Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development
Abstract
:1. Introduction
2. Torrefaction Process
2.1. Torrefaction Process
2.2. Parameters that Influence the Torrefaction Process
2.2.1. Temperature and Residence Time
2.2.2. Heating Rate
2.2.3. Operating Atmospheric Composition
2.2.4. Controlling Torrefaction Process Instability
2.2.5. Type of Reactor
3. Torrefied Biomass
3.1. Properties of Torrefied Biomass
3.1.1. Moisture Content
3.1.2. Bulk Density and Energy Density
3.1.3. Grindability
3.1.4. Particle Size Distribution, Sphericity, and Specific Surface Area
3.1.5. Heating Value
4. Economic and Social Analysis
5. Analysis of the Research Literature
5.1. Research Focused on Torrefaction
5.2. Future Perspectives and Research Developments
5.3. The Current State of the Built Production Units
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Chen, W.H.; Kuo, P.C. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 2011, 36, 803–811. [Google Scholar] [CrossRef]
- Van der Stelt, M.J.C.; Gerhauser, H.; Kiel, J.H.A.; Ptasinski, K.J. Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass Bioenergy 2011, 35, 3748–3762. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Vassilev, V.S. Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel 2015, 158, 330–350. [Google Scholar] [CrossRef]
- Elizondo, A.; Pérez-Cirera, V.; Strapasson, A.; Fernández, J.C.; Cruz-Cano, D. Mexico’s low carbon futures: An integrated assessment for energy planning and climate change mitigation by 2050. Futures 2017, 93, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Meeus, L.; Azevedo, I.; Marcantonini, C.; Glachant, J.-M.; Hafner, M. EU 2050 Low-Carbon Energy Future: Visions and Strategies. Electr. J. 2012, 25, 57–63. [Google Scholar] [CrossRef]
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Fragkos, P.; Tasios, N.; Paroussos, L.; Capros, P.; Tsani, S. Energy system impacts and policy implications of the European Intended Nationally Determined Contribution and low-carbon pathway to 2050. Energy Policy 2017, 100, 216–226. [Google Scholar] [CrossRef]
- Corradini, M.; Costantini, V.; Markandya, A.; Paglialunga, E.; Sforna, G. A dynamic assessment of instrument interaction and timing alternatives in the EU low-carbon policy mix design. Energy Policy 2018, 120, 73–84. [Google Scholar] [CrossRef]
- Schanes, K.; Jäger, J.; Drummond, P. Three Scenario Narratives for a Resource-Efficient and Low-Carbon Europe in 2050. Ecol. Econ. 2018. [Google Scholar] [CrossRef]
- Schirone, L.; Pellitteri, F. Energy Policies and Sustainable Management of Energy Sources. Sustainability 2017, 9, 2321. [Google Scholar] [CrossRef]
- Bollino, C.A.; Asdrubali, F.; Polinori, P.; Bigerna, S.; Micheli, S.; Guattari, C.; Rotili, A. A Note on Medium- and Long-Term Global Energy Prospects and Scenarios. Sustainability 2017, 9, 833. [Google Scholar] [CrossRef]
- Sung, B.; Park, S.-D. Who Drives the Transition to a Renewable-Energy Economy? Multi-Actor Perspective on Social Innovation. Sustainability 2018, 10, 448. [Google Scholar] [CrossRef]
- Ntanos, S.; Kyriakopoulos, G.; Chalikias, M.; Arabatzis, G.; Skordoulis, M. Public Perceptions and Willingness to Pay for Renewable Energy: A Case Study from Greece. Sustainability 2018, 10, 687. [Google Scholar] [CrossRef]
- Jiang, Y.; van der Werf, E.; van Ierland, E.C.; Keesman, K.J. The potential role of waste biomass in the future urban electricity system. Biomass Bioenergy 2017, 107, 182–190. [Google Scholar] [CrossRef]
- Muench, S. Greenhouse gas mitigation potential of electricity from biomass. J. Clean. Prod. 2015, 103, 483–490. [Google Scholar] [CrossRef]
- Chen, W.; Peng, J.; Bi, X.T. A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 2015, 44, 847–866. [Google Scholar] [CrossRef]
- Andreoli Bonazzi, F.; Cividino, S.R.S.; Zambon, I.; Mosconi, E.M.; Poponi, S. Building Energy Opportunity with a Supply Chain Based on the Local Fuel-Producing Capacity. Sustainability 2018, 10, 2140. [Google Scholar] [CrossRef]
- Dietrich, R.-U.; Albrecht, F.G.; Maier, S.; König, D.H.; Estelmann, S.; Adelung, S.; Bealu, Z.; Seitz, A. Cost calculations for three different approaches of biofuel production using biomass, electricity and CO2. Biomass Bioenergy 2018, 111, 165–173. [Google Scholar] [CrossRef]
- Proskurina, S.; Heinimö, J.; Schipfer, F.; Vakkilainen, E. Biomass for industrial applications: The role of torrefaction. Renew. Energy 2017, 111, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Lu, K.M.; Lee, W.J.; Chen, W.H.; Liu, S.H.; Lin, T.C. Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresour. Technol. 2012, 123, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Joshi, Y.; De Vries, H.; Woudstra, T.; De Jong, W. Torrefaction: Unit operation modelling and process simulation. Appl. Therm. Eng. 2015, 74, 83–88. [Google Scholar] [CrossRef]
- Shankar Tumuluru, J.; Sokhansanj, S.; Hess, J.R.; Wright, C.T.; Boardman, R.D. REVIEW: A review on biomass torrefaction process and product properties for energy applications. Ind. Biotechnol. 2011, 7, 384–401. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Krishna, B.B.; Kumar, J.; Bhaskar, T. Opportunities for utilization of non-conventional energy sources for biomass pretreatment. Bioresour. Technol. 2016, 199, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Nunes, L.J.R.; Matias, J.C.O.; Catalão, J.P.S. A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renew. Sustain. Energy Rev. 2014, 40, 153–160. [Google Scholar] [CrossRef]
- Bergman, P.C.A.; Kiel, J.H.A. Torrefaction for Biomass Upgrading. In Proceedings of the 14th European Biomass Conference, Paris, France, 17–21 October 2005; pp. 17–21. [Google Scholar]
- Chen, Q.; Zhou, J.S.; Liu, B.J.; Mei, Q.F.; Luo, Z.Y. Influence of torrefaction pretreatment on biomass gasification technology. Chin. Sci. Bull. 2011, 56, 1449–1456. [Google Scholar] [CrossRef] [Green Version]
- Xin, S.; Mi, T.; Liu, X.; Huang, F. Effect of torrefaction on the pyrolysis characteristics of high moisture herbaceous residues. Energy 2018, 152, 586–593. [Google Scholar] [CrossRef]
- Acharya, B.; Sule, I.; Dutta, A. A review on advances of torrefaction technologies for biomass processing. Biomass Convers. Biorefinery 2012, 2, 349–369. [Google Scholar] [CrossRef]
- Dhungana, A.; Basu, P.; Dutta, A. Effects of Reactor Design on the Torrefaction of Biomass. J. Energy Resour. Technol. 2012, 134, 41801. [Google Scholar] [CrossRef]
- Tran, K.Q.; Luo, X.; Seisenbaeva, G.; Jirjis, R. Stump torrefaction for bioenergy application. Appl. Energy 2013, 112, 539–546. [Google Scholar] [CrossRef]
- Basu, P. Chapter 4—Torrefaction. In Biomass Gasification, Pyrolysis and Torrefaction, 3rd ed.; Basu, P., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 93–154. ISBN 978-0-12-812992-0. [Google Scholar]
- Da Silva, C.M.S.; Carneiro, A.D.C.O.; Vital, B.R.; Figueiró, C.G.; de Freitas Fialho, L.; de Magalhães, M.A.; Carvalho, A.G.; Cândido, W.L. Biomass torrefaction for energy purposes—Definitions and an overview of challenges and opportunities in Brazil. Renew. Sustain. Energy Rev. 2018, 82, 2426–2432. [Google Scholar] [CrossRef]
- Nunes, L.J.; Matias, J.C.O.; Catalão, J.P.S. Torrefaction of Biomass for Energy Applications: From Fundamentals to Industrial Scale, 1st ed.; Academic Press: Cambridge, MA, USA, 2017; ISBN 978-0-12-809462-4. [Google Scholar]
- Chew, J.J.; Doshi, V. Recent advances in biomass pretreatment—Torrefaction fundamentals and technology. Renew. Sustain. Energy Rev. 2011, 15, 4212–4222. [Google Scholar] [CrossRef]
- Singh, K.; Zondlo, J. Characterization of fuel properties for coal and torrefied biomass mixtures. J. Energy Inst. 2017, 90, 505–512. [Google Scholar] [CrossRef]
- García, R.; Pizarro, C.; Lavín, A.G.; Bueno, J.L. Biomass sources for thermal conversion. Techno-economical overview. Fuel 2017, 195, 182–189. [Google Scholar] [CrossRef]
- Acharya, B.; Dutta, A.; Minaret, J. Review on comparative study of dry and wet torrefaction. Sustain. Energy Technol. Assess. 2015, 12, 26–37. [Google Scholar] [CrossRef]
- Bergman, P.C.A.; Boersma, A.R.; Zwart, R.W.R.; Kiel, J.H.A. Torrefaction for Biomass Co-Firing in Existing Coal-Fired Power Stations; Report No. ECNC05013; Energy Research Centre of The Netherlands (ECN): Petten, The Netherlands, 2005; p. 71. [Google Scholar]
- Isa, K.M.; Daud, S.; Hamidin, N.; Ismail, K.; Saad, S.A.; Kasim, F.H. Thermogravimetric analysis and the optimisation of bio-oil yield from fixed-bed pyrolysis of rice husk using response surface methodology (RSM). Ind. Crops Prod. 2011, 33, 481–487. [Google Scholar] [CrossRef]
- Esteves, B.; Marques, A.V.; Domingos, I.; Pereira, H. Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci. Technol. 2007, 41, 193–207. [Google Scholar] [CrossRef]
- Lipinsky, E.S.; Arcate, J.R.; Reed, T.B. Enhanced wood fuels via torrefaction. ACS Div. Fuel Chem. Prepr. 2002, 47, 408–409. [Google Scholar]
- Prins, M.J.; Ptasinski, K.J.; Janssen, F.J.J.G. Torrefaction of wood. Part 1. Weight loss kinetics. J. Anal. Appl. Pyrolysis 2006, 77, 28–34. [Google Scholar] [CrossRef]
- Prins, M.J.; Ptasinski, K.J.; Janssen, F.J.J.G. Torrefaction of wood. Part 2. Analysis of products. J. Anal. Appl. Pyrolysis 2006, 77, 35–40. [Google Scholar] [CrossRef]
- Nunes, L.J.; Matias, J.C.; Catalão, J.P. Torrefaction of Biomass for Energy Applications, 1st Edition. Available online: https://www.elsevier.com/books/torrefaction-of-biomass-for-energy-applications/nunes/978-0-12-809462-4 (accessed on 4 July 2018).
- Strezov, V.; Evans, T.J.; Hayman, C. Thermal conversion of elephant grass (Pennisetum Purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresour. Technol. 2008, 99, 8394–8399. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Panda, A.K.; Singh, R. Optimization of process for the production of bio-oil from eucalyptus wood. J. Fuel Chem. Technol. 2010, 38, 162–167. [Google Scholar] [CrossRef]
- Medic, D.; Darr, M.; Shah, A.; Potter, B.; Zimmerman, J. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 2012, 91, 147–154. [Google Scholar] [CrossRef]
- Neves, D.; Thunman, H.; Matos, A.; Tarelho, L.; Gómez-Barea, A. Characterization and prediction of biomass pyrolysis products. Prog. Energy Combust. Sci. 2011, 37, 611–630. [Google Scholar] [CrossRef]
- Rousset, P.; Aguiar, C.; Volle, G.; Anacleto, J.; De Souza, M. Torrefaction of Babassu: A potential utilization pathway. BioResources 2013, 8, 358–370. [Google Scholar] [CrossRef]
- Pecha, B.; Garcia-Perez, M. Bioenergy; Elsevier: New York, NY, USA, 2015; ISBN 978-0-12-407909-0. [Google Scholar]
- Wang, M.J.; Huang, Y.F.; Chiueh, P.T.; Kuan, W.H.; Lo, S.L. Microwave-induced torrefaction of rice husk and sugarcane residues. Energy 2012, 37, 177–184. [Google Scholar] [CrossRef]
- Thorn, M.; Bennett, A.; Griend, S.V. Rotary Torrefaction Reactor. U.S. Patent 9150790B2, 3 November 2011. [Google Scholar]
- Rodrigues, A.; Loureiro, L.; Nunes, L.J.R. Torrefaction of woody biomasses from poplar SRC and Portuguese roundwood: Properties of torrefied products. Biomass Bioenergy 2018, 108, 55–65. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Legros, R.; Bi, X.T.; Lim, C.J.; Sokhansanj, S. Torrefaction of sawdust in a fluidized bed reactor. Bioresour. Technol. 2012, 103, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Narayanasamy, L.; Murugesan, T. Degradation of Alizarin Yellow R using UV/H2O2 Advanced Oxidation Process. Environ. Sci. Technol. 2014, 33, 482–489. [Google Scholar]
- Pang, S.; Mujumdar, A.S. Drying of woody biomass for bioenergy: Drying technologies and optimization for an integrated bioenergy plant. Dry. Technol. 2010, 28, 690–701. [Google Scholar] [CrossRef]
- Arias, B.; Pevida, C.; Fermoso, J.; Plaza, M.G.; Rubiera, F.; Pis, J.J. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process. Technol. 2008, 89, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Phanphanich, M.; Mani, S. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour. Technol. 2011, 102, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
- Uslu, A.; Faaij, A.P.C.; Bergman, P.C.A. Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy 2008, 33, 1206–1223. [Google Scholar] [CrossRef]
- Shen, D.K.; Gu, S.; Luo, K.H.; Bridgwater, A.V.; Fang, M.X. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel 2009, 88, 1024–1030. [Google Scholar] [CrossRef] [Green Version]
- Batidzirai, B.; Mignot, A.P.R.; Schakel, W.B.; Junginger, H.M.; Faaij, A.P.C. Biomass torrefaction technology: Techno-economic status and future prospects. Energy 2013, 62, 196–214. [Google Scholar] [CrossRef]
- Agar, D.; Wihersaari, M. Bio-coal, torrefied lignocellulosic resources—Key properties for its use in co-firing with fossil coal—Their status. Biomass Bioenergy 2012, 44, 107–111. [Google Scholar] [CrossRef]
- De Siqueira Ferreira, S.; Nishiyama, M.Y.; Paterson, A.H.; Souza, G.M. Biofuel and energy crops: High-yield Saccharinae take center stage in the post-genomics era. Genome Biol. 2013, 14. [Google Scholar] [CrossRef] [PubMed]
- Mola-Yudego, B.; Dimitriou, I.; Gonzalez-Garcia, S.; Gritten, D.; Aronsson, P. A conceptual framework for the introduction of energy crops. Renew. Energy 2014, 72, 29–38. [Google Scholar] [CrossRef]
- Milbrandt, A.R.; Heimiller, D.M.; Perry, A.D.; Field, C.B. Renewable energy potential on marginal lands in the United States. Renew. Sustain. Energy Rev. 2014, 29, 473–481. [Google Scholar] [CrossRef]
- Radics, R.I.; Gonzalez, R.; Bilek, E.M.; Kelley, S.S. Systematic review of torrefied wood economics. BioResources 2017, 12, 6868–6884. [Google Scholar] [CrossRef]
- Thiel, F.C. New or Improved Roaster or Torrefier for Coffee and other Vegetable Substances. 1898. Available online: https://patents.google.com/patent/GB189710658A/en?q=New&q=Improved&q=Roaster&q=Torrefier&q=Coffee&q=Vegetable&q=Substances&oq=New+or+Improved+Roaster+or+Torrefier+for+Coffee+and+other+Vegetable+Substances (accessed on 4 July 2018).
- Offrion, V.F.O. Improvements in the Process of and Apparatus for Rationally and Continuously Treating or Torrefying Coffee. 1900. Available online: https://patents.google.com/patent/US20150068113A1/en?q=Improvements&q=Process&q=Apparatus&q=Rationally&q=Continuously&q=Treating&q=Torrefying&q=Coffee&oq=Improvements+in+the+Process+of+and+Apparatus+for+Rationally+and+Continuously+Treating+or+Torrefying+Coffee (accessed on 4 July 2018).
- Schwob, Y. Fuel Pellets or Briquettes of High Heating Value mfd. from Wood—By Baking Dry, Grinding, opt. Adding oil, and Pressing. 1983. Available online: https://patents.google.com/patent/FR2525231A1/en?q=Fuel+Pellets&q=Briquettes&q=High&q=Heating&q=Value&q=mfd.&q=Wood&oq=Fuel+Pellets+or+Briquettes+of+High+Heating+Value+mfd.+from+Wood (accessed on 4 July 2018).
- Bourgeois, J.P.; Doat, J. Torrefied Wood from Temperate and Tropical Species. Advantages and Prospects. In Bioenergy 84. Proceedings of Conference 15–21 June 1984, Goteborg, Sweden. Volume III. Biomass Conversion; Elsevier: New York, NY, USA, 1984; pp. 153–159. [Google Scholar]
- Bourgois, J.; Guyonnet, R. Characterization and analysis of torrefied wood. Wood Sci. Technol. 1988, 22, 143–155. [Google Scholar] [CrossRef]
- Energy Research Centre of the Netherlands (ECN). Available online: http://www.aebiom.org/jwdmembers/energieonderzoek-centrum-nederland-ecn/ (accessed on 4 July 2018).
- Pentananunt, R.; Rahman, A.N.M.M.; Bhattacharya, S.C. Upgrading of biomass by means of torrefaction. Energy 1990, 15, 1175–1179. [Google Scholar] [CrossRef]
- Chen, W.-H.; Wang, C.-W.; Kumar, G.; Rousset, P.; Hsieh, T.-H. Effect of torrefaction pretreatment on the pyrolysis of rubber wood sawdust analyzed by Py-GC/MS. Bioresour. Technol. 2018, 259, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Gao, A.; Cen, K.; Zhang, J.; Cao, X.; Ma, Z. Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Convers. Manag. 2018, 169, 228–237. [Google Scholar] [CrossRef]
- Álvarez, A.; Nogueiro, D.; Pizarro, C.; Matos, M.; Bueno, J.L. Non-oxidative torrefaction of biomass to enhance its fuel properties. Energy 2018, 158, 1–8. [Google Scholar] [CrossRef]
- Ho, S.-H.; Zhang, C.; Chen, W.-H.; Shen, Y.; Chang, J.-S. Characterization of biomass waste torrefaction under conventional and microwave heating. Bioresour. Technol. 2018, 264, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Gul, S.; Ramzan, N.; Hanif, M.A.; Bano, S. Kinetic, volatile release modeling and optimization of torrefaction. J. Anal. Appl. Pyrolysis 2017, 128, 44–53. [Google Scholar] [CrossRef]
- Grigiante, M.; Antolini, D. Experimental results of mass and energy yield referred to different torrefaction pathways. Waste Biomass Valorization 2014, 5, 11–17. [Google Scholar] [CrossRef]
- Basu, P.; Kulshreshtha, A.; Acharya, B. An Index for Quantifying the Degree of Torrefaction. BioResources 2017, 12, 1749–1766. [Google Scholar] [CrossRef]
- Almeida, G.; Brito, J.O.; Perré, P. Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: The potential of mass loss as a synthetic indicator. Bioresour. Technol. 2010, 101, 9778–9784. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.H.; Bi, X.T.; Sokhansanj, S.; Lim, C.J. Torrefaction and densification of different species of softwood residues. Fuel 2013, 111, 411–421. [Google Scholar] [CrossRef]
- Rousset, P.; Aguiar, C.; Labbé, N.; Commandré, J.M. Enhancing the combustible properties of bamboo by torrefaction. Bioresour. Technol. 2011, 102, 8225–8231. [Google Scholar] [CrossRef] [PubMed]
- Poudel, J.; Ohm, T.-I.; Gu, J.H.; Shin, M.C.; Oh, S.C. Comparative study of torrefaction of empty fruit bunches and palm kernel shell. J. Mater. Cycles Waste Manag. 2017, 19, 917–927. [Google Scholar] [CrossRef]
- Conag, A.T.; Villahermosa, J.E.R.; Cabatingan, L.K.; Go, A.W. Energy densification of sugarcane bagasse through torrefaction under minimized oxidative atmosphere. J. Environ. Chem. Eng. 2017, 5, 5411–5419. [Google Scholar] [CrossRef]
- Phusunti, N.; Phetwarotai, W.; Tekasakul, S. Effects of torrefaction on physical properties, chemical composition and reactivity of microalgae. Korean J. Chem. Eng. 2018, 35, 503–510. [Google Scholar] [CrossRef]
- Butlewski, K.; Golimowski, W.; Gracz, W.; Marcinkowski, D.; Waliński, M.; Podleski, J. Torrefaction of the Black Lilac (Sambucus nigra L.) as an Example of Biocoal Production from Garden Maintenance Waste. In Renewable Energy Sources: Engineering, Technology, Innovation; Springer Proceedings in Energy; Springer: Cham, Switzerland, 2018; pp. 345–356. ISBN 978-3-31-972370-9. [Google Scholar]
- Natarajan, P.; Suriapparao, D.V.; Vinu, R. Microwave torrefaction of Prosopis juliflora: Experimental and modeling study. Fuel Process. Technol. 2018, 172, 86–96. [Google Scholar] [CrossRef]
- Li, S.-X.; Chen, C.-Z.; Li, M.-F.; Xiao, X. Torrefaction of corncob to produce charcoal under nitrogen and carbon dioxide atmospheres. Bioresour. Technol. 2018, 249, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Chiou, B.-S.; Cao, T.; Valenzuela-Medina, D.; Bilbao-Sainz, C.; Avena-Bustillos, R.J.; Milczarek, R.R.; Du, W.-X.; Glenn, G.M.; Orts, W.J. Torrefaction kinetics of almond and walnut shells. J. Therm. Anal. Calorim. 2018, 131, 3065–3075. [Google Scholar] [CrossRef]
- Zhang, S.; Su, Y.; Xu, D.; Zhu, S.; Zhang, H.; Liu, X. Assessment of hydrothermal carbonization and coupling washing with torrefaction of bamboo sawdust for biofuels production. Bioresour. Technol. 2018, 258, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Su, Y.; Ding, K.; Zhu, S.; Zhang, H.; Liu, X.; Xiong, Y. Effect of inorganic species on torrefaction process and product properties of rice husk. Bioresour. Technol. 2018, 265, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Zeng, K.; Yang, Q.; Zhang, Y.; Mei, Y.; Wang, X.; Yang, H.; Shao, J.; Li, J.; Chen, H. Influence of torrefaction with Mg-based additives on the pyrolysis of cotton stalk. Bioresour. Technol. 2018, 261, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Christoforou, E.A.; Fokaides, P.A. Recent Advancements in Torrefaction of Solid Biomass. Curr. Sustain. Energy Rep. 2018, 5, 163–171. [Google Scholar] [CrossRef]
- Brachi, P.; Miccio, F.; Miccio, M.; Ruoppolo, G. Torrefaction of Tomato Peel Residues in a Fluidized Bed of Inert Particles and a Fixed-Bed Reactor. Energy Fuels 2016, 30, 4858–4868. [Google Scholar] [CrossRef]
Phases | Description |
---|---|
1. Heating | Biomass is heated until the drying temperature is obtained and the biomass’ humidity starts to evaporate. |
2. Pre-drying | Occurs at 100 °C when the free water present on biomass evaporates at a stable temperature. |
3. Post-drying | The temperature is increased until it reaches 200 °C. The remaining water present on biomass chemical bonds is completely evaporated. This phase is responsible for mass loss due to the evaporation of several biomass components. |
4. Torrefaction | Main phase of the torrefaction process. It occurs at 200 °C and is responsible for the main mass lost. The torrefaction temperature (TT) is given by the maximum stable temperature used during the process. |
5. Cooling | The final product is cooled down to a temperature below 200 °C, which is the temperature of wood auto-ignition, before it contacts the air and until room temperature is reached. |
Period of Time | Number of Patents |
---|---|
1922–1925 | 3 |
1930–1932 | 3 |
1939–1952 | 10 |
Name of the Facility | Country | Capacity of Production in Tons Per Year |
---|---|---|
Biolake | The Netherlands | 9000 |
Thermya | Spain | 20,000 |
ECN/Andritz | The Netherlands | 8–16,000 |
Fox Coal | The Netherlands | 35,000 |
EBES/Andritz | Austria | 8000 |
Bio Endev | Sweden | 16,000 |
Rotawave | USA | 100,000 |
Advanced Fuel Solutions | Portugal | 96,000 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, J.M.C.; Godina, R.; Matias, J.C.d.O.; Nunes, L.J.R. Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development. Sustainability 2018, 10, 2323. https://doi.org/10.3390/su10072323
Ribeiro JMC, Godina R, Matias JCdO, Nunes LJR. Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development. Sustainability. 2018; 10(7):2323. https://doi.org/10.3390/su10072323
Chicago/Turabian StyleRibeiro, Jorge Miguel Carneiro, Radu Godina, João Carlos de Oliveira Matias, and Leonel Jorge Ribeiro Nunes. 2018. "Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development" Sustainability 10, no. 7: 2323. https://doi.org/10.3390/su10072323