical analysis are monotonous and difficult to interpret.
Typically, multi-dimensional and complicated GPS data require more computational, flexible and
nonlinear models. Meanwhile, massive dataset often contains more noise, defects and outliers, and NN
are suitable in these cases.

So far, applications of deep learning approaches to GPS-based data analysis are limited. Recently,
deep multi-layer neural networks have been adopted in traffic prediction based on GPS data.
Existing approaches typically follow the supervised learning algorithms, where the inputs are
features and the labels are drivers’ identification [36,37]. However, with a small training set and
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diverse driver behavior, the learnt model may not work well. Furthermore, with a large number
of drivers (e.g., more than 5000 candidates), the classification can be much more challenging than
simply differentiating safe and unsafe drivers. Networks for three types of learning have been
employed: supervised, unsupervised and a combination of the two. Although there are plenty of NN
works, few attempts have been conducted on unsupervised learning for driving style identification
and classification.

Unsupervised learning paradigms such as Autoencoder/Stacked Autoencoder,
Restricted Boltzmann machine, and Long Short-Term Memory network are able to identify
the performance features. For example, based on in-vehicle telematics, Jasper et al. [8] identified
behavioural change among drivers following or during specific incentive using Long Short-Term
Memory network. Dong et al. [38] proposed an autoencoder regularized deep neural network
combining supervised and unsupervised learning. Ferrer and Ruiz [20] were using data extracted
from GPS and GIS, compared five classification models including Decision Tree, Bayesian Network,
Random Forest, Naïve Bayesian and Neural Network to identify travel patterns. In recent years,
there is a growing body of evidence to suggest that competitive learning outperforms traditional
clustering methods. In unsupervised and self-organizing neural networks, the two dominant
models are the SOM and adaptive resonance theory (ART), both of which are based on competitive
learning [39]. Conclusively both statistical algorithms and neural networks show advantages and
limitations in transportation behavioural research. Despite their differences, there is a growing trend
to combine statistical algorithms and neural networks into one platform [27], especially in the fields of
causality investigation, the analysis of big data and model development and evaluation.

3. Methodology

The aims of this research were to (i) develop an effective approach that can extract the
low-dimensional high-level features of driving behavior; and (ii) accurately explore the hidden
behaviour sub-groups across a heterogeneous population. In light of the shortcomings of existing
methods, we propose a deep learning framework to study driving characteristics on GPS data,
in an unsupervised feature learning and classification architecture, which is called AESOM
(Autoencoder-Self Organizing Mapping), as shown in Figure 1.
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For simplicity, we consider GPS data as the unique raw input source. Nevertheless, this framework
can be generalized to work with other types of sensor dataset and rich driving contexts.
We first introduce the autoencoder networks that read GPS data as inputs, and learn and extract
low-dimensional driving behaviour features. Then we discuss classification and clustering of high-level
driving features by using the SOM networks.

3.1. Selection of Input Features

Previous research has extensively studied the classification process, the input data analysis
and the algorithms used to predict and label drivers into specific driving styles [40]. Therefore,
it is hypothesized that actions of a driver in a specific category of driving can be represented and
predicted due to the definitive and measurable nature of driving styles [11], such as aggressive drivers,
conservative or slow drivers, inattentive drivers, drunk drivers. However, to detect unsafe drivers,
for most learning and classification techniques, a pre-set ‘normal’ driving profile has to be defined
as reference, typically, using a discrete scale with several levels [41]. As opposed to human-labelled
learning, our feature extraction approach is unsupervised without any prior knowledge and does not
rely on a prior definition. The objective is first to develop an adaptive, multilayer “encoder” network
to transform the higher-dimensional raw representation into a low-dimensional code and a similar
“decoder” network to promise the minimal loss.

In general, an aggressive or inattentive driving pattern has been associated with risky
speeding profiles, inconsistent or excessive acceleration/deceleration, and improper vehicle position
maintenance. For simplicity, we focus on features of speed and acceleration only in this part. The GPS
data also includes vehicle orientation information (by degree) per second. The feature transformation
related to turning behaviour can be modelled and clustered following the same steps. The details are
discussed in Section 4.3.

3.1.1. Parameters Related to Speed

The effect of speed on road safety has gained considerable attention in literature. Parameters such
as speed limits, mean speed and the speed variance have been examined in order to define the
underlying relationships [2]. For instance, in China metropolitan areas, the speed limit is often no
more than 80 km/h. Thus, for a maximum speed limit vmax, we define vf as the threshold speed if there
is an over speed tendency when the vehicle runs at a relatively high speed. The scale of time duration
when its speed is over vf is calculated in Equation (1),

δ =
Tf

Tc
× 100%, (1)

where Tc is the total travelling time of this vehicle on road; Tf is the duration of time when speed
exceeds vf. Besides, the mean and the unbiased estimation of standard deviation of the vehicle’s speed
are included due to the clear correlation between road accidents and a wide variation in speed.

va =
1
n

n

∑
m=1

vm, (2)

vs =

√
1

n− 1

n

∑
m=1

(vm − va)
2, (3)

where vm is the instantaneous speed of the vehicle collected by GPS sensor at the time m; n is the
sample size.
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3.1.2. Parameters Related to Acceleration

Acceleration and jerk variance evaluation for vehicles are often employed to detect anomalous
behaviour in driving risk analysis. Thus, multi-dimensional acceleration-related parameters need
to be incorporated into the model, which are the unbiased estimation of standard deviation as,
positive (negative) standard deviation a+s (a−s ), positive (negative) average a+m(a−m) of acceleration.

aa =
1
n ∑ n

m=1am, (4)

as =

√
1

n− 1 ∑ n
m=1(am − aa)

2, (5)

a±m =
vm − vm−1

t
, (6)

a±a =
1
n ∑ n

m=1a±m , (7)

a±s =

√
1

n− 1 ∑ n
m=1

(
a±m − a±a

)2, (8)

where am is the instantaneous acceleration of the vehicle collected by GPS at the time m; aa is the
average acceleration of the vehicles in the dataset.

Thus, on an experimental basis, we first selected eight features transformed from sequences of
raw GPS data to serve as the behavior-to-vec X of drivers, where X is constructed as follows:

X =
[
δ, va, vs, as, a+a , a+s , a−a , a−s

]
3.2. Learning Features with Autoencoder

The Autoencoder is a feedforward neural network with a symmetrical structure and an
odd number of layers [42–44], by minimizing the reconstruction error between the input data at
the encoding layer and its reconstruction at the decoding layer, in the mapping weight vectors.
Autoencoder has a unique training process to transform the dimension of the data, e.g., from high
level to lower one, or vice versa. It guarantees that every neuron in input/output layers can have a
one-to-one correspondence to the feature. For the simplest case with a hidden layer smaller than the
input/output layer and linear activations only, the autoencoder implements a compression scheme
and performs equally as PCA [45]. Recent studies found that nonlinear autoencoders are capable of
classifying certain types of multimodal and nonlinear domains accurately, and so reveal much deeper
connections between variables [46].

To enhance the performance of an autoencoder, the input vector needs to be element-wise
normalized to

xi =
xi − xi

σi
(9)

where xi is the average value of each feature and σi is the variance. We take the normalized vector X as
the input of the autoencoder and define V as the behaviour training set which is ready to feed into the
autoencoder with a size of M .

V = {X1, X2, . . . , Xn}T , n ∈ M

where n is the size of the dataset. The model is designed as a multiple layer structure (≥3), aiming to
compress and extract principal latent features for further analysis, such as classification and regression.
The first layer is the input layer, the last one is the output layer, and others are hidden layers.

Autoencoders offer a way of defining a nonlinear form of hW,b(x) with parameters W,b that can
fit to the dataset. Moreover, the goal of iterating the autoencoder is to learn an identity function
hW,b(x) = x̂i ≈ xi, where x̂i is the output vector corresponding to the input vector xi. We let nl denote
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the number of layers in our network, i.e., nl = 5; W(l)
ij denotes the parameter (or weight) associated

with the connection between unit j in layer l, and unit i in layer l + 1; b(l)i is the bias term associated
with unit i in layer l + 1. The weights in every layer start with a random value and iterate when trying
to minimize the loss between the original input and its output. We use tangent function tanh(·) as
activation function between layers as f (x) = ex−e−x

ex+e−x .
Using the chain rule to back propagate error derivatives through deeper layers to shallower ones,

the gradient method can easily manage the process. Taking the third layer as an example (l = 3), with a
sparse constraint on the hidden units, in other words for most of its elements to be zero, the average
value p̂j of activation degree of hidden neuron j on the training set is:

p̂j =
1
M

M

∑
i=1

a(3)j

(
x(i)
)

(10)

where a(3)j denotes the activation degree of hidden neuron j. Parameter ρ specifies the desired level of
sparsity whose value is close to zero (e.g., 0.01). Now we can define the overall cost function to be

J(W, b) =
1
M

M

∑
i=1

(x̂− x)2 + β
s

∑
j=1

[ρ·log
ρ

p̂j
+ (1− ρ)log

1− ρ

1− p̂j
] (11)

where s is the number of neurons in the hidden layer. As shown in Equation (11), we apply
Kullback-Leibler divergence as the penalty term, β is the weight of the penalty term. In the BP
(Back Propagation) training process, the update of weights is calculated as:

ϕ(3) =

[
s

∑
j=1

W(3)
ji ϕ

(4) + β

(
ρ

p̂j
+

1− ρ

1− p̂j

)]
· f ′
(

z(3)i

)
(12)

In this study, among the hidden layers, it is a kind of layer-wise-pre-training process, in other
words, the shallow layers (l = 2) are used to learn the fairly simple and straightforward regulations
from units, and then the deeper hidden layers (l = 3) are applied to learn latent regulations or
multimodal domains.

3.3. Classification with Self-Organizing Map

Initially researchers employed SOM network for quantization of colour images. By adjusting a
quality factor, the network is able experimentally to produce images of much greater quality than
existing methods. In a refined version of the SOM, the output can be used for a controlled training of the
next layer network, called as an unsupervised clustering method hierarchical SOM [47]. This method
provides a natural measure for the distance of a neuron from a cluster by giving appropriate weights
to all the neurons belonging to the cluster, and so produces clusters that match the desired classes
better than the direct SOM or the classical k-means.

Classification and clustering of individual drivers is the primary area of interest in this driving
behaviour study. SOM learn on their own through unsupervised competitive learning, where the
neurons need to race for the opportunities of activation. This mechanism has the effect that only one
neuron can be activated by the input stimuli at any time t. For classification, a major advantage of
SOM is to be able to minimize the influence of the noise data and so outperform other classic clustering
techniques e.g., the K-means method [48]. Furthermore, SOM has gained in popularity due to the
ability to preserve the topology in projections, where the topology form is often represented as a
rectangular I × J grid.

Self-Organizing Maps are so named because no inspection is required and they assign themselves
according to the weights given to the input nodes. Another unique aspect of SOM is termed Vector
Quantization, which is a data compression technique of representing multi-dimensional data in
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lower dimensional space (1-D or 2-D). To keep the same dimension as the input vector, Neuron nij
is synchronized with a weight vector wij. Before the training process, weight vectors are initialized
at random values generated from the uniform distribution ranging from 0 to 1. When nij receives
the input vector y at every iteration t, the net input sij is calculated using Euclidean Distance in
Equation (13), i.e., every input neuron is compared with the trained data based on collection frequency.

sij(t) =
∣∣∣∣y(t)− wij(t)

∣∣∣∣ (13)

The activity level aij is calculated at each iteration through the exponential function:

aij(t) = exp
(
−

sij(t)
σ

)
(14)

where σ is the exponential factor. The exp(·) is to normalize and promote the difference between
high and low degrees of activity of neurons. Thus, the winner neuron with strongest activation is
selected as:

c = argmax
i,j

aij(t) (15)

Then weights wijk are updated as below:

wijk(t + 1) = wijk(t) + α(t)·Gijc(t)
[
xk(t)− wijc(t)

]
(16)

where α(t) is the learning rate ranging from 0 to 1, which controls how fast the state of SOM changes
and how accurately the algorithm learns. Gijc(t) is the neighborhood function which reflects the
relationship between activated neuron and inactivated ones measured by the spatial distances as
shown in Equation (17).

Gijc(t) = exp
{
−

rc − rij

2σ2(t)

}
(17)

where rc, rij ∈ R2 are location vectors of neurons.
To obtain a form of input neurons for the SOM, we first transfer the encoded low-dimensional

high-level parameters, into the learned feature extraction matrix. Then we transform them to be
the input pattern of the SOM by combining with a 3-D vector β = (β0, β1, β2), and the competitive
layer of SOM is set to be a practical 2-D mapping to obtain aggregated information. In the next part,
we demonstrate the application of AESOM networks in a case study using a large-scale GPS dataset.

4. Experiments

4.1. Datasets

In this case study, we use smartphone GPS data from ‘the City of Shenzhen Mapping’ database
(source from Shenzhen Urban Transport Planning Center, Shenzhen, China) to understand the local
driving behaviour in Shenzhen, China. The municipality of Shenzhen covers an area of 1991 square
kilometers including urban and rural areas, with a total population of approximate 12 million. The city
has an elongated shape measuring 81.4 km from east to west while the shortest section from north to
south is only 10.8 km (Figure 2). Shenzhen was established as a Special Economic Zone in 1980, and so
the road system is relatively modern and well planned.

As shown in Table 1, each subset corresponds to a unique and continuous period between January
and June in 2017. The data in each set were collected in seven consecutive days. GPS are measured at
every 1 s, resulting in a 3TB database. Given the amount of data, we have a large number of samples
for almost every major road and expressway in Shenzhen. To review one subset in Table 1 as an
example, there are approximately 2 billon points (each with unique latitude and longitude) collected
in Set 5 from 1 May 2017 to 7 May 2017, from Monday to Sunday. The raw data may encounter both
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user and system errors. The system errors are mainly due to technical issues such as signal reflection,
phone battery, canyon effects and network connection that disturbs data transfer between the user and
the server. To address the issue of noise and outlier, most GPS receivers employ proprietary filtering
algorithms to compensate for data points beyond variances. Thus, the software embedded within
the receiver automatically provides certain level of data correction. Second, additional measures of
reliability can help identify questionable data, and numerous techniques can filter the data based on
these measures (e.g., Pauta criterion). Third, one advantage of this proposed deep learning approach is
to reduce/manage the negative effects of defects during feature extraction.Sustainability 2018, x FOR PEER REVIEW  9 of 16 
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Table 1. Description of the raw Global Positioning System database.

Set Period Total GPS Points (Millions) Total Device ID (Thousands)

1 1–7 January 2017 1865 301
2 1–7 February 2017 1774 222
3 1–7 March 2017 2112 346
4 1–7 April 2017 2042 292
5 1–7 May 2017 1990 296
6 1–7 June 2017 2069 280

4.2. Autoencoder-Self Organizing Mapping Network Application—Test One

To obtain samples that are most representative of the entire population, we followed a two-stage
sampling process. First the whole dataset was divided into 42 subgroups by date (7 days in a month
for 6 months). Then we selected the top 96 ids which contain most of the valid GPS points in each
day. Finally, we obtained 4032 ids as the driving behaviour training set for the AESOM neural
networks (Table 2). To verify both the feasibility and accuracy of the autoencoder, we performed some
experiments and decide to employ the structure consisting of an encoder with one input layer and two
hidden layers, neuron size as 8-6-3 respectively (Figure 1). This also determines the extraction feature
matrix structure and a 3-D vector β = (β0, β1, β2) to transform the significant components into input
neurons of the SOM for clustering. The lattice of a competitive layer in SOM was set as a 5 × 5 grid,
with consideration of both computational cost and classification performance.

In this AESOM framework, the main objective of an autoencoder is to detect the structure of a large
multivariate dataset (data patterns and relations) and to implement a compression scheme. In addition,
it learns to what extent each component is associated with each input variable and how much the set
of components explain the variability of the original dataset. After obtaining the component vector
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ŷn (the output of layer 3), we can understand and name each factor, observing the contribution of
all the variables. Table 3 shows the output ŷn, where the loss value determined by J(W, b) is only
0.08, indicating a well-qualified neural network performance. The relationship between ŷn and input
variables xi is displayed in Table 4.

According to the feature extraction matrix in Table 4, ŷ1 and ŷ3 display strong relationships
with acceleration/deceleration driving features ([as, a+a , a+s ] and [as, a−a , a−s ]). Specifically, ŷ1 reflects
acceleration with “+” sign while ŷ3 represents deceleration of vehicles (with “−” sign). In contrast,
ŷ2 reflects speeding behaviour ([δ, va, vs].

Table 2. Parameter data of characteristics (portion).

Id δ va vs as a+a a+s a−a a−s
1 0.068 0.220 −0.083 −0.441 −0.755 −0.467 0.778 −0.330
2 −0.623 −0.112 −0.056 −0.847 −1.050 −0.771 1.070 −0.794
3 −0.381 −0.138 1.650 0.435 0.468 0.452 −0.418 0.355
4 −0.819 0.496 0.750 0.844 −0.135 1.101 0.179 0.847
5 −0.935 −1.777 −1.347 −1.056 −1.146 −0.931 1.154 −0.994

. . . . . . . . . . . . . . . . . . . . . . . . . . .
4031 0.057 0.315 −0.443 0.334 −0.405 0.543 0.392 0.557
4032 −0.804 0.159 −0.594 1.905 0.744 2.291 −0.727 2.323

Table 3. Encoded parameter matrix in the hidden layer l = 3.

Id ŷ1 ŷ2 ŷ3

1 2.07276 1.01655 1.50635
2 1.33207 0.99798 1.14364
3 5.74891 4.37044 5.20796
4 5.20190 1.46239 4.15118
5 1.20631 0.73165 1.06726

. . . . . . . . . . . .
4031 4.10804 0.86285 2.75928
4032 8.79163 1.85217 5.82063

Table 4. Extraction of the most significant components.

Input Variable ŷ1 ŷ2 ŷ3

δ 4.00863 3.21656 * 2.50600
va 4.15231 2.42050 * 2.60216
vs 4.18947 3.13631 * 2.85290
as 4.72042 * 2.39948 3.63525 *
a+a 5.49825 * 2.13975 2.68946
a+s 4.66887 * 1.78941 3.17082
a−a 3.91298 2.13656 3.47919 *
a−s 4.09028 1.79880 3.18694 *

* Bold and italic, high degree of association.

There is a growing body of evidence to suggest several road safety benefits are associated
with reduced speed variability between vehicles. Specifically, increased speed variation may
disturb homogenised traffic flow and increase the likelihood of conflict situations caused by human
behaviour [49]. Considering the combination of acceleration and deceleration (ŷ1 and ŷ3), we set the
coefficient β to be (1, 0, 1), and correspondingly design the SOM networks to cluster the 2-D inputs
into 4 classes as shown in Table 5. It is good to find almost half driving in Shengzhen metro with
consistent speed. Only 3.2% drivers show heavily variable speed, thus, we call this small group
“Neurotic” drivers.
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Based on ŷ2, the SOM networks produced four distinct clusters as displayed in Table 6.
3.69% drivers would be classified as consistently speeding. This smallest group can be labeled as an
“Aggressive” class. Even though a small percentage, there are over 3 million vehicles in Shenzhen and
around 1.7 million vehicles on road each day in 2017. Thus, the actual volume of aggressive drivers on
road daily in Shenzhen can be up to 70,000. The rest 53.08% (C2 + C3) show light to moderate risky
speeding profiles.

It is noted that the outputs from the SOM networks based on ŷ1 or ŷ3 are in only three distinct
clusters. As presented in Table 7, 66.34% of drivers (in C1) prefer to decelerate in a relatively
smooth style. However, there are 6.48% of drivers who exhibit inconsistent or excessive accelerations
(harsh take-off), labelled as “Inattentive” drivers. As expected, clustering based on ŷ3 indicates a similar
distribution to that on ŷ1, that about 93.99% of drivers (C1 + C2) constitute the norm, while 6.01%
decelerate frequently, as shown in Table 8. They are more likely to closely tailgate and suddenly brake.

In conclusion, in Shenzhen, by and large drivers conformed to road rules, staying within the
confines of the speed limit, with no harsh braking or sharp accelerating. Drivers in a small group were
prone to acceleration as well as deceleration. This kind of motion can create high risk of accidents.
The driving behaviour patterns have various physical, psychological and incidental aspects that are
measurable. Driver behaviour is related not only to the driver’s character and socio-economics, but also
to education, training, police enforcement, etc.

Table 5. Clusters of driving behaviour based on ŷ1 and ŷ3 (β = (1, 0, 1)).

Class Variable Speed Pattern Percentage

C1 None 49.00%
C2 Slight 36.09%
C3 Moderate 10.81%
C4 Heavy 3.20%

Table 6. Clusters of driving behaviour based on ŷ2 (β = (0, 1, 0)).

Class Speeding Behavior Percentage

C1 None 43.23%
C2 Slight 38.62%
C3 Moderate 14.46%
C4 Heavy 3.69%

Table 7. Clusters of driving behaviour based on ŷ1 (β = (1, 0, 0)).

Class Acceleration Behaviour Percentage

C1 Slight 66.34%
C2 Moderate 27.18%
C3 Heavy 6.48%

Table 8. Clusters of driving behaviour based on ŷ3 (β = (0, 0, 1)).

Class Deceleration Behaviour Percentage

C1 Slight 63.19%
C2 Moderate 30.80%
C3 Heavy 6.01%

4.3. Autoencoder-Self Organizing Mapping Network Application—Test Two

In the second experiment, to investigate improper vehicle position maintenance, we added two
vehicle lateral orientation features wa and uw from the raw sequences of GPS data. Here wa is the



Sustainability 2018, 10, 2351 12 of 16

instantaneous angular velocity of the vehicle; uw is the angular acceleration. Thus, a ten dimensional
X vector was formulated as follows.

X =
[
δ, va, vs, as, a+a , a+s , a−a , a−s , wa, uw

]
We keep the same autoencoder structure as in test one, consisting of an encoder with one input

layer and two hidden layers, neuron size as 8-6-3 respectively. The new loss value is 0.03, indicating a
better neural network performance compared with the network in test one. The results are presented
in Tables 9–12.

Table 9. Feature extraction matrix in test II.

Features ŷ1 ŷ2 ŷ3

δ 0.8360 0.8874 1.9262 *
va 0.9625 0.9234 1.9001 *
vs 1.0015 1.0148 * 1.7624
as 0.9500 1.1408 * 1.8224
a+a 0.9428 1.0362 * 1.7620
a+s 1.0013 1.0418 * 1.8552
a−a 1.0294 * 0.8947 1.8071
a−s 1.2016 * 1.0012 1.8690
wa 1.0720 * 0.8628 2.0853 *
uw 1.1305 * 0.8509 2.0830 *

* Bold and italic, high degree of association.

Table 10. Test II Clusters of driving behaviour based on ŷ1.

Class Turning and Deceleration Percentage

C1 Slight 35.81%
C2 Moderate 40.67%
C3 Heavy 23.52%

Table 11. Test II Clusters of driving behaviour based on ŷ2.

Class Acceleration Behaviour Percentage

C1 Slight 58.13%
C2 Moderate 33.93%
C3 Heavy 7.94%

Table 12. Test II Clusters of driving behaviour based on ŷ3

Class Turning and Speeding Percentage

C1 None 12.00%
C2 Slight 46.88%
C3 Moderate 39.83%
C4 Heavy 1.29%

Test two considers variations in the lateral and longitudinal position of the vehicle. According to
the extraction matrix in Table 9, ŷ1 presents a strong correlation between angular velocity and vehicle
deceleration features; ŷ2 reflects association with speed and acceleration with “+” sign behavior,
while ŷ3 displays a strong relationship with the combination of lateral and longitudinal speed features.

In contrast to the clustering results in test one with a small class defying driving norms, the SOM
networks in test two produced three distinct clusters based on ŷ1 and there are 23.52% of drivers
in C3 who conduct sharp turning with deceleration (Table 10). Typical scenarios can be turning at
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intersections, where they tend to turn the steering wheel suddenly with harsh braking simultaneously.
Another differentiating factor of the way drivers turn is that we see more extreme lateral acceleration
with high speed in a small class C4 (1.29%) in Table 12 based on ŷ3, indicating a higher risk of accidents.

Improper vehicle lateral position maintenance and inconsistent or excessive angular
acceleration/deceleration have been identified as major contributing behavioural characteristics that
influence road safety. This proposed AESOM approach provides a good opportunity to combine
feature learning and classification into an integrated deep learning framework to discover latent
patterns and values from mega sensor data. The clustering results display the heterogeneous driving
style profiles across the population. By adding the vehicle lateral orientation parameters to the neural
networks, experiments verify the advantages of AESOM when dealing with high dimensionality.

5. Discussion and Conclusions

Sensors have made it both technically and economically feasible to review driving behaviour in
natural surroundings on a large scale, through unobtrusive data collection and without experimental
control. However, raw sensor data, that requires more than two or three dimensions to represent,
can be difficult to interpret. One method of simplification is to assume that the data of interest lie on
an embedded nonlinear manifold within the higher-dimensional space. Nonlinear dimensionality
reduction algorithms have been convinced to perform much better than linear algorithms in the field
of computer-vision. As an important branch of nonlinear dimensionality reduction, mapping methods
can be viewed as a preliminary feature extraction step, after which pattern recognition algorithms are
applied. Both autoencoders and self-organised mapping is prominent mapping learning algorithms.
However, it is the first time we integrated these two nonlinear dimensionality reduction techniques
into a hybrid unsupervised deep learning architecture, to learn and classify driving behaviour using
GPS data.

In recently years, researchers have studies a series of model-driven deep learning methods,
which showed their feasibilities and effectiveness in various fields. It can retain the powerful
learning ability of the deep-learning approach, and may overcome the difficulty in network
topology selection [50,51]. In this work, we made efforts to explore a model-driven deep learning
framework that can balance the flexibility and appositeness in behaviour study. As an innovative
architecture, some questions remain open and require further investigations. For example, can this
model be improved by imposing certain form of sparsity on the representations they learnt?
Popular dimensionality reduction approaches, whether linear ones like PCA, Independent component
analysis and factor analysis, or non-linear such as Locally-Linear Embedding or Modified
Locally-Linear Embedding, map each example to the same low-dimensional space. However, it has
been discussed that in favor of sparsity, it would be practical and more efficient to map each example
to a variable length representation.

Several potential directions are open for future exploration. First, by adding supervisory
information into unsupervised feature learning to reconstruct our unsupervised AESOM, it may
improve the quality of driving pattern representation. Second, further work is being conducted
to study the performance of AESOM framework in detecting abnormal driving, and to refine the
deep learning architecture to address the prediction of crash and near-crash events. Meanwhile,
identifying behavioural change among drivers during or following specific events, time periods,
or new transportation regulations, can be an important application for the proposed method.

The following conclusions were obtained:

1. Compared with the state-of-the-art modelling and analysis methods, the experiments have shown
that back propagation through the multi-layer autoencoders were effective for non-linear and
multi-modal dimensionality reduction, producing low reconstruction errors on big GPS datasets.

2. The driving behaviour features and clusters learned by the AESOM networks were
fairly interpretable.
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Most of traffic parameters were found to have mixed effects on road network. Thus, by extracting
highly correlated time-series data of latent features and clustering into driving risk groups,
this approach can be an effective tool for proactive road management strategies.
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