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Abstract: Severe droughts have occurred in East Asia; however, observational hydroclimate data that
covers the entire region is lacking. The objective of this study is to investigate drought assessment in
East Asia. This study estimated three drought indices by generating hydroclimate variables using
the Community Land Model (CLM). The results of the CLM were verified by comparison with
Climatic Research Unit (CRU) data for precipitation and air temperature and the Global Runoff Data
Centre (GRDC) data for runoff. Spatial and temporal variations in three drought severity indices,
including the standardized precipitation evapotranspiration index (SPEI), the standardized runoff
index (SRI), and the Standardized Soil Moisture Index (SSMI), in East Asia were estimated using
the CLM output and compared with the SPEI in the CRU. This study classified drought frequency
into four classes depending on the drought severity with 5-deg gapped longitude and latitude for
1951–2010 in East Asia and found that moderately dry (D2) and severely dry (D3) drought frequency
classes matched well between the CLM and CRU data. The SPEI in the CLM and CRU data showed
very similar frequency magnitudes and an increasing temporal trend. The SRI and SSMI frequencies
for CLM also showed an increasing temporal trend compared to the SPEI frequency trend. The results
of this study show that CLM outputs are reliable for drought analysis in East Asia. Furthermore, this
study suggests the possibility of CLM application to other regions to generate hydroclimate data that
is otherwise insufficient.

Keywords: climate research unit; Community Land Model; drought severity index; East Asia

1. Introduction

A drought is defined as a period in which a particular variable, such as precipitation, soil water,
or runoff amounts, exhibits lower-than-average levels in a specific region, resulting in widespread
economic, environmental, and social impacts [1–3]. To evaluate droughts, various drought indices
have been suggested. The standardized precipitation index (SPI) [4,5] calculates the normalized
long-term precipitation to evaluate the class of droughts. Vicente-Serrano et al. [6] suggested the
standardized precipitation evapotranspiration index (SPEI), which is calculated using a combination of
the water balance and cumulative water deficit and the adjusted log-logistic probability distribution [7].
The standardized runoff index (SRI) is used to express hydrological droughts [8] and requires runoff
datasets. To study agricultural droughts, a standardized soil water index (SSWI) was suggested.
Both SRI and SSWI have been applied to droughts in the United States with the SWAT model [9] and
in China with the Variable Infiltration Capacity (VIC) model [10].
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Droughts of various magnitudes often occur in East Asia. Alongside floods, they are strongly
correlated with the East Asian monsoonal circulation, characterized by strong southerly and northerly
winds in the summer and winter, respectively [11]. Unusual and severe droughts occurred in areas of
East Asia, including China [12] and South Korea [13] between 2013 and 2015, where severe drought
resulted in a shortage of water resources. There have been many studies on drought analysis in
China [14–20] and Korea [21–24] that used various drought indices, including the Palmer drought
severity index (PDSI), SPI, and SPEI. However, droughts in the East Asia region have rarely been
studied [11,24–26]. Min et al. [25] investigated drought occurrence and intensity in Korea and East Asia.
They estimated SPI from the Climatic Research Unit (CRU) dataset and proposed that the SPIs for
eastern China were highly correlated with those for Korea for 1951–1992. Zhang and Zhou [11]
investigated droughts in East Asia (China, Korea, Japan, and Mongolia) using the Global Precipitation
Climatology Project data from 1979 to 2012 and the CRU data from 1950 to 2009. They applied two
drought indices: a self-calibrating PDSI and the standardized precipitation index (SPI). They suggested
that drought variations in East Asia are strongly correlated with monsoonal circulation. Um et al. [24]
compared the Moderate Resolution Imaging Spectroradiometer (MODIS)-based drought severity index
(DSI) with the DSI-incorporated Advanced Very High-Resolution Radiometer-derived normalized
difference vegetation index (DSIAVHRR) and SPEI with CRU dataset in East Asia. They suggested the
possible use of DSI based on the combined products of the normalized difference vegetation index
(NDVI) and the revised drought classification to match the results between SPEI and DSI.

The Community Land Model (CLM) is based on a land-surface scheme and part of the Community
Earth System Model (CESM), and is widely applied to simulate land-surface processes on regional
and global scales and provide reliable outputs for various ecosystems and cropping systems [27–34].
The CLM is mainly used to simulate the biophysical ecosystem processes. Recently, some studies have
applied CLM to drought analysis on a regional scale [35–37]. However, most studies have investigated
the droughts in East Asia using observed datasets with limitations to climate variables, such as
precipitation and temperature. Moreover, previous studies have focused on the spatial (or regional)
and temporal (or long-term) trends of drought indices.

The main objective of this study is to evaluate the applicability of the CLM on the droughts in
East Asia. The specific objectives are (1) to compare the drought indices between the observed and
CLM data to verify the CLM results, (2) to generate and analyze other drought indices such as the SRI
and SSMI for East Asia using the verified CLM with the observed CRU dataset, and (3) to estimate
other drought indices using the CLM and compare the characteristics of different drought indices for
East Asia. This study used the CRU dataset as the observed data. The CRU data and the CLM are
described in Sections 2.1 and 2.2, respectively.

2. Materials and Methods

2.1. Study Area and Dataset

We evaluated meteorological, hydrological, and agricultural droughts using the observations and
simulations for 1951–2010 in the area of East Asia that lies between 64–174◦ E and 0–65◦ N. We chose
the CRU dataset as the observational dataset and utilized one dataset simulated by the CLM to assess
the statistical droughts for the study period.

The CRU dataset is one of the most popular observational datasets, frequently used to analyze
the historical climate of the world (Table 1). The CRU dataset is the combination of many datasets
from sources such as the World Meteorological Organization (WMO) and the United States National
Oceanographic and Atmospheric Administration (NOAA, via its National Climatic Data Center,
NCDC); it is constructed by the climate anomaly method (CAM) [38]. Harris et al. [39] provided a
CRU dataset with high spatial resolution (0.5◦ × 0.5◦ longitude-latitude) for monthly precipitation
(PR), temperature (TA), and potential evapotranspiration (PET) for 1901–2015; we used the data for
1951–2010 in this study. Monthly PR and TA data in the CRU are based on observations, but monthly
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PET data are derived from several variables, including PR, TA, and a fixed monthly wind speed
dataset [39].

Table 1. Description of the observations for drought analysis.

Model Description Resolution Period Variable

CRU
Climate research unit

Version: TS v.4.00
(Harris et al., 2014 [39])

0.5◦

Monthly 1951–2010
PR
TA

PET

We also used the Global Runoff Data Centre (GRDC) dataset (http://www.compositerunoff.sr.
unh.edu), which is a spatial composite runoff dataset of river discharge observations and water balance
model simulations [40], to compare the simulated runoff datasets by the CLM. However, the GRDC
dataset only has fixed forms, e.g., the monthly average and annual average runoff with a 30-min
resolution for 1986–1995.

2.2. Community Land Model

The early development of the CLM was started by the National Center for Atmospheric Research
(NCAR) to extend the Land Surface Model (LSM), which simulates the exchange of surface water
and energy fluxes at the soil–atmosphere interface, to include the carbon cycle, vegetation dynamics,
and channel routing [41]. The CLM, a land surface model, is the land module applied in the CESM,
also known as the Community Climate System Model (CCSM) [42,43]. CLM has been used to
simulate the biophysical processes on the land surface of the Weather Research and Forecasting
(WRF) model [44]. CLM4 extensively improves the snow depth/melt process, runoff simulation, soil
hydrology thermodynamics, and albedo parameters [33]. CLM4 has been widely applied, and its
performance has been verified in many studies [33,45–48]. TOPMODEL [49] is currently used as
the basic runoff formulation of CLM [50,51]. Table 2 shows the appropriate climate regions and
runoff process assumptions of the CLM incorporating the TOPMODEL scheme. TOPMODEL has
the following assumptions: (1) the dynamical relationship in the groundwater layer is assumed to
be the continuous steady state; (2) the rate at which the groundwater level change in a watershed is
constant; (3) the hydraulic gradient in the groundwater layer is assumed to be equal to the surface
gradient; and (4) the distribution of the permeability coefficient to the downstream is assumed to be an
exponential function of the groundwater deficit or the depth of groundwater table [46,49]. With these
assumptions, TOPMODEL is properly simulated for humid climates or mountainous areas where
surface saturation leads directly to surface runoff.

Table 2. Summary of the runoff processes in the CLM [52].

Classification Description

Model CLM

Version CLM4.0

Soil Hydrology Scheme TOPMODEL

Assumption.
(Surface and subsurface
runoff processes)

(1) The successive steady states for the saturated zone dynamics.
(2) The homogeneous recharge rate to the water table over a catchment.
(3) Using the local surface slope for the hydraulic gradient of the saturated zone.
(4) An exponential function of storage deficit or depth to the water table is used
for the distribution of downslope transmissivity.

Recommended
climate condition Humid climate and mountainous areas where exist a shallow groundwater table

http://www.compositerunoff.sr.unh.edu
http://www.compositerunoff.sr.unh.edu
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For input data in the CLM, this study adopted the precipitation and air temperature data in the
CRU-NCEP dataset. The CRU-NCEP dataset is a combination of the CRU monthly climatology data
with a 0.5-deg resolution from 1901 to 2009 and the NCEP reanalysis data with a 2.5-deg resolution
from 1948 to 2013. The CRU-NCEP dataset combines the advantages of NCEP’s temporal and CRU’s
spatial resolutions. The full dataset is spatially and temporally downscaled by the linear interpolation
method [53]. Therefore, the CRU-NCEP data has 0.5-deg resolutions and 6-h timesteps before further
data. The target period of this study was between 1951 and 2010.

2.3. Quantifying Drought Risk

In this study, three types of droughts are defined using three statistical drought indices (SPEI,
SRI, and SSMI) with four natural variables: precipitation (PR) and potential evaporation (PET)
for meteorological droughts, runoff (R) for hydrological droughts, and soil moisture (SM) for
agricultural droughts.

2.3.1. Meteorological Drought

Three indices, SPI, SPEI, and PDSI, are typically used to quantify meteorological droughts.
SPI [4,54] only uses precipitation data to calculate water deficit, whereas SPEI [6] uses both precipitation
and evaporation data to quantify drought severity. PDSI [55] estimation is more complex because this
index requires four inputs, such as temperature, precipitation, location information, and available water
capacity [56]. In this study, we chose SPEI to quantify the meteorological drought because the CRU
dataset provides precipitation and potential evaporation data; the CLM also provides precipitation
data directly as well as potential evaporation data with additional analysis. SPEI [6] is estimated
using the monthly water deficit (D) in Equation (1) and the three-parameter log-logistic distribution in
Equation (5):

D = PR − PET, (1)

where D is the monthly water deficit, PR is the monthly precipitation, and PET represents the monthly
potential evaporation data. In this study, the daily PET data for CLM were obtained from Penman [57]
and Donohue et al. [58] using Equation (2) and cumulated to monthly values:

PET =
∆

∆ + γ
Rn +

γ

∆ + γ

6430(1 + 0.536u2)e
λ

, (2)

where ∆ is the slope of the saturation vapor pressure curve, γ is the psychrometric constant, Rn is the
daily net radiation, u2 is the daily average wind speed at 2-m height, e is the vapor pressure deficit,
and λ is the latent heat of water evaporation. The cumulative difference Xk

i,j over timescale k in a given
month j and year i is calculated as given by [26]:

Xk
i,j =

12

∑
l=13−k+j

Di−1,l +
j

∑
l=1

Di,l f or j < k (3)

Xk
i,j =

j

∑
l=j−k+1

Di,l f or j ≥ k. (4)

The cumulative probability distribution function of the D series is as follows [26]:

F(X) =

[
1 +

(
α

x − µ

)β
]−1

, (5)
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where F(X) is the cumulative density function of a three-parameter log-logistic distribution for
the monthly water deficit, D, and α, β, and µ are scale, shape, and origin parameters, respectively.
Finally, SPEI is estimated as follows [6]:

SPEI = W − 2.515517 + 0.802853W + 0.010328W2

1 + 1.432788W + 0.189269W2 + 0.001308W3 , (6)

where, W =
√
−2 ln(P) f or P ≤ 0.5, W =

√
−2 ln(1 − P) f or P ≥ 0.5, and P is the probability of

exceeding a determined D value (P = 1 − F(X)).

2.3.2. Agricultural and Hydrological Drought

Meteorological droughts usually propagate hydrological droughts (which are related to runoff,
streamflow, and groundwater flow), and agricultural droughts, which are related to soil moisture.
The water deficit generally begins with a lack of precipitation and moves to insufficient runoff, soil
moisture, streamflow, and groundwater with some time lag in between each impact [59]. In this study,
we used the runoff and soil moisture data simulated by the CLM to estimate the agricultural and
hydrological droughts; these two variables are used to calculate each drought index (i.e., SSMI from
soil moisture data and SRI from runoff data) with procedures similar to those used to estimate SPI [9].
This estimation procedure consists of standardization, accumulation, and the application of a gamma
distribution [9,60,61].

2.4. Assessment of Drought in CLM

We assessed how much the three statistical drought indices, calculated using CLM data,
can capture the historical drought observations (CRU data). First, the boundary datasets, such as
precipitation and air temperature, and potential evaporation datasets from the CLM were compared
with the CRU dataset for spatial and temporal distributions across the five latitude ranges. Second,
runoff datasets from the CLM were compared with the GRDC dataset for 1986–1995. Finally, the soil
moisture datasets from the CLM were generated since the observational data is incomplete in the
study period. For example, the observed soil moisture data in MetOp/ASCAT only exists since 2007,
and their availability is limited. Consequently, we estimated the drought indices (SPEI, SRI, and SSMI)
for East Asia for 1951–2010 and compared them with the CRU and CLM data with the spatiotemporal
characteristics considered (Table 3).

Table 3. Classification of dryness status.

Category Description Drought Index (SPEI, SRI, and SSMI)

D1 Incipient and mild dry ≤−0.0
D2 Moderate dry ≤−1.0
D3 Severe dry ≤−1.5
D4 Extremely dry ≤−2.0

3. Results and Discussion

This study quantified the accuracy of the CLM in predicting the observed meteorological drought
data and investigated the propagation of meteorological droughts in the CLM to hydrological
and agricultural droughts for 1951–2010 in East Asia. First, we investigated the variations in
input variables (precipitation and air temperature) to estimate the drought indices (Section 3.1).
Second, the spatiotemporal variations in drought indices calculated using the CRU and CLM data
were analyzed, and the similarities among the drought indices and changes in the indices with time
were investigated in Section 3.2.
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3.1. Regional Variations of Input Variables for Drought Indices

We investigated the spatiotemporal variations in five input variables—precipitation (PR),
air temperature (TA), potential evapotranspiration (PET), runoff, and soil moisture (SM)—and in
three drought indices in East Asia for 1951–2010. The PR and TA datasets in CRU were used to estimate
SPEI, and those in CRU-NCEP were used to run the CLM. PET data in CRU were estimated based on
observations [39], and those in the CLM were calculated using simulation results and Equation (3).
The runoff and SM datasets are the simulation results from CLM.

Figures 1 and 2 show the spatial distribution and temporal variations of the annual
latitude-dependent PR and TA analyzed using the CRU and CRU-NCEP datasets. The annual average
PR data in the CRU (CRU-NCEP) data changed from 334.1 (303.8) mm at the latitude range of 40–45◦

to 2886.2 (2802.8) mm at the latitude range of 5–10◦; the annual average PR data at 0–60◦ in CRU
and CRU-NCEP were 706.9 and 663.2 mm, respectively. The monthly average PR data in the CRU
and CRU-NCEP datasets varied from 21.78 and 19.80 mm in February to 119.30 and 115.10 mm in
July, respectively. The annual average TA data in the CRU (CRU-NCEP) dataset changed from −8.69
(−12.11) ◦C at 60–65◦ to 26.48 (26.85) ◦C at 10–15◦ the annual average TA data at 0–60◦ in the CRU and
CRU-NCEP datasets were 5.23 and 3.66 ◦C, respectively. The monthly average TA data in CRU and
CRU-NCEP varied from −10.74 and −13.59 ◦C in January to 19.66 and 19.19 ◦C in July, respectively.
The spatiotemporal trends in PR and TA in the CRU and CRU-NCEP datasets were similar to each
other despite small differences.

The potential evapotranspiration (PET) datasets, which include daily net radiation, daily average
wind speed at 2-m height, and relative humidity data, were used to estimate SPEI. We investigated
the spatial and temporal distributions of the latitude-dependent annual average PET data (Figure 3)
and monthly average PET data (Figure 4). The maximum annual average PET in CRU and CLM were
1413.0 mm at 15–20◦ and 2466.2 mm at 10–15◦, respectively. The minimum annual average PET in CRU
and CLM was 409.5 and 681.2 mm at 60–65◦, respectively. The annual average PET values at 0–60◦ in
CRU and CLM were 841.8 and 1360.9 mm, respectively. The monthly average PET values in CRU and
CLM were 1.40 mm in January, −5.18 and −4.71 mm in November, and 98.51 and 180.91 mm in July,
respectively. There were similar spatiotemporal trends in the two datasets, but there were differences
between the PET data in the CRU and CLM datasets. These differences occurred due to PET data
creation conditions because the PET data in CRU are estimated based on several limiting assumptions
and observed data. PET in the CLM, however, is only estimated by the hydroclimate equations.

The annual and monthly average runoff datasets in GRDC are estimated based only on
observations [40] for 1986–1995. However, the monthly runoff time series were not available, and we
could only compare the general statistical characteristics of the two datasets. We investigated the
latitude-dependent spatial and temporal distribution of annual average runoff data for 1986–1995
(Figure 5) and also estimated the monthly average runoff (Figure 6) for 1986–1995. The annual average
runoff data in the GRDC and CLM datasets changed from 85.3 and 47.6 mm at 45–50◦ to 333.1 mm
at 60–65◦ and 1491.3, 1409.2, and 1965.5 mm at 0–5◦. The annual average runoff values at 0–60◦ in
GRDC and CLM were 322.8, 202.9, and 602.6 mm, respectively. The monthly average runoff values
in GRDC and CLM varied from 4.49, 6.26, and 28.00 mm in February to 45.87 and 25.43 mm in
August and 73.30 mm in May, respectively. The spatiotemporal trends were similar among the three
datasets: runoff values became lower at higher latitudes, and summer runoff values were higher than
those in other seasons. However, the range of spatial and temporal variations was different for these
three datasets.
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Soil moisture (SM) data is usually collected on-site, and there are only a few global-scale studies
on soil moisture data [62–64]. Spatiotemporal observations for SM are not currently available, because
the satellite-based soil observation dataset is not as long as the study period (1951–2010). Therefore,
we only used the CLM simulation dataset for East Asia for 1951–2010. The spatiotemporal variations
of the latitude-dependent annual average SM data are shown in Figure 7, and the estimated annual
average and monthly average SM data are presented in Figure 8.
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3.2. Spatiotemporal Variations of Droughts

We used four variables (precipitation, potential evapotranspiration, runoff, and soil moisture)
in Section 3.1 to estimate three drought indices (SPEI, SRI, and SSMI) for 1951–2010 in East Asia.
We selected a 12-month lag to investigate the annual variations in the meteorological (SPEI),
hydrological (SRI), and agricultural (SSMI) drought systems. These three drought indices were
estimated using the methods described in Sections 2.3.1 and 2.3.2. We presented the spatial drought
characteristics in Figures 9–11 and the temporal movements in Figures 12 and 13.

We first analyzed and compared the spatial distributions of the three drought indices for three
datasets. One of the most severe droughts in East Asia occurred in 2009 [11,65]. SPEI calculated using
the observations (CRU) shows the broad and severe drought status (Figure 9(a1)), and SPEIs estimated
by the CLM simulations displayed similar spatial patterns (Figure 9(b1)).Sustainability 2018, 10, x FOR PEER REVIEW  12 of 20 
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SRI and SSMI by CLM also captured these drought distributions (Figure 9(b2,b3)), although
there were some small differences in spatial patterns. CLM considers various physical theories
(atmospheric circulation and runoff) and many input variables (precipitation, air temperature,
topography, and soil characteristics) in the simulations of runoff and soil moisture. The variations in
these inputs may generate the slight differences in spatial patterns in Figure 9.

We categorized three drought indices in Table 3 and Figure 10 and examined the drought
characteristics (frequency and severity) in Figure 11. To clearly compare the three drought indices
between CRU and CLM outputs, the grid resolutions in Figure 10 are generated with 5◦ longitude x 5◦

latitude. First, we counted the categorized drought events depending on the drought severity (Table 3),
and then we calculated the regional averages of the categorized drought events depending on SPEI,
SRI, SSMI, and CRU and CLM datasets.Sustainability 2018, 10, x FOR PEER REVIEW  13 of 20 
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In Figure 10, the spatial D2 status (moderate dry) is shown for each drought index and dataset.
For SPEI, the general spatial frequencies were similar to each other within the inland area regardless of
whether the observations (CRU) or simulations (CLM) were used. However, the CLM simulations
indicated lower frequencies than those by CRU for droughts near the coastal area. This may be one of
the weaknesses of simulation models that only use land-surface data.

In Figure 11, we compared the drought frequencies for each drought index and dataset depending
on the drought severity. For SPEI, three drought indices calculated using CRU and CLM data were
compared to each other. From D1 to D4, the regional averages of drought frequencies by CRU and
CLM are 30.02 and 31.13 for D1, 10.39 and 9.45 for D2, 3.97 and 3.62 for D3, and 0.83 and 0.79 for D4,
respectively. For D1, the drought frequency in the CLM simulation showed the best match to that in
the observation dataset (CRU), but the similarities between the drought frequencies of the observations
and simulations became weaker as the droughts became more severe. For SRI, we compared the
CLM drought indices based on the drought status. From D1 to D4, the regional averages of drought
frequencies by CLM were 32.71, 8.37, 3.48, and 1.24, respectively. For SSMI, from D1 to D4, the regional
averages of drought frequencies by CLM were 31.43, 8.70, 3.76, and 1.50, respectively. These patterns
may be affected by the differences in the simulated runoff and soil moisture values illustrated in
Figures 5–8.
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Finally, we investigated the temporal patterns of three drought indices for CRU and CLM datasets
for 1951–2010 in East Asia. The annual average movements of the three latitude-dependent drought
indices are shown in Figure 12. We found very similar temporal patterns in the three SPEIs by CRU
and CLM. For example, there are wet patterns between latitudes 35–60◦ around the year 1960 and dry
patterns between 0–25◦ circa 1991 and 35–50◦ circa 2009. However, these temporal patterns slightly
changed for the SRI and SSMI calculated by CLM. The spatial range and temporal periods in SRI and
SSMI do not exactly match those in SPEI, likely because of the topography data and soil characteristics
used in the simulation models. Nasrollahi et al. [2] and Um et al. [66] performed an analysis with
the assumption of independent data. We also extracted independent data—the monthly drought
index data from January to December of each year—and used it to analyze the characteristics of the
droughts. However, in future studies, we will consider the time-lag among these three types of drought
indices based on the big basin. The SSMIs calculated by CLM showed a broad range of dry statuses at
25–65◦ latitude in the final 6–7 years (2004–2010), although the spatial range and temporal periods of
meteorological dry statuses in the CLM were in narrower ranges (35–50◦ latitude) and shorter periods
(2007–2010). We also analyzed the decadal temporal movements of drought frequencies based on
seven drought indices and drought severity (Figure 13). For SPEI, temporal trends by CRU and CLM
were similar to each other. For SRI, the simulation dataset had different temporal patterns because the
runoff models of the CLM used different physical concepts presented in Table 2. For SSMI, the CLM
showed very similar increasing trends, but the SSMI by CLM showed growing drought frequencies for
D1 and D4 compared to the SPEI by CLM.
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4. Conclusions

This study investigated the applicability of CLM for drought evaluation compared to observed
CRU data in East Asia. The CRU-NCEP data was used as CLM input data. We compared CRU
data, with the CRU-NCEP dataset as the downscaled CLM input data, and showed that the annual
precipitation and temperature data between the two datasets were spatially similar to each other.
We generated the annual average and monthly potential evapotranspiration data with the CLM and
compared them with the CRU datasets for East Asia. The estimated potential evaporation data in the
CLM were higher than those in the CRU datasets. However, runoff variables in the CLM were spatially
and temporally similar to the GRDC dataset (observations).

We compared SPEI with 12-month lags and the frequency of drought events for the CRU dataset
and CLM outputs. The spatial results of the two datasets were similar. We then generated SRI and
SSMI with 12-month lags and the frequency of drought events in each index. In addition, temporal
movements in SPI12 in the CLM were verified by comparing them with the SPEI in CRU data. CLM
provided temporal movement data in SRI12 and SSMI12. We also investigated the temporal movements
of drought frequencies. SPEI with CLM had very similar drought frequency distributions to SPEI with
CRU. All three drought indices (SPEI, SRI, and SSMI) in the CLM showed similar trends to the SPEI
in CRU data. Theoretically, SPEI, SRI and SSMI differences by lag time occur based on hydrological
circulation phenomenon. However, this study only investigated the differences in this lag time based
on CLM. Therefore, it is necessary to confirm the exact differences among the three drought indices by
using fully observed data.

We verified the CLM applicability to spatial and temporal drought analysis in East Asia.
The results suggested that CLM can be a substitute model to investigate droughts in regions that do
not have any observational hydroclimate data. For future work, the CLM should be further verified
when observed hydroclimate variables like soil moisture are sufficient and applied to other regions
in which (1) the observed hydroclimate data is insufficient to estimate the drought status and (2) the
climate conditions are different from East Asia to confirm its applicability in drought analysis.
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