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Abstract: Understanding the spatial distribution of land surface temperature (LST) and its impact
factors is crucial for mitigating urban heat island effect. However, few studies have quantitatively
investigated the spatial non-stationarity and spatial scale effects of the relationships between LST and
its impact factors at multi-scales. The main purposes of this study are as follows: (1) to estimate the
spatial distributions of urban heat island (UHI) intensity by using hot spots analysis and (2) to explore
the spatial non-stationarity and scale effects of the relationships between LST and related impact factors
at multiple resolutions (30–1200 m) and to find appropriate scales for illuminating the relationships in a
plain city. Based on the LST retrieved from Landsat 8 OLI/TIRS images, the Geographically-Weighted
Regression (GWR) model is used to explore the scale effects of the relationships in Zhengzhou City
between LST and six driving indicators: The Fractional Vegetation Cover (FVC), the Impervious Surface
(IS), the Population Density (PD), the Fossil-fuel CO2 Emission data (FFCOE), the Shannon Diversity
Index (SHDI) and the Perimeter-area Fractal Dimension (PAFRAC),which indicate the vegetation
abundance, built-up, social-ecological variables and the diversity and shape complexity of land cover
types. Our findings showed that the spatial patterns of LST show statistically significant hot spot
zones in the center of the study area, partly extending to the western and southern industrial areas,
indicating that the intensity of the urban heat island is significantly spatial clustering in Zhengzhou City.
In addition, compared with the Ordinary Least Squares (OLS) model, the GWR model has a better ability
to characterize spatial non-stationarity and analyze the relationships between the LST and its impact
factors by considering the space-varying relationships of different variables, especially at the fine spatial
scales (30–480 m). However, the strength of GWR model has become relatively weak with the increase
of spatial scales (720–1200 m). This reveals that the GWR model is recommended to be applied in the
analysis of UHI problems and related impact factors at scales finer than 480 m in the plain city. If the
spatial scale is coarser than 720 m, both OLS and GWR models are suitable for illustrating the correct
relationships between UHI effect and its influence factors in the plain city due to their undifferentiated
performance. These findings can provide valuable information for urban planners and researchers to
select appropriate models and spatial scales seeking to mitigate urban thermal environment effect.

Keywords: urban heat island; spatial non-stationarity; spatial scale effect; geographically weighted
regression model; Zhengzhou City
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1. Introduction

Rapid and unprecedented urbanization has occurred across China over the past several
decades—its urbanization rate, which can be defined as the proportion of urban population in the total
population, has increased from 17.92% to 56.10% in 1978–2015 (National Bureau of Statistics of China,
http://data.stats.gov.cn). With the development of urbanization, the urban areas have expanded
and urban population has risen dramatically. The natural land cover is gradually being replaced by
artificial materials (e.g., cement, asphalt, metals, etc.), which has changed the local urban landscape
and climatic conditions, affected ecosystem functions and services and caused many ecological and
environmental problems [1,2]. One of the most prominent phenomena is the increasingly significant
urban heat island (UHI) effect. The UHI effect refers to the phenomenon that the urban areas have
higher temperatures than their surrounding suburban areas [3–5], which has attracted wide concern
because of its adverse effect on human living environment, air quality and resident health [6–9].

In general, the UHI described in the term of air temperatures by the direct in-situ measurement
and surface temperature from thermal remote sensing data [4,10]. With the development of remote
sensing technology, satellite-based estimation of Land Surface Temperature (LST) and other surface
temperature (e.g., lake surface temperatures, etc.) derived from thermal infrared remote sensing
imagery [11,12] becomes effective in interpreting UHI effect because it provides a relatively rapid
and low-cost data information on landscape scale. Currently, numerous studies have been conducted
to deal with the spatial characteristics, changing trends and impact factors of UHI effect based on
remote sensing data and geographic information systems (GIS) technology [13–17]. Among the above,
the relationships between LST and related indicators become a hot topic that attracts wide-ranging
research because these related findings have great significance to formulate urban planning policies to
relieve UHI effect. Traditionally, some important indicators such as Normalized Difference Vegetation
Index (NDVI), Fractional Vegetation Cover (FVC) and Normalized Difference Built-up Index (NDBI)
have been commonly applied to examine the spatial variations of LST [18,19]. Yuan and Bauer used the
indicators including the NDVI and percent Impervious Surface Area (%ISA) based on Landsat imagery
to quantitatively investigate the relationships between LST, percent impervious surface area and the
NDVI from four different seasons [20]. Several works have also used other biophysical parameters
like, Normalized Difference Water Index (NDWI), the Normalized Difference Bareness Index (NDBaI)
and other land-cover types as complimentary metrics to research UHI effect deeply by using remote
sensing data [21–23]. In addition, recent studies have developed various landscape pattern metrics
such as landscape shape index, landscape configuration, patch density and edge density to measure
the influence of these indicators on LST [24–26]. However, there are still few UHI effect studies that
have considered other indicators related to human activities into their respective researches, such as
air pollution, energy consumption and demographic shifts [27,28]. In this study, the Fossil-fuel CO2

Emission and Population Density were incorporated into our impact factors analyses, in addition to
other land use/land cover (LULC) variables and landscape pattern metrics.

Pervious literature on the relationships between LST and its influence factors commonly adopted
Pearson correlations and the global regression models, like single or multiple linear regression and
principal component regression [29–31]. Although conventional correlation analysis or multivariate
regression relationships are relatively well-established, these statistical analyses of existing studies
have generally been aspatial and model the relationships without considering the spatially dependency
of LST in the whole study area [25,32]. In fact, the observed geographical and ecological patterns
and processes tend to be spatial variable and the relationships between LST and its impact factors
are often characterized by local changes [33,34]. Commonly, this feature is referred to as spatial
non-stationary [35]. However, most of the existing researches are based on multiple linear regression
analysis to model the relationship hiding the important details in the spatial variation and resulting in
a failure to capture the spatial dependence of the data [36]. This may generate misleading parameter
estimates and uncertain significance test results [33]. Hence, the impacts of related influence factors
on LST considering the effects of spatial non-stationary need to be further investigated. In order

http://data.stats.gov.cn


Sustainability 2018, 10, 2242 3 of 21

to overcome the limitations of the aforementioned problem, this study examines the relationships
between LST and its impact factors considering geographically-weighted regression (GWR) model,
which developed a local regression technique to explore spatial non-stationarity in the relationship
between variables at spatial scales [37–39]. A limited number of studies have employed the GWR
model when implementing a regression analysis of the relationships between LST and its impact
factors [40,41]. The studies by Buyantuyev [2] and Tian [42,43] showed that the GWR model can not
only effectively solve the problem of the spatial non-stationarity of the relationships between LST
and its impact factors but also provide better significance test results than conventional regression
analysis models.

In addition, the existing studies have mainly investigated the relationships between LST and its
influence factors at a single scale. However, LST and these impact variables as well as their spatial
distribution and interactions exist scale dependence [33], namely, the spatial patterns of geographical
and ecological processes may vary across scales, resulting in the need to explore the scaling-up
effects on the relationships between LST and its various impact factors [43]. Therefore, a multiscale
analysis is necessary to uncover which the effects of related factors on LST vary across different
scales. The main objectives of this study are as follow: (1) to analyze the spatial feature of LST and
its impact factors, like landscape pattern metrics and social-ecological variables; (2) to explore and
compare GWR model as well as traditional regression analysis such as the Ordinary Least Squares
(OLS) model used to examine the relationships between LST and its impact factors; (3) to investigate
scale effects on the association between LST and related explanatory variables, namely the change
characteristics across different spatial resolutions (from 30–120, 240, 480, 720, 960, 1080 and 1200 m).
Investigating and understanding the LST and related influence factors are important steps toward
mitigating UHI effect and promoting urban sustainability [44], the findings of this study will contribute
to our understanding of how the related impact factors may affect local LST at different spatial scales.
This research will enrich the previous literature on the utility of GWR model at different scales and
help develop appropriate urban planning policies to alleviate UHI effect.

2. Study Area

Zhengzhou City, situated in the north-central of China (112◦42′ E–114◦14′ E, 34◦16′ N–34◦58′ N),
is an important central city and transportation hub in China (Figure 1). It covers an area of about
7446.2 km2 and belongs to a typical inland plain city. This city is part of the North Temperate Zone
continental monsoon climate and the annual average temperature is approximately 14.4 ◦C. The area
has an annual precipitation of 640.9 mm and a terrain trend of higher terrain in the southwest and
lower terrain in the northeast. The Yellow River goes through the area from west to east and delineates
the northern boundary of Zhengzhou City. As the capital of Henan Province, Zhengzhou has been
experienced rapid population growth and urbanization in the past several decades. According to the
population census (http://www.zzstjj.gov.cn/), the urban population of Zhengzhou City increased
from 1.25 to 4.78 million and the urbanization rate increased from 32.4% in 1978 to 68.3% in 2014
(Figure 2). Such a dramatic urbanization process inevitably brings urban heat island effect of the whole
city because of the increasing built-up density and loss urban green spaces. We chose the central urban
of Zhengzhou City and its surrounding expansion region as study area and the location map is shown
as Figure 1.

http://www.zzstjj.gov.cn/
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Figure 2. The urban population and urbanization rate of Zhengzhou City from 1978–2014.

3. Methods

3.1. Image Pre-Processing and Land-Cover Classification

In this study, the Landsat 8 OLI/TIRS (path124/row36) images acquired on 27 May 2014 were the
primary data for deriving LST and Land use and Land cover (LULC) types. The images downloaded
from the USGS data web (http://www.earthexplorer.usgs.gov) and cloud-free images or images with
minimal cloud cover (less than 5%) were considered. Prior to LULC classification mapping and LST
retrieval, these satellite images were subjected to a set of pre-processing procedures. The pre-processing
included radiometric calibration, atmospheric correction (dark-object subtraction) using the TerrSet
software (https://clarklabs.org/terrset/) and geometrical distortions correction. Then, the images
were further re-sampled with pixel sizes of 30 m by 30 m for all bands, including the thermal band.

To produce the land-cover classification maps of the study area, a supervised classification and
man-computer interactive interpretation were utilized in ENVI 5.1. The final urban landscape was

http://www. earthexplorer.usgs.gov
https://clarklabs.org/terrset/
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divided into six classifications: water, impervious surfaces (IS), farmland, bareland, grassland and
forest. During this process, Google Earth images with high spatial resolution images and other auxiliary
data were used as source of reference information to help identify the land use types. Overall, the total
accuracy of the land use classification achieves over 86.6%, meeting the recommended value by Janssen
et al. [45]. Hence, these data were available for further research.

3.2. Derivation of the Variables

3.2.1. Dependent Variable: LST

The land surface temperature (LST) was retrieved from the thermal infrared bands of Landsat
satellite data. After the digital number (DN) values were converted to the thermal infrared spectral
radiance, which were applied to obtain top of atmosphere (TOA) brightness temperature values
expressed in Kelvin [15,46]. We estimated the emissivity of surface materials (ε) based on the
normalized difference vegetation index value (NDVI), expressed in Equation (1) [47]:

ε = mPv + n (1)

where m = (εv − εs)− (1− εs)Fεv and n = εs + (1− εs)Fεv, εv denotes the soil emissivity and εs

denotes vegetation emissivity, respectively. Pv is the vegetation proportion [48]. The NDVI is derived
using the surface reflectance of Landsat images by Equation (2).

NDVI = (
ρNIR − ρRed
ρNIR + ρRed

) (2)

where NIR = Band 5 (for Landsat 8) and Red = Band 4 (for Landsat 8) [15,19,49].
Lastly, the emissivity-corrected LST values were measured as follows (Equation (3)) [50,51]:

LST =
TB

1+ (λ× TB/ρ) ln ε
(3)

where TB = satellite brightness temperature in Kelvin; λ = wavelength of emitted radiance (λ = 10.8
µm for Landsat OLI/TIRS Band 10 [33]); ρ = h × c/σ (1.438 × 10−2 mK), ρ = Boltzmann constant
(1.38× 10−23 J/K), h = Planck’s constant (6.626× 10−34 Js) and c = velocity of light (2.998× 108m/s);
and ε is the land surface emissivity. Later, the resulting LST values were converted from Kelvin to
Celsius (◦C).

3.2.2. Explanatory Variables: FVC, IS, Population Density (PD), Fossil-Fuel CO2 Emission,
SHDI and PAFRAC

Fractional Vegetation Cover (FVC)

The fractional vegetation cover (FVC) is considered as an important biophysical parameter to
determine the land surface properties and widely used for the land mapping in previous researches [52,53].
FVC mainly depicts the vegetation abundance of ground surface. Compared with the NDVI, FVC can
better manifest the correlation with LST values that are retrieved from remote sensing images. Therefore,
the FVC was utilized as an impact factor of vegetation coverage to analyze the effect on the land surface
temperature. It can be obtained according to the NDVI and expressed as [19]:

FVC =

(
NDVIi−NDVIs

NDVIv−NDVIs

)
(4)
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where NDVIi is NDVI value of a pixel i; NDVIS can be approximately equal to the minimum value
of NDVI; and NDVIV can be about equal to the maximum value of NDVI. So, Equation (5) can be
expressed as:

FVC =

(
NDVIi−NDVImin

NDVImax−NDVImin

)
(5)

Extraction of Impervious Surface (IS)

According to the study by Wang et al. [54], the Impervious Surface (IS) indicator can be obtained
from FVC and expressed in Equation (6):

IS = 1− FVC (6)

Population Density (PD) Data

The high population density indicates the rapid expansion of settlements and dense impervious
surface areas in a region, which can generate a mass of anthropogenic heat. Therefore, population
density is considered to be one of the main contributors to the formation of urban heat island [55].
In this study, the finest resolution (100 m) patterns of population distribution for mainland China are
used to reveal the relationship between LST and population density in Zhengzhou City, this population
data has been derived from the World Pop Project website and widely used by researchers [56–58].

Fossil-Fuel CO2 Emission Data (FFCOE)

The fossil-fuel CO2 emission has increased rapidly in recent years due to urbanization and
industrialization [59], which leads directly to air pollution, global warming and other environmental
problems [60,61]. Hence, fossil-fuel CO2 emission has an important effect on UHI. In this study,
the fine-scale (1 × 1 km) fossil-fuel CO2 emission data derived from the ODIAC Fossil Fuel Emission
Dataset were employed to examine the correlation with LST [62].

The Shannon Diversity Index (SHDI)

In order to consider the effect of ecological processes and landscape patterns on LST, landscape
metrics are applied to quantify landscape shape and configuration on remote sensing images. In this
study, two selected landscape metrics were used to analyze the relationships between landscape
patterns derived from LULC and LST. The Shannon diversity index (SHDI) based on various land-cover
types was calculated, which is a useful metric of landscape configuration to measure the diversity in
the whole community ecology [63]. The Equation (7) according to Shannon and Weaver [64] as follows:

SHDI = −
s

∑
n=1

pi ln pi (7)

where pi denotes the proportion of land-cover types in the study area and then multiplied by the
natural logarithm (ln pi).

Perimeter-Area Fractal Dimension (PAFRAC)

In landscape ecology, the Perimeter-area fractal dimension (PAFRAC) provides an index of the
overall shape complexity of the patches across a wide range of spatial scales [63]. PAFRAC can be
expressed as follows [54]:

PAFRAC = 2[
N

m
∑

i=1

n
∑

j=1
(ln pij ln aij)−

(
m
∑

i=1

n
∑

j=1
ln pij

)(
m
∑

i=1

n
∑

j=1
ln aij

)]
/

(N
m
∑

i=1

n
∑

j=1
lnpij

2

)
−
(

N
m
∑

i=1

n
∑

j=1
lnpij

)2
 (8)
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where aij denotes the area of patch ij, pij denotes the perimeter of patch ij, N denotes the number of
patches in the landscape of patch type.

Geographically-Weighted Regression (GWR) Model

In order to highlight the good performance of the GWR model, the OLS model, that is one of the
classic global regression method, is also performed in the study area. The OLS model can be expressed
as follows [24]:

yi = β0 + ∑
k

βkxk + ε (9)

where yi denotes the dependent variable, xk denotes the explanatory variable, β0 denotes the intercept,
βk denotes the estimated coefficient and ε represents the random error.

The GWR model can be considered as a type of regression analysis method with geographically
varying parameters, which was given a fully description of its algorithm and the principle by
Fotheringham et al. [65]. A conventional GWR model is described by the Equation (10):

yi = β0(ui, vi) + ∑
k

βk(ui, vi)xk + εi (10)

where yi, xk,i and εi represent dependent variable, independent variable and the Gaussian error at
location i, respectively; β0 (ui, vi) represents the intercept at the point i, (ui,vi) is the x-y coordinate
of the i th location; and βk (ui, vi) represents the local coefficients which are varying conditionals on
the location and can be estimated by the Gaussian model. Such modelling is likely to obtain higher
performance than conventional regression models.

Additionally, in order to properly compare the performance of the OLS and GWR models, the
following tests were utilized: Adjusted R-Squared (R2), which is a measure of goodness-of-fit and a
higher Adjusted R2 means the method has better performance. The corrected Akaike Information
Criteria (AICc), Global Moran’s I index (Moran’s I) and the approximate likelihood ratio test based on
the F-value, which is presented for the null hypothesis that the GWR model has no correction over the
OLS model [23].

3.3. Hot Spot Analysis

In order to investigate the spatial distribution of urban heat island in the study area,
the Getis-Ord Gi* method was used to measure the cold-hot spots of LST using ArcGIS 10.2 software.
The Getis-Ord Gi

* method was expressed by the following Equation (11) [66]:

G∗i (d) =

n
∑

j=1
Wij(d)XiXj

n
∑

j=1
Xj

(11)

where Xi and Xj denote the variate value of pixels at location i, j, Wij(d) denotes a binary spatial weight
matrix. The standardized Getis-ord statistic was applied to assess the significance of the Getis-ord
statistic [67]. The standardized version of the Getis statistic is Equation (12):

Z(G∗i ) =
G∗i − E(G∗i )√

Var(G∗i )
(12)

where E(Gi
*) is expected value of Gi

*, Var(Gi
*) is variance value of Gi

*. If Z(Gi
*) > 0 and statistically

significant, this indicates a spatial clustering of values and belongs to hot spot zones. If Z(Gi
*) < 0 and

statistically significant, this indicates a spatial clustering of values and belongs to cold spot zones.
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4. Results

4.1. Hot and Cold Spots in Zhengzhou City

The hot-cold spots analysis was based on the mean land surface temperature (LST) derived from
remote sensing data. The threshold distance value (90 m) for this test was statistically determined
by applying the Incremental Spatial Autocorrelation tool in ArcGIS 10.2 software. According to the
Getis-Ord Gi* model, the Z-Score values in the range of 2.580–3.289 (the 99% confidence level) indicated
a statistically significant result and this threshold of Z(Gi

*) value can be used to determine the hot
spot zones, while the Z-Score Z(Gi

*) values in the range of −3.289–−2.580 (the 99% confidence level)
showed a statistically significant result and this threshold of Z(Gi

*) value can be used to determine
the cold spot zones (Figure 3). The results show statistically significant hot spot zones in the center
of Zhengzhou City, which stretched partway into the western and southern industrial areas, such as
High-tech industrial development zone and Zhengzhou Economic and Technical Development Zone.
The city periphery areas (in the North and Southwest directions) are defined as statistically significant
cold spots. As expected, the areas located in near the Yellow River green space and vegetation coverage
show up as cold spots, suggesting that green space has a positive effect on reducing urban thermal
environment. Overall, it can be indicated that the intensity of urban heat island is significantly spatial
clustering in Zhengzhou City.
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4.2. The Relationships between the LST and Explanatory Variables at a Single Scale

In this section, the bivariate relationships between LST as the dependent variable and the
explanatory variables FVC, IS, PD, Fossil-fuel CO2 Emissions (FFCOE), SHDI and PAFRAC are
presented in Table 1. The GWR model was employed to explore the spatial non-stationarity
relationships between LST and related impact factors at a 30 m spatial scale (mesh size of each pixel).
The corresponding OLS models with the same variables were also used as a reference. The derivation
results of FVC and land cover classification of the study area derived from the Landsat 8 OLI/TIRS
were shown in Figure 4.
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Table 1. The results comparisons of the GWR and OLS models.

Explanatory Variables Model AICc Adjusted R2 F

FVC OLS 15,620.53 0.53
GWR 6848.84 0.90 44.53

IS OLS 15,626.42 0.52
GWR 6793.64 0.92 44.62

PD OLS 16,778.61 0.59
GWR 7055.72 0.89 67.76

FFCOE OLS 16,712.64 0.51
GWR 7081.27 0.91 57.64

SHDI OLS 16,763.61 0.59
GWR 13,991.03 0.76 135.75

PAFRAC OLS 16,763.61 0.59
GWR 13,957.68 0.77 135.65

All explanatory variables OLS 15,460.78 0.59
GWR 11,818.52 0.82 56.08

As shown in Figure 4a, the spatial distribution of FVC in study area exists significant differences,
that is to say, the lower values of FVC are mainly distributed in the city center, while the surrounding
areas exhibit high values of FVC. For the LULC map (Figure 4b), the spatial pattern of impervious
surface (IS) areas cover the highest proportion in the study area, corresponding to low values of FVC
and higher LST. The forest and grassland have the smaller proportion of area, corresponding to high
values of FVC and lower LST.
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4.2.1. Contrastive Analysis between the GWR and OLS Models

According to the evaluation results shown in Table 1, all the GWR models have much better
performance than OLS models in the six explanatory variables. When compared with the evaluation
indices (AICc and Adjusted R2), it is obvious that all GWR models had higher Adjusted R2 values,
smaller AICc values than the corresponding OLS models. For the single impact factor analysis, the IS
variable had the most important influence on the LST with an AICc value of 6793.64 and Adjusted R2

value of 0.92 for the GWR model and with an AICc value of 15,626.42 and Adjusted R2 value of 0.52
for the OLS model, followed by FVC, PD, FFCOE, PAFRAC and SHDI. For the multiple impacting
factors results, evaluated with the IS, FVC, PD, FFCOE, SHDI, PAFRAC simultaneously, manifested
the best performance for the GWR model, with an AICc value of 11,818.52 and Adjusted R2 value of
0.82, while the OLS model provided results with an AICc value of 15,460.78 and Adjusted R2 value of
0.59. For the statistical comparison between two models in Table 2, there is a significant improvement
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in LST and its impact factors investigation by employing the GWR method. The simulated residuals of
the GWR model (1567.66) is less than that of the OLS model (8744.31). Therefore, it is believed that the
computational accuracy of GWR model is better than OLS model. As two kinds of statistical models,
the GWR model provides the best performance for analyzing the relationships between LST and its
impact factors. This result is consistent with previous research conclusions [36,43].

Table 2. The Residuals comparison between the GWR and OLS models for the multi-factors.

GWR ANOVA Table

Source SS DF MS F

OLS Residuals 8744.31 5792.00
GWR Improvement 7176.65 1306.93 5.49

GWR Residuals 1567.66 4485.07 0.35 15.71

4.2.2. The Spatial Non-Stationarity between LST and the Impact Factors

Figure 5 shows the results of local coefficients estimated by GWR model to explore the spatial
varying relationship between the LST and the six impact factors. It can be found that all explanatory
variables exhibited a statistically significant contribution on impacting LST in Zhengzhou City and the
local coefficients for all the indices change with the different space locations. As expected, the FVC has
a negative relation with LST with coefficient values from −6.4 to −0.63, while the IS, PD and FFCOE
have positive influence on the LST with coefficient values from 0.53 to 7.54, from 0.04 to 2.56 and
from 0.01 to 0.94, respectively. The local coefficients values of the PAFRAC and SHDI are from −23.57
to 42.11 and from −35.08 to 17.92, respectively and have both negative and positive correlations to
the LST. This indicates the unstable relationships among LST, PAFRAC and SHDI variables. Unlike
the OLS model, the spatial distribution of the six explanatory variables effect on LST shows spatial
differentiation in GWR model. The FVC estimated coefficient has higher negative influence on LST in
the northern part of the city and a lower but still negative, influence in the city center and southeast
part, mainly built-up and industrial part of Zhengzhou City. The IS has a higher positive influence on
the LST mainly in the city center or in the western and southern part of the city and a slightly lower
but still positive, influence in the northern part of the city. The PD and FFCOE had higher values in
the city center and lower values in city surroundings. The PAFRAC estimated coefficient is negative
relation in most of the city area and contrastingly, in the southern surroundings of the city, in a slightly
positive relation. The SHDI local estimate has a negative influence on the LST in most of the city area,
whereas it is positive relation in the other regions. In general, it can be reflected that the GWR model
has good ability to characterize spatial non-stationarity among relationships in study area.

4.3. Effects of the Relationships between the LST and Explanatory Variables at Different Resolutions

In this section, we mainly investigated the spatial scale effects of the relationships between the LST
and the six impact factors at multi-scales. The LST, FVC, IS, PAFRAC, PD, SHDI, FFCOE images were
aggregated from 30–120, 240, 480, 720, 960, 1080 and 1200 m spatial resolutions using ArcGIS 10.2 software
(ESRI, California, USA). Additionally, the relationships between the six impact factors and LST were
estimated based on GWR model at multi-scales. We eventually obtained the maps of the local R2 and the
residuals of all impact factors at different spatial scales (mesh size) shown in Figures 6 and 7, respectively.
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Local R2 is applied to explore the ability of the GWR model to fit the observations, which have
high local R2 values will have good performances. As shown in Figure 6, the local R2 values of
the whole Zhengzhou City become higher with the increase of the spatial resolution (Figure 6a–h).
The distribution range of local R2 changes from 0.20–0.82 (30 m) to 0.4–0.95 (1200 m) and the mean
local R2 value increases from 0.65 (30 m) to 0.82 (1200 m). However, the standard deviation (SD) values
of local R2 decreases from 0.44 (30 m) to 0.11 (1200 m). In addition, we also found that the spatial
differentiation of the spatial pattern of the local R2 was gradually reduced from the 30 m to 1200 m
spatial scale, especially after the spatial resolution was increased to 720 m. It is suggested that the
relationships are becoming more generalized spatial distributions and spatial non-stationarity tends
to be neglected with the increase of the spatial scales. This finding is also verified by the research of
Luo and Peng [23]. For the spatial pattern of local R2, the values of local R2 are changing with the
spatial location, characterized by relatively higher values in the city surroundings and obviously lower
values in the city center. This is because relatively frequent human activities in the city center seriously
influence on urban thermal environment.

Furthermore, as Figure 7a–h shows, we can find that the spatial patterns of local residuals change
with the spatial location and this indicates that GWR model has a good ability to show the spatial
difference of multi-factors, with values from −2.45 to 2.98. Among them, the spatial distribution of the
residuals at 30 m appears to be about a random distribution and with the increase of spatial scales,
the residual distribution is becoming a certain clustering. From the statistical results of residuals in
Table 3, it can be found that the variation range of residuals values is reduced from −2.45–2.98 (30 m)
to −1.82–1.98 (1200 m) and the standard deviation (SD) values of residuals decrease from 0.79 (30 m)
to 0.51 (1200 m). This indicates that with the increase of the spatial resolution, the GWR model tends
to neglect the spatial non-stationarity and become more generalized geographical patterns. This result
is consistent with above-mentioned study in Figure 5 and the previous researches [23]. According
to the Table 3, we also found that the Moran’s I of residuals gradually increased from 0.12 (30 m) to
0.31 (1200 m), it can be revealed that the spatial autocorrelation of residuals is gradually enhanced and
the trends of spatial clustering are becoming more and more stronger.

Table 3. The descriptive statistics and spatial autocorrelation of residuals at different spatial scales
(mesh size).

30 m 120 m 300 m 480 m 720 m 960 m 1080 m 1200 m

Minimum −2.45 −2.16 −2.12 −2.26 −2.16 −2.05 −1.93 −1.82
Maximum 2.98 2.81 2.91 2.49 2.45 2.14 2.05 1.98

SD 0.79 0.75 0.73 0.71 0.69 0.67 0.57 0.51
Moran’s I 0.12 0.15 0.16 0.18 0.21 0.24 0.27 0.31

4.4. Variations of the GWR and OLS Models at Different Scales

In this section, we mainly analyzed performance parameters, including AICc and adjusted R2,
of GWR and OLS models at different spatial resolutions. As shown in Table 4, it can be found that
the AICc values of both GWR and OLS models are gradually reducing with the increase of the spatial
scale, the values are in ranges from 11,818.52 (30 m) to 1951.86 (1200 m) and from 15,460.78 (30 m) to
2432.02 (1200 m), respectively. On the contrary, the adjusted R2 values of GWR and OLS models are
continuously increasing along with the increase of the spatial resolutions, these values are in ranges
from 0.82 (30 m) to 0.89 (1200 m) and from 0.59 (30 m) to 0.75 (1200 m). This finding reveals that with
the variation of spatial scales, the accurate degree of the GWR and OLS models’ evaluation would be
changed and the analysis results of both models have good consistency, that is, the fitting degree of
both models are gradually improved with the spatial scales increase from 30 m to 1200 m.

In addition, for the parameters comparison between the two models, the GWR model gives higher
adjusted R2 and lower AICc values than those from OLS model, especially at the small spatial scales
(30–480 m). It can be revealed that the GWR model have better performance than the OLS model to



Sustainability 2018, 10, 2242 15 of 21

explore the relationships between LST and its impact factors at fine spatial resolutions (30–480 m).
However, as the spatial scales increased from 720 m to 1200 m, the advantage of the GWR model
becomes relatively weak and the AICc values of both models are nearly equal to each other, implying
that the fitting degrees of both models are relatively consistent at resolutions coarser than 720 m.
This may be explained by the reason that the distance of the adjacent pixels has a positive relation
to the bandwidth of the GWR model, when the spatial resolution is increased, the bandwidth is also
accordingly increased and the parameter values of the GWR model become gradually global, implying
that the spatial pattern is more and more generalized and the spatial non-stationarity tend to be
neglected [22]. Therefore, when we use the GWR model to study the relationships between LST and
its impact factors, choosing the suitable spatial scale becomes very important in future researches.
When the spatial scale is finer, the GWR model can better uncover the spatial non-stationarity and
local variation of LST and its impact factors in detail. However, when the spatial scale is coarser,
compared with the OLS model, the analytical advantage of the GWR model is gradually weak and the
performance difference of both models is relatively decreasing due to more generalized geographical
patterns. For Zhengzhou City or other cities on the plains, if the spatial resolution of related remote
sensing data is finer than 480 m, the GWR model can have a better ability than OLS models to
characterize spatial non-stationarity of LST and explain the relationships between LST and its impact
factors. At any spatial scale coarser than 720 m, both the GWR and OLS models are suitable to study
LST and explore its relationships with impact factors, while the GWR model has a better fitting degree
than OLS model at the large spatial scale.

Table 4. Parameters comparison between GWR and OLS model at different scales.

Model Parameters 30 m 120 m 300 m 480 m 720 m 960 m 1080 m 1200 m

GWR AICc 11,818.52 10,519.81 10,384.11 9721.24 5630.83 3093.41 2422.88 1951.86
Adjusted R2 0.82 0.83 0.83 0.84 0.86 0.87 0.88 0.89

OLS AICc 15,460.78 13,870.41 12,963.29 11,076.07 6907.66 3765.59 2989.28 2432.02
Adjusted R2 0.59 0.60 0.63 0.65 0.68 0.70 0.72 0.75

5. Discussion

5.1. Implications of the Relationships between LST and Its Impact Factors

In this study, we explored the relationship between LST and FVC, IS, PD, FFCOE, SHDI and
PAFRAC by using the GWR and OLS models in Zhengzhou City. Study results from the single-factor
models indicated that these influence factors can affect LST significantly. The most intensive warming
in Zhengzhou City occurs mainly in the central city stretching to the western and southern industrial
areas and is strongly positively related to the IS variable. However, FVC is negatively correlated to
the LST and the associations are stronger in the northern part of the city, approximately along the
distribution of the Yellow River green space and other vegetation coverage areas, where the spatial
distribution of LST was lower with high vegetation coverage. So, the LST can decrease with the
increment of vegetation coverage rate. This result corresponded to the existing studies that vegetation
coverage (such as forests, parks and grasslands) can well reduce urban thermal environment and
increase urban cooling areas through evapotranspiration and shading effect [68–70].

It should be pointed out that population density (PD) and Fossil-fuel CO2 emission (FFCOE)
variables are positively correlated to the LST and the associations are stronger in the central center
of the city, where rapid urbanization and economic development occurred. This implies that these
social-ecological variables can affect the LST distribution to some extent. Study findings are consistent
with the previous studies, which have proved that population growth, urban expansion and CO2

emission enhance UHI effect [7]. Higher the Shannon Diversity Index (SHDI) values, indicating
the diversity of land cover types, are correlated with lower LST in the study area, this is because
the different physical attributes of land cover types can have various effects on the urban thermal
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environment. Hence, increasing the landscape diversity of the study area is one of the effective ways to
reduce the UHI effect. In addition, the Perimeter-area Fractal Dimension (PAFRAC) variable, showing
the shape complexity of the landscape patches, have both negative and positive correlations to the
LST. This indicates that higher PAFRAC values of vegetation coverage types, including the forest
and grassland landscape patches, are correlated with lower urban thermal environment, while higher
PAFRAC values of impervious surface areas can have a positive effect on higher LST. Therefore,
according to the urban vegetation landscape playing an important role in reducing UHI effect,
especially in central city areas, it is more important to suggest urban planners to increase the shape
complexity of urban green space when they consider mitigating urban heating in Zhengzhou City.

5.2. Implications for Choosing GWR and OLS Models

Selecting a suitable method is important for investigating the relationships between LST and its
influence factors. Due to the significant spatial heterogeneity of LST, the hypothesis that a series of
evaluation coefficients cannot consider the space-varying relationships between variables in global
regression models is unreasonable [70]. Hence, using the OLS model without considering the spatial
location of variables maybe result in unreliable parameter estimates. The Strengths of the GWR model
to explore the relationships between LST and its impact factors are obvious. It has become a helpful
method for exploring the spatial non-stationarity phenomena that occurs within the spatial patterns
of LST and its impact factors. Some scholars have also the same findings that the significant spatial
non-stationarity widely existed among the LST and its impact factors and explained their relationships
by using the GWR model [35,71]. Furthermore, compared with the OLS model, the GWR model has a
better performance to characterize spatial non-stationarity and analyze the relationships by increasing
the fitting degree of coefficient estimates. However, some researches have pointed out that a relatively
high overall fitness is not conducive to better understanding the relationships [32] and neglects the
detail information of variables at large spatial resolution with the cost of the smoothing of the existing
geographic differences in pixels [23]. This study also verifies the same results and considers selecting
appropriate spatial scales to discuss this issue.

5.3. Limitations

In this study, we have provided a comprehensive analysis framework to explore the relationships
between LST and its impact factors at different spatial scales in Zhengzhou City. However, this research
has some limitations as follows: Firstly, the study analyzed the spatial patterns of LST and related
impact factors by only using one daytime remote sensing image due to limited data accessibility
but seasonal variations and climatic conditions which may to some extent affect the urban thermal
environment were not considered. Therefore, multiperiod remote sensing data should be used in
future study. In addition, the main attention of this research is to examine the relationships between
LST and its impact factors, the comprehensive effects of human activities, urban size, traffic flow and
other impact factors on the LST, are also worth analyzing. Besides, limited by accuracy of remote
sensing imagery interpretation, we have not further differentiated the types of urban land use and
land cover in analysis of influence factors. Hence, further studies need to be conducted considering
extraction urban land-cover information from high resolution remote sensing images.

5.4. Implications of Suitable Spatial Scales in GWR and OLS Models

With the development of remote sensing methods and technologies, there has been increasing
research attention on the effects of spatial scales or spatial resolutions in modelling the landscape
ecology processes by using remote sensing data [21,24,28]. Multiscale analysis in UHI effect studies
become gradually important. Although some studies have been conducted to explore the relationships
between LST and its impact factors at different scales in GWR model, they failed to find the appropriate
spatial scales to illustrate the correct relationships though comparison between GWR and OLS models.
In this study, it is worth noting that the GWR and OLS models have been employed simultaneously
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to obtain related parameter estimates at different scales, while the performance of the GWR model is
better than the OLS model with the increase of spatial scales. The results indicated that the GWR model
obtains higher adjusted R2 and lower AICc values than those from OLS model, especially at the fine
spatial scales (30–480 m). However, as the spatial scales increased from 720 m to 1200 m, the strength
of the GWR model becomes relatively weak and the AICc values of both models are nearly equal to
each other, implying that the fitting degrees of both models are relatively consistent at resolutions
coarser than 720 m. Therefore, considering the two important factors for finding the appropriate scales:
a high R2 and a low AICc value [32], we can think that the GWR model should be advised to be firstly
applied in the analysis of UHI problems and related impact factors at scales finer than 480 m in the
plain city. If the spatial scale of remote sensing data is coarser than 720 m, both OLS and GWR models
are suitable for illustrating the correct relationships between UHI effect and its influence factors in
the plain city due to their undifferentiated performance. Some researchers have also found that the
GWR model had better simulation with higher R2 and lower AICc values than the OLS model at small
spatial scales when they used both models to explore the relationships between LST and related impact
factors [40,42]. Luo et al. [23] used both models to test the relationships between LST and three factors
(SAVI, IBI and NDSI) at different spatial scales and found that GWR model has better performance
than the OLS model to explain the relationships in mountain city when the spatial scales are less than
240 m. However, when the spatial scales are greater than 480 m, the GWR and OLS models have
few performance differences in illustrating the relationships. Therefore, based on the above analysis,
we can reveal that selecting the optimal scales to examine the relationships between LST and its impact
factors by using the GWR model is variant in different types of cities. This finding can provide a
valuable reference for UHI effect studies to choose appropriate models at different spatial scales in
plain city.

6. Conclusions

Based on remote sensing data, our study analyzed the spatial distribution of LST and examined
the quantitative relationships between LST and its impact factors, including FVC, IS, PD, Population
Density (PD), Fossil-fuel CO2 Emission, the Shannon Diversity Index (SHDI) and the Perimeter-area
Fractal Dimension (PAFRAC), at multiple scales by using GWR model. The spatial non-stationary
and scale effects of LST-influence factors relationships were also discussed in Zhengzhou City and the
conclusions can be drawn as follows:

(1) This study indicates that the intensity of UHI is significantly spatial clustering in Zhengzhou
City. Hot spot zones were clustered in urban center and the western and southern industrial
areas. The Cold spots zones were located in the city periphery areas (in the North and
Southwest directions).

(2) Study results from the single-factor models indicates that these influence factors can affect
LST significantly. LST is strongly positively related to the IS variable. However, a negative
relationship exists between LST and FVC. It should be pointed out that population density (PD)
and Fossil-fuel CO2 emission (FFCOE) variables are positively correlated to the LST, implying
that these social-ecological variables can affect the magnitude of LST to some extent. In addition,
the SHDI and PAFRAC variables, indicating the diversity and shape complexity of land cover
types, respectively, have both negative and positive correlations to the LST in different areas.
This reveals the unstable relationships between LST and PAFRAC and SHDI variables.

(3) Overall, compared with the OLS model, the GWR model has a better ability to characterize
spatial non-stationarity and analyze the relationships between the LST and its impact factors by
considering the space-varying relationships of different variables, especially at the fine spatial
scales (30–480 m). However, the strength of GWR model has become relatively weak with
the increase of spatial scales (720–1200 m). Given the important principles of the higher R2

and lower AICc values for finding the optimal scales, we can infer that the GWR model is
recommended to be applied in the analysis of UHI problems and related impact factors at scales
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finer than 480 m in the plain city. If the spatial scale of remote sensing data is coarser than
720 m, both OLS and GWR models are suitable for illustrating the correct relationships between
UHI effect and its influence factors in the plain city due to their undifferentiated performance.
In general, these findings provide valuable information for urban planners and researchers to
select appropriate models and spatial scales seeking to mitigate the negative effect of urbanization
on urban thermal environment.
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Abbreviations

LST Land surface temperature
UHI Urban heat island
GWR Geographically-Weighted regression
OLS Ordinary Least squares
FVC Fractional Vegetation Cover
IS Impervious surface
PD Population Density
FFCOE Fossil-fuel CO2 emission
SHDI Shannon diversity index
PAFRAC Perimeter-area fractal dimension
NDVI Normalized difference vegetation index
AICc Corrected Akaike Information Criterion
R2 Coefficient of determination
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