
Article

Cloud–Fog–Based Smart Grid Model for Efficient
Resource Management

Saman Zahoor 1 ID , Sakeena Javaid 1, Nadeem Javaid 1, Mahmood Ashraf 2 ID ,
Farruh Ishmanov 3,* and Muhammad Khalil Afzal 4

1 Department of Computer Science, COMSATS University, Islamabad 44000, Pakistan;
samanzahoor@gmail.com (S.Z.); sakeenajavaid@gmail.com (S.J.); nadeemjavaidqau@gmail.com (N.J.)

2 Department of Computer Science, Federal Urdu University of Arts, Science and Technology,
Islamabad 44000, Pakistan; mahmood@fuuastisb.edu.pk

3 Department of Electronics and Communication Engineering, Kwangwoon University, Seoul 01897, Korea
4 Department of Computer Science, COMSATS Institute of Information Technology, Wah Cantonment 47040,

Pakistan; khalilafzal@ciitwah.edu.pk
* Correspondence: farruh.uzb@gmail.com

Received: 17 April 2018; Accepted: 7 June 2018; Published: 19 June 2018
����������
�������

Abstract: A smart grid (SG) is a modernized electric grid that enhances the reliability, efficiency,
sustainability, and economics of electricity services. Moreover, it plays a vital role in modern
energy infrastructure. The core challenge faced by SGs is how to efficiently utilize different kinds
of front-end smart devices, such as smart meters and power assets, and in what manner to process
the enormous volume of data received from these devices. Furthermore, cloud and fog computing
provide on-demand resources for computation, which is a good solution to overcome SG hurdles.
Fog-based cloud computing has numerous good characteristics, such as cost-saving, energy-saving,
scalability, flexibility, and agility. Resource management is one of the big issues in SGs. In this paper,
we propose a cloud–fog–based model for resource management in SGs. The key idea of the proposed
work is to determine a hierarchical structure of cloud–fog computing to provide different types of
computing services for SG resource management. Regarding the performance enhancement of cloud
computing, different load balancing techniques are used. For load balancing between an SG user’s
requests and service providers, five algorithms are implemented: round robin, throttled, artificial
bee colony (ABC), ant colony optimization (ACO), and particle swarm optimization. Moreover, we
propose a hybrid approach of ACO and ABC known as hybrid artificial bee ant colony optimization
(HABACO). Simulation results show that our proposed technique HABACO outperformed the
other techniques.

Keywords: cloud computing; smart grid; fog; resource management; smart devices; load balancing

1. Introduction

The emergence of the internet of things (IoT) raises the concept of smart connected communities.
These communities have smart transportation systems, smart homes, smart learning, smart health care
services, and smart grids (SGs). All the components are tied to each other via an Internet connection.
The SG is one of the important components in a smart connected community. An SG is an intelligent
scattered infrastructure that controls energy requirements in a supportable and economic way with
the facility of reliable communication systems for controlling and monitoring which is described
by Ghasemkhani and Signorini et al. in [1,2]. Whereas, Blanco-Novoa et al. in [3] discuss that the
merging of SGs and the IoT is called the internet of energy (IoE), which can act as an expansion of the
SG. The objective of the IoE is to give an efficient framework for energy trading between consumers.

Sustainability 2018, 10, 2079; doi:10.3390/su10062079 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0001-6272-4600
https://orcid.org/0000-0002-8602-1712
http://dx.doi.org/10.3390/su10062079
http://www.mdpi.com/journal/sustainability
http://www.mdpi.com/2071-1050/10/6/2079?type=check_update&version=2

Sustainability 2018, 10, 2079 2 of 21

Scattered intermittent energy generation and storage need to be controlled and observed logically via
the Internet.

To tackle growing complications and the huge volume of data produced by the immense usage of
devices (i.e., sensors, smart meters, and actuators), robust processing resources are required, which
must be processed, accessed, stored, and managed by cloud computing (CC). Moreover, the grouping
of CC with IoT for the formation of an IoE platform can be considered as pervasive sensing facilities by
Al Faruque et al. in [4]. CC allows the sensing information to be stored and utilized coherently for smart
observation and strong handling of the detected information streams. However, the response time and
latency in CC are increased by increasing the number of smart devices, which causes deviations for
some delay-sensitive applications and smart devices.

The fog computing concept is recommended in [5] by Aazam et al. to overcome the above-
mentioned challenges. Fog or edge computing extends the CC at the corner or edge of the network.
Fog computing allows the information to be preprocessed, where a latency constraint is needed.
The stated characteristics of fog computing are most beneficial such as: location awareness, minimum
latency, geographical distribution, massive number of devices, mobility, real-time applications, and
heterogeneity as discussed by Bonomi et al. in [6]. Some challenges arise when using smart devices,
system copes some challenges, such as latency requirements, resource-constrained devices, network
bandwidth, and cyber-physical systems. When smart devices are connected to the Internet, new security
challenges are raised, such as protecting resource-constrained devices and maintaining security status.
Moreover, up-to-date software for all smart devices which can assessing the security status of large
distributed systems in a reliable way and respond to security compromises without creating insufferable
troubles are not fulfilled by CC. To overcome the challenges of CC, Chiang et al. [7] presents a fog-based
architecture which dispenses computing, storage, control, and system administration nearer to the
end-user devices. Therefore, this paper presents a viable architecture for SGs in light of consolidating
two emerging technologies: cloud and fog computing.

1.1. Motivation

A cloud–fog–based platform is presented by Suryawanshi and Luan et al. in [8,9], where fog
devices are installed inside a multi-floor shopping center and an interstate bus to provide better
services to end users. The work in [10,11] by Luo and Gan in et al. have considered for efficient
resource allocation regarding electricity consumers in a SG. Luo et al. in [10] have discussed a cloud
computing-based infrastructure for a future generation power grid. However, the concept of fog
computing has not incorporated in [10], which could improve the latency and response time for efficient
resource allocation In addition, Gan et al. in [11] presents a decentralized algorithm for optimally
scheduling of electric vehicle (EV) charging. The power in the EV can be provided by a collector system
from off-vehicle sources: a battery, solar panels or an electric generator, etc. However, authors have not
consider the cloud and fog platforms in this scheme and no on-demand services were considered for
the consumers, which creates a high latency and slow response time in the system. Furthermore, Hao et
al. in [12] have considered the objectives of load shuffling facility by optimally scheduling the charging
and discharging behavior of EVs in a decentralized manner. However, the cloud and fog platforms
have not integrated in this study to schedule the demands of EV consumers in terms of minimizing cost,
response time, processing time, and request loading time. Based on these studies, we incorporate the
concepts of fog and cloud computing in order to effectively schedule resources in residential buildings
to enhance the response, request loading time, and processing time with minimum latency. Moreover, it
can be predicted that by integrating a cloud–fog–based platform in SGs, users will be furnished with
less complexity described by Mohamed et al. in [13]. However, in this platform, by increasing the
number of consumers, the resource management problem is also increased. Several load balancing
techniques are described in the literature by Dam and Chen et al. in [14,15] for resource management
in cloud environments. A cloud–fog–based SG model for resource management is presented in this
study to handle SG consumers’ (end users’) requests, and various load balancing policies are also

Sustainability 2018, 10, 2079 3 of 21

implemented. A graphical representation of this concept is depicted in Figure 1. This figure illustrates
the mechanism of information sharing between the consumers and the utility through the services
of cloud–fog–based servers. According to Luan et al. [9], the physical distance is shorter than the
communication distance because users access the services of the cloud via an internet protocol (IP)
network. The physical distance is kept equivalent to the communication distance for fog servers due
to the involvement of single-hop wireless connection. The proposed scenario considers fog servers to
reduce the latency and improve the response time to consumer requests.

A complex

system, with

large number

of users

Fog

device

Cloud

C
om

m
un

ic
at

io
n

di
st

an
ce

Physical distance
SG

In
te

gr
at

e
fo

g

F
og to cloud

Both th
e physic

al a
nd

communicatio
n dist

ance

Figure 1. Cloud, fog, and smart grid (SG).

1.2. Contributions

To get benefits from the SG, a cloud–fog–based model is integrated (an extension of
Saman et al. [16]) for efficient resource management in smart buildings. The main contributions
of our work are:

• A new cloud–fog–based model is presented to optimally allocate the consumers’ requests in the
cloud–fog environment.

• Fog devices are integrated with the cloud environment in order to minimize the system latency
because fog devices are placed nearer to the end users and can respond faster than the cloud server.

• Providing location awareness services through connected fog devices.
• A new hybrid artificial bee ant colony optimization (HABACO) algorithm is proposed to optimize

the allocation of requests to the available virtual machines (VMs) in the cloud–fog–based SG
model to deal with the request scheduling problem.

• In a residential area, two scenarios are considered, where renewable energy sources are used to
overcome the environmental concerns.

• Extensive simulations are conducted in order to demonstrate that the cloud–fog–based SG model
can fundamentally supplement the SG with minimum communication time.

Sustainability 2018, 10, 2079 4 of 21

• The performance of the proposed algorithm “HABACO” is evaluated and compared in order to
demonstrate its effectiveness by estimating the performance parameters with other approaches:
particle swarm optimization (PSO), artificial bee colony (ABC), ant colony optimization (ACO),
round robin (RR), and throttled.

The rest of the paper is organized as follows: Section 2 provides an overview of related work.
Section 3 introduces the system model. Section 4 presents the simulation results and discussion. Finally,
conclusions are drawn in Section 5.

2. Related Works

Multiple solutions have been presented in order to cope with real-time management, energy
efficiency, and to provide cost-effective solutions in power grid systems. These studies can be classified
into three classes pursuant to already-defined architectures.

2.1. SG-Based Architecture

An improved home energy management algorithm is presented by Hussain in et al. in [17],
which is based on the concepts of demand response and RESs (i.e., wind turbine, PV panels, hydro
power systems etc.). This model includes demand response principles, photovoltaic panels, state of
charge, and the sharing of multiple resources for supplying load. The energy cost and time-based
discomfort are minimized; however, the model has some limitations. These limitations are optimized
using a multi-objective genetic algorithm with Pareto optimization. After applying these schemes,
consumers had the most optimal results. A review of revolutionary changes occurring in advanced
power systems is discussed by Yoldas et al. in [18]. This study is based on certain challenges occur
due to the increasing demands of worldwide electricity, consumers’ lacking cognizance of carbon
emission minimization, the lack of the integration of RESs on a global scale, and the incorporation
of bidirectional communication technologies. The aforementioned challenges raised the notion of
establishing MGs (for small scale power panels), which are currently becoming an emerging domain
due to the integration of smart grid tools and technologies. In addition, this review also discusses
the MG and its functionalities, as well as the integration of the intelligent services of the smart grid
environment. A critical analysis of the future smart grid services is also described, with multiple
suggested solutions.

Rajarajeswari and Ashutosh et al. in [19] have presented demand-side management in an SG
using a genetic algorithm optimization scheme for residential, commercial, and industrial loads.
Only fixed and elastic (shiftable) appliances are considered in this system. A genetic algorithm is
used to reschedule the shiftable load in order to minimize the cost and peak to average ratio. After
rescheduling the schedulable appliances, the cost and peak to average ratio of this system were reduced.
In [20], Barbato et al. present a fully distributed strategy for demand-side management using SG
infrastructure in order to minimize the peak formation ration for the consumers. This strategy uses
dynamic pricing schemes and considers two types of scheduling strategies: a fully distributed strategy
and a hybrid strategy. Every device makes an autonomous scheduling decision in the fully distributed
strategy, whereas in the hybrid strategy, the consumer schedules the devices according to the demand.
The authors discuss the performance of these strategies in terms of their numerical evaluation by
considering them in the grid-connected modes. The system is modeled by a non-cooperative game
theory following certain system constraints. After the numerical evaluation of the system, it was shown
that 55% of the peak formation was minimized. In these papers, different numbers of appliances
with distinct usage patterns are scheduled to meet the objectives of cost, peak to average ratio, and
user comfort. Moreover, demand response management has turned out to be one of the growing
technologies for SGs. However, with increasing consumer involvement and to handle large number
of data, it become computationally tough. To tackle the issues of high computation, scalability, and
emergencies, there is a need for a reliable and efficient system which meets the requirements efficiently.

Sustainability 2018, 10, 2079 5 of 21

2.2. Cloud- and Fog-Based Architectures

The CC paradigm has attracted a great deal of attention in the literature (e.g., Mora et al. in [21]),
and they have suggested that CC applications are strongly dependent on their architectural frameworks.
Authors have explained the concepts and distinctive points of conventional and cloud computing in
terms of their technical and non-technical challenges, also discussing multiple future directions [22] by
Armbrust et al. In [23], Xia et al. discuss an approach which supports the content-based image retrieval
for encrypted images without exposing them to the cloud server. Firstly, corresponding images are
extracted from the feature vectors. Secondly, they develop the pre-filter tables using a locality-sensitive
hashing in order to enhance the surfing efficiency. Furthermore, a protection mechanism is applied by
the kNN (k nearest neighbor) algorithm to secure the feature vectors and an encryption mechanism is
applied using the standard stream cipher to secure the images. They also proposed a watermark-based
protocol in order to avoid illegitimate spreading of the images, and this watermark is added by the
cloud server before transmitting to the users. In any case, if an illegitimate copy of the image is
obtained, then the user is tracked through the watermark extraction process. This approach helps in
the protection and efficiency of the cloud resources.

Authors developed a consumer interest model in which a surf-able encryption scheme is
developed in CC using a multi-keyword ranked search. The purpose of this scheme was to add
privacy in the CC environment described by Fu et al. in [24]. Xia et al. in [25] describe the similar
technique “multi-keyword ranked search” for CC dynamic operations’ updates. The technique is used
for the encrypted data in CC, which assists in deletion and insertion of the documents and updates
them dynamically. A vector-based model and TF × DF models are collectively used for index creation
and query transmission. Tree-based index organization and a greedy depth-first search algorithm
are used to enhance the surfing efficiency. Encryption of the indexes and generated query vectors is
secured using the kNN algorithm, and these algorithms show the precise score computation for both
indexes and query-generated vectors. This scheme achieved sub-linear surfing time for the deletion
and insertion of documents, which enhanced the efficiency of the proposed scheme.

An alternative paradigm, fog computing, is proposed by Bonomi et al. in [6] to solve the problems
of latency, delay, response time, and requests per hour. Fog computing provides us with very good
solutions in terms of delay, reliability, processing time, etc. However, in both cloud and fog emerging
technologies, consumers send requests randomly from any processor. Congestion and overburden
problems are raised due to the large number of end users’ requests. However, the overburden of
servers is linked with the unfair assignment of the tasks. Random assignment of tasks causes load
imbalance, where some processors are overloaded and some are under-loaded. Khiyaita et al. in [26],
a review of load balancing techniques in CC is presented by exploiting the significant research obstacles
in future SGs. The main objective of load balancing is to transfer load explicitly from overloaded
processes to under-loaded processes. In order to meet the consumers’ requests, the system must
enable the coordination. It can create congestion and can also be directed to create imbalance in service
management. To effectively balance the services, CC needs load balancing algorithms in the distributed
systems with little modification. To overcome this issue, many researchers are working to resolve the
problem. For example, Sambit et al. in [27] present a solution to resolve the load balancing problem.
In this work, different types of loads in the cloud environment are considered: memory, computation,
and network loads. To effectively balance them in the CC environment, different heuristic algorithms
are considered: genetic algorithm, simulated annealing, tabu search, etc.

A hybrid ACHBDF (ant colony, honey bee with dynamic feedback) algorithm is also discussed
in [28] by Nikhit et al. as a load balancing mechanism for optimized resource utilization in CC.
This algorithm utilizes the collective scheme of the two runtime scheduling schemes using the dynamic
time step feedback methodology. It also relies on the quality of ACO and honeybee algorithms for
effective task scheduling. To maintain the dynamic feedback method, its feedback methodology
supports the system to verify the load after each iteration. Bitam et al. in [29] propose a new
bio-inspired algorithm—bees life algorithm (BLA)—for effective task assignment in the fog computing

Sustainability 2018, 10, 2079 6 of 21

environment. This optimization approach is based on the equivalent distribution of fog nodes.
The main purpose of this study is to obtain the tradeoff between the CPU execution time and the
storage utilized by the fog nodes. The response time and cost for this system is also evaluated and
compared with the previous PSO and genetic algorithms. In this case, it outperformed both of the
previous algorithms.

2.3. SG with Cloud-Based Architecture

Many scholars have deliberated on the use of cloud–fog computing to support and manage
SGs. Mohamed et al. in [13] have described a technique called “service-oriented middleware
(SOM)” to effectively anatomize the obstacles during the development and operation of smart
cities’ functionalities through the cloud of things and fog computing. SOM is also referred to as
SmartCityWare, which comprises of cloud and fog computing features. The service-oriented model
(used as a middleware) provides services to the multiple functionalities and parameters of the smart
city applications abstracted by the SmartCityWare. This improves the services’ functionalities and
their parameters demanded by the customers in the smart city. However, they do not consider the
resource management problem of servers. Additionally, SG data management based model on a CC is
presented in [30] by Reka et al. which takes advantage of distributed data management for real-time
data gathering, ubiquitous access, and parallel processing for real-time information retrieval. Stochastic
programming is embedded in CC for the effective load management of the SG users. The simulation
results are obtained through a GUI (designed interface) and Gurobi optimizer in Matlab. The objective
of this scheme is to minimize the energy requirements by adding smart energy hubs.

Moreover, for a faster response time in large-scale deployments, cloud-based demand response
architecture is presented in [31] by Moghaddam et al. The studied demand responses are of two types:
cloud-based demand response and distributed demand response. These are optimized by two models,
including a demand response and a communication model. The objective of this study was to minimize
the convergence time and efficient bandwidth utilization. In the end, these models showed the cost
efficiency of the proposed system and verified that obtaining more consumer requests can increase the
communication cost. Chekired and Lyes in [32] have proposed an efficient SG electric vehicle charging
and discharging service at public supply stations based on cloud environment scheduling. It ensures
the communication links between SG and cloud platforms. This system also considers the waiting time
by using priority assignment scheduling algorithms. Two algorithms are used for the EV scheduling
process: calendar priority optimization and random priority optimization algorithms. Four types of
priorities are included for each EV user. However, this study only considers the problem of EVs and
ignores the request management of homes or buildings. Moreover, a green scheduling for the cloud
Datacenter is handled by Gu et al. in [33]. The focus of this work is energy trading with the power grid.
The objectives are energy cost and carbon emission minimization, where renewable energy sources are
used to cope with hazardous emission.

Overview of above mentioned studies demonstrate that there is need of a highly reliable
cloud–fog–based SG platform for efficient resource management that handles the consumer and
utility activities. Therefore, we consider a scenario where a number of smart home and smart building
requests are handled by some servers. These servers optimize them in order to minimize the processing
time, response time, and cost of the resources.

Sustainability 2018, 10, 2079 7 of 21

3. System Model

Cloud service providers generally have several DCs (reserved for computation and storage) in
geographically scattered locations. The proposed system model of a cloud–fog environment contains
multiple fog DCs and a cloud DC. The geo-distributed cloud–fog environment-based SG framework is
depicted in Figure 2. The proposed model is comprised of three layers: end user layer, fog layer, and
core cloud layer.

B
u

il
d

in
g

-2

B
u

il
d

in
g

-N

B
u

il
d

in
g

-1

E
n

d
 u

se
r

la
y

er

W
T

E
S

S
H

o
m

e-
1

E
S

S
H

o
m

e-
2

W
T

E
S

S
H

o
m

e-
3

E
S

S
H

o
m

e-
M

P
V

P
V

F
o

g
-L

F
o

g
-3

F
o

g
-1

F
o

g
-2

C
o

re

cl
o

u
d

V
M

M

V
M

V
M

V
M

F
o

g
 l

a
y

er
C

o
re

 c
lo

u
d

 l
a

y
er

T
w

o
-w

a
y

co
m

m
u

n
ic

a
ti

o
n

S
ep

a
ra

te
 l

a
y

er
s

N
u

m
b

er
 o

f
b

u
il

d
in

g
s

E
x

ch
an

g
e

se
rv

er
s

75% 75% 75% 75%

U
ti

li
ty

Figure 2. System model of cloud–fog–based SG. ESS: energy storage system; PV: photovoltaic; VM:
virtual machine; VMM: VM monitor; WT: wind turbine.

Sustainability 2018, 10, 2079 8 of 21

We assume that the end user layer consists of N number of buildings B = {b1, b2, b3, ..., bN},
and each building has multiple homes H = {h1, h2, h3, ..., hM}. Every home has a renewable energy
generation unit and an energy storage system (ESS) to fulfill the electricity demand. This type of
generator has no emission or fuel cost and they are environmentally friendly due to the extraction of
energy from natural sources. Further, the excessive generated energy is stored in the ESS to fulfill the
load demand of the home in low generation hours. All information about a home energy consumption,
energy generation, and scheduling of appliances is sent to the fog layer. This layer accesses numerous
cloud resources to run their applications. The defined smart buildings or homes communicate with the
fog devices via smart meters. All of the homes share their deficit and excessive power information with
each other through the cloud–fog environment. The smart meters interact via local area network, wide
area network, or metropolitan area network. There are numerous wireless solutions for communication
link in the SG, such as Wi-Fi, Z-Wave, or ZigBee.

The second layer is the fog layer, which is used to effectively manage the latency issue and network
resource management. The fog layer physically exists in the consumers’ local region (i.e., in region 1,
region 2, etc.), which is nearer to the consumers. In short, the fog node is situated closer to the consumer
(i.e., one hop away from the consumer), as shown in Figure 1 where physical and communication
distances are equivalent. These fogs are managed by the internet service providers as in [5,7]. The
fog layer consists of F = { f1, f2, f3, ..., fL} number of fogs. Here, each smart building is connected
with a fog device. The fog devices consist of hardware (H/W) resources (i.e., main memory, storage,
network bandwidth, and processor) which are virtualized. In a single physical machine, different
numbers of VMs are working according to the virtualization concept which are managed by a virtual
machine monitor (VMM). The VMM sustains various operating systems (OSs) to run applications on a
single H/W platform simultaneously. The hypervisor (VMWare, Xen, UML, etc.) or VMM operates
as an interface between the VMs and the guest OSs. A large number of heterogeneous applications
are running on each VM or guest OS, which is the basic unit to execute an application or a request.
Let VM = {vm1, vm2, vm3, ..., vmn} be the set of VMs utilized in the fog devices. The fog layer is used
for communication and works as an intermediate layer between the end user and the cloud. The last
layer is the core cloud layer. The main components in this layer are the DCs which are used to facilitate
the demanded storage and computing capability to the end users. They work on a pay-as-you-go basis
as per the requirements of the applications.

The most important feature of CC is the computational load profile characteristics of the
computing applications. When a large number of applications run on a single platform, it overburdens
the server. To tackle this issue, various techniques are used. This concept is easily understood from
Figure 3, where end users generate a large number of requests to access the service provider. Moreover,
for efficient load balancing or resource utilization in VMs, a load balancer is used. For efficient
computational load profile management in CC, different load balancing techniques are used. In SGs,
the computational load profile is similar to the electricity load profile concept. So, when we integrate
the SG with the cloud–fog–based environment, then efficient management of the computational load
profile of all SG-related tasks is also necessary as well. In this work, five heuristic algorithms are
implemented to solve the load balancing problem. Moreover, when this system model works for
all regions of the world, every region has multiple numbers of buildings and fogs. These buildings
may be in residential, commercial, or industrial areas. For performance evaluation, two scenarios are
considered in this system model, which will be discussed in detail in the simulation section.

Sustainability 2018, 10, 2079 9 of 21

Multiple number of request from users

Service

provider

Load balancer

VM

1

VM

2

VM

3

VM

n

Figure 3. System model of load balancing considering fixed number of requests to cloud and
fog environment.

However, some explanation of the algorithms used for efficient load balancing is provided here.
When an algorithm works on equal time slicing, it is known as RR. Here, resources are allocated to
each host by an equal time slicing mechanism for their efficient utilization. This algorithm is used to
balance the load of requests coming from end users and allocate them to VMs. The throttled algorithm
also maintains the resources. In this algorithm, all VMs’ information is available at the start and it
maintains the indexes table of VMs. However, these algorithms are sequential, and they do not work
on local best or global best results. To overcome this issue, the PSO algorithm is used here. PSO gives
us both the local best and global best results. In this algorithm, in every iteration, the current best
(local best) value is compared with the previous best (global best) value, and if it meets the fitness
criteria, the current best is selected as the global best. Otherwise, the previous one remains as the best
value.

3.1. Problem Formulation

Every system has some performance parameters for stability improvement. Here, for the
cloud–fog–based SG framework, load balancing over the available virtualized resources is done
in order to improve the system stability. The performance parameters of this system are processing
time, response time, and costs (VM cost, data transfer cost (DTC), and total cost (TC)).

As we know, there are N buildings, and each building has a number of homes M.
Let VM = {v1, v2, v3, ..., vl} be the set “l” of requests (tasks) which can be sent to L number of fogs, and
each fog has a VMM. The VMM has complete information of active VMs, task queue length of the
hosts, and availability of resources in different hosts. It will further assign these tasks to VMs. Every

Sustainability 2018, 10, 2079 10 of 21

VM uses its own resources (running in parallel). A VM does not share its resources with other VMs.
To find the total number of tasks TV for N buildings:

TV =
N

∑
i=1

(Vi). (1)

Further, mapping of these TV to “n” VMs affects numerous performance parameters [34]:
processing time, response time, and different types of costs. The mathematical modeling of these
performance parameters are written as outlined hereafter.

3.1.1. Processing Time

To calculate total processing time (y), first, collect all information of the tasks and VMs.
Then, processing time Pi,j of allocating task i to VM j is calculated by Equation (4) and λ defines
the status of the tasks.

λi,j =

{
I f task ‘i’ is assigned, 1,

Otherwise, 0.
(2)

Objective is:

y =
TV

∑
i=1

N

∑
j=1

(Pi,j × λi,j), (3)

where

Pi,j =
Length o f ith task

Capacity o f jth VM
× Pe. (4)

3.1.2. Response Time

The response time RT is the time T taken by fog DC to receive the tasks from the building (end
user). FinishTime is the finishing time of the task. Arrival time is denoted by ArrivalTime. Moreover,
delay time DelayTime is the time after reaching the request into DC. Pe is the earliest possible response
time of the system.

RT = DelayTime + FinishTime − ArrivalTime. (5)

3.1.3. Costs

Each and every system must pay some cost according to the resource usage. As mentioned above,
we calculate different types of costs, which are stated as below.

VM cost is calculated by:

CostVM =
TTotal

CostVM per hour×U
, (6)

where TTotal is the end time minus the start time of the VM and “U” represents the value of converting
time from the milliseconds (ms) to hours.

DTC is calculated as:

CostDTC = Data in GB× Data cost per GB. (7)

DTC cost is the amount of data sent to the service provider in GBs. When we multiply the data
sent in GBs with the per-GB cost, the cost of DTC is obtained.

After calculating the VM and DTC costs, total cost is calculated by Equation (8):

TC = CostVM + CostDTC. (8)

Sustainability 2018, 10, 2079 11 of 21

3.2. Proposed Algorithm

In this section, the proposed hybrid algorithm is presented, which is the combination of ACO and
ABC. ACO was proposed by Marco Dorigo in 1992, and mimics the behavior of ants. In this algorithm,
ants search for food in the form of a group and connect to each other by pheromone laid down on
a path by the ants. With the increase in the number of ants on a certain path, the intensity of the
pheromone increases, resulting in a more reliable, accurate, and smaller path towards the food source.
For independent task scheduling, the work in [35] is considered. When the number of specified tasks
are equal to the number of ants, every ant starts with a random task and uses resources to process the
task and then calculates the resources using the probability function as follows:

Probij =
(τij)

α.(ηij)
β

∑(τij)α.(ηij)β
, (9)

where τij denotes the pheromone value related to task i and resource j, ηij denotes the heuristic
function, and α and β are the constant coefficients. After calculating the probability of each step, each
ant builds a solution for assigning all the tasks to the resources. The pheromone value is initially set as
a positive constant, then at the end of every iteration, the ants change this value. The ABC algorithm
was proposed by Dervis Karaboga in 2005 [36]. It mimics the behavior of honey bees to achieve the
best food source, called “nectar”. For task scheduling in SGs, we assume that the number of bees are
equal to the number of tasks and the number of food sources are equal to the number of VMs. Each
ant starts with an arbitrary task and resource (VM) for processing this task. Furthermore, the task to be
executed and the resource on which it has to be performed are calculated by the probability function
Equation (10):

Probj =
Fitj

∑V
i=1 Fiti

, (10)

where Fitj is the fitness of source j, Fiti is the fitness of the task or the fitness of the requests from the
users i, and V is the total number of tasks or requests. The proposed load balancing strategy depends
on the best features of ABC and ACO to make the hybrid (HABACO) in order to increase the efficiency
of the system for efficient resource management. Here, for load balancing, ACO is used in search of
new sources of food (VM) based on best source utilization. However, it cannot change the obtained
pheromone value for the VM in some iterations. So, as a result, an optimal solution is not found due to
local optima. To find the best optimal solution (which task is assigned to which VM), we integrate the
ABC fitness function (waggle dance) step into ACO to find the global optimum solution.

The description of smart grid scenarios is mapped to fog computing in the proposed system
along with the integration of the heuristic algorithms: PSO, ABC, ACO, and our proposed hybrid
HABACO. Fog is used in the local region in order to facilitate the local consumers’ requests, and
helps in minimizing the response time and latency of the consumers. It also helps in efficient resource
allocation. Although CC provides the on-demand delivery of the resources, it increases the latency of
the system. So, fog computing is integrated in this system to minimize the latency of the consumers’
services (i.e., consumers’ energy consumption requests), and allocation of the SGs’ resources using
the cloud and fog platform is performed by the existing algorithms: PSO, ABC, ACO, and the newly
proposed algorithm HABACO. Since different homes (in one building (considered in our work) or in
multiple buildings (taken as an example)) are different load requests and these algorithms are also
stochastic in nature, handling the consumers’ requests through the heuristic algorithms results in a
more appropriate approach.

For load balancing, Algorithm 1 illustrates the steps to efficiently allocate the incoming tasks
to the VMs. In this algorithm, every resource (i.e., VM, fogs, cloud datacenters, consumers’ load
requests from the SG environment, etc.) is visited once, which is based on expected processing time
and response time of task i on VM j. According to these expected outcomes, we achieve the global
optimal solution by using the bee fitness function.

Sustainability 2018, 10, 2079 12 of 21

Algorithm 1: HABACO Algorithm
1: Begin
2: Input: Set of user requests (tasks), number of VMs
3: Output: Processing time, response time, and costs (VMs, DTCs, and TC)
4: Step-1: Creation of system’s setup
5: Create initial cloud and fog setup
6: Step-2: Parameter initialization
7: Initialize number of VMs, tasks, fogs, and broker policy for cloud datacenters
8: Initialize maxCount = maxVal, VM ID = 1
9: Set threshold value (maximum task or request size, which is considered fixed in this work) for each VM

10: Set the number of processors and other specifications (processor speed, memory size, user grouping factor,

etc.) of VMs
11: Initially, set all the VMs in working mode
12: Set the broker policy (i.e., optimized response time is chosen in this work)
13: Step-3: Resource allocation
14: for VM = 1; VM ≤ length (VM list); VM++ do

15: if length (taski+1) < length(taski) then

16: Add maxVal = taski+1 infront of the task queue
17: end if
18: if length (taskVM) = 0 then

19: upgrade VM task count (maxVal)
20: end if
21: Check threshold value
22: Return VM ID
23: Calculate probability for selected VM ID
24: Use bee function to calculate global optimal solution
25: Return VM ID
26: if length(taskVM) ≥ 0 then

27: Check the defined tasks allocation threshold for each VM
28: end if
29: Check available VMs and requests in queue
30: Calculate probability for selected VM ID
31: Use bee function to calculate global optimal solution
32: Return VM ID
33: Step-4: Compute objective functions
34: Calculate processing time using Equation (4)
35: Calculate response time using Equation (5)
36: Calculate cost using Equations (6)–(8)
37: Step-5: Check the available resources
38: Check the broker policy
39: Check the available and connected fogs or cloud datacenters
40: Check the available VMs
41: Check the remaining tasks in the queue
42: Increase the task counter in the queue upto maxCount
43: Go to step-3
44: Repeat the process until requests are completed
45: end for

4. Simulation Results and Discussion

To determine the dependency of performance parameters on location-aware DCs of the cloud
and fog environment, N number of regions, buildings, load requests, and a balancing policy were

Sustainability 2018, 10, 2079 13 of 21

considered. A cloud analyst simulator was used to evaluate the efficiency of the proposed algorithm.
This simulator is the extended version of cloudsim, which provides us with a real-world environment.
In this experimental setup, the whole world was divided into six regions [34]. Here, we evaluated
performance parameters in two scenarios. This work is the extension of Saman et al. [16], where
scenario 1 was considered only for a single region. Scenario 1 consists of one region—namely, region 2.
This region further considers two buildings and two fogs, and each building has ten homes in
it. This scenario was simulated using the four algorithms: PSO, ACO, ABC, and our proposed
algorithm HABACO. The performance metrics considered in this case were: hourly response time
of buildings, processing time of data centres, and costs of VMs, DTC, and TC. However, in scenario
II, we enhanced our system in terms of five regions and each region has a fog and a building. Every
building has 60–160 homes in it. In this scenario, results were further obtained for 2 VMs and 5 VMs.
The performance parameters for this scenario were: response time of buildings, processing time of fogs,
VM costs, DTC, and TC. The results of the proposed algorithm were compared with the PSO, ACO,
and ABC using the considered performance metrics. The aim of these assumptions was to check the
performance of the proposed model that how efficiently it works for a single region and for multiple
regions. The optimized response time service broker policy was used as a resource allocation policy.

The input parameters for both scenarios were: VM bandwidth was 1000 MB, DC architecture
Was X86, VMM was Xen, memory per machine was 2048 MB, storage per machine was 100,000 MB,
DC available bandwidth per machine was 10,000, DC number of processors per machine was 4,
DC processor speed was 100 MIPS, users grouping factors were 100, requests grouping factors
were 100, and executable task size was 250. According to these assumptions, results were obtained
through simulations.

4.1. Response Time

Figure 4 shows the hourly response time for buildings using PSO, ACO, ABC, and hybrid
HABACO algorithms considering two and five VMs, respectively. In Figure 4, we can see that with
PSO, ACO, and ABC, the response time was greater as compared to the HABACO considering the
2 VMs and 5 VMs. Response time was optimized for both buildings simultaneously. For building-1:
the average response time obtained using 2 VMs with the PSO, ABC, ACO, and HABACO was: 38 ms,
38 ms, 11 ms, and 9 ms, respectively. In this case, HABACO was found efficient upto 23% as compared
to PSO and 81% as compared to ACO. It was found equivalent to ACO in terms of resource allocation
for both buildings. In scenario 1, building 1 using 5 VMs, all algorithms were simulated for 15 ms,
25 ms, 10 ms, and 9 ms. Here, our proposed algorithm outperformed the PSO upto 60%, ACO by up
to 90%, and it enhanced its efficiency by up to 36% in the case of ABC in scenario 1. For building-2
under scenario 1 with 2 VMs and one fog server: response times of 31 ms, 31 ms, 22 ms, and 12.5 ms
were achieved using PSO, ACO, ABC, and hybrid HABACO, respectively. The proposed algorithm
beats the previous algorithms by up to 40% in comparison to PSO and ABC, whereas it performed
up to 44% better in comparison to ACO for building-2 using 2 VMs and one fog server. In scenario 1
using 5 VMs and one fog server, these algorithms performed the average resource allocation for the
daily basis: 27 ms, 13.5 ms, 13 ms, and 12 ms with PSO, ABC, ACO, and HABACO, respectively. All of
the performances of these algorithms were achieved based on the fixed set of the request size in that
particular region, since these algorithms are stochastic in nature and evaluate the requests to their
optimal time-slots. For building-2 using 5 VMs, our proposed algorithm performed upto 52% than
PSO, 92% as compared to ACO, and 88% as compared to ABC, as shown in Figure 4.

Figure 5 shows the average response times of buildings using PSO, ABC, ACO, and HABACO
for both the 2 and 5 VMs in scenario 2. Here, we observe that by increasing the number of VMs
and regions, response time decreased after equivalent distribution of the fog servers in each region.
However, the proposed algorithm gave us a more optimal solution in terms of response time by
optimized request scheduling as compared to the other algorithms, as mentioned above. Results
show the slight difference between the performance of PSO and ABC. However, ACO showed high

Sustainability 2018, 10, 2079 14 of 21

performance as compared to PSO and ACO. The overall response time of this scenario is depicted in
Table 1, where HABACO performed better than its counterpart algorithms.

Building-1 Building-2

Number of Buildings

0

5

10

15

20

25

30

35

40

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

PSO-2-VM

ABC-2-VM

ACO-2-VM

HABACO-2-VM

PSO-5-VM

ABC-5-VM

ACO-5-VM

HABACO-5-VM

Figure 4. Average response time of buildings in scenario 1. ABC: artificial bee colony; ACO:
ant colony optimization; HABACO: hybrid artificial bee ant colony optimization; PSO: particle
swarm optimization.

Building-1 Building-2 Building-3 Building-4 Building-5

Number of Buildings

0

50

100

150

200

250

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

PSO-2-VM
ABC-2-VM
ACO-2-VM
HABACO-2-VM
PSO-5-VM
ABC-5-VM
ACO-5-VM
HABACO-5-VM

Figure 5. Average response time of buildings in scenario 2.

Table 1. Overall response time in scenario 2.

VMs Load Balancing Algorithm Average (ms) Minimum (ms) Maximum (ms)

2

PSO 154.83 38.07 66,055.39
ABC 153.55 38.07 66,045.38
ACO 79.64 39.53 223.17

HABACO 53.67 38.07 72.13

5

PSO 140.27 38.51 72,051.46
ABC 109.33 39.39 54,954.1
ACO 52.64 38.42 69.49

HABACO 52.63 38.42 69.49

Sustainability 2018, 10, 2079 15 of 21

4.2. Processing Time

Figure 6 shows the average processing time of fogs with PSO, ABC, ACO, and proposed
hybrid HABACO. In addition, Figure 6 also shows the comparative analysis of the above-mentioned
algorithms. Here, two fogs’ processing capabilities are evaluated for two buildings. That is, one fog is
assigned to one building for optimal resource allocation and efficient task processing. Fog-1 shows the
effective distribution of the resources using these four algorithms. Furthermore, these algorithms took
the average times of 25.5 ms, 25 ms, 3 ms, and 2 ms for any building on daily requests’ scheduling
bases using fog-1 and 2 VMs. Our proposed algorithm outperformed the other algorithms: the average
processing time of HABACO was 7.8% as compared to PSO, 7.07% as compared to ABC, and 66% that
of as compared to ACO. As this algorithm is the hybrid of ABC and ACO, it uses the best features of
these algorithms and gives the best optimal solution to the consumers. In the case of the fog-1 with
5 VMs, these algorithms (i.e., PSO, ABC, ACO, and proposed hybrid HABACO) took the average
times of 7 ms, 13.5 ms, 6 ms, and 2 ms, respectively. Here, our proposed algorithm performs better
upto 28% in comparison to PSO, 14.8% in comparison to ABC and almost equivalent in comarison
to ACO. Using fog-2 with 2 VMs and one building, it gives the optimal processing of the requests by
considering the PSO, ABC, ACO, and proposed HABACO algorithms: 22 ms, 21 ms, 8 ms and 4 ms,
respectively. Here, requests of the building were optimized using these algorithms and our proposed
algorithm performed best: 19% as compared to PSO, 19.9% as compared to ABC and 50% as compared
to ACO for 10 homes. For optimizing these requests in a more efficient manner, 5 VMs were then
assigned with the fog in order to check its functionality. In this case, the resource allocation times
taken by the PSO, ABC, ACO, and the proposed HABACO algorithms for the daily routine tasks were:
21 ms, 4 ms, 3 ms, and 3 ms, respectively. Our proposed algorithm outperformed the other algorithms,
with an average processing time upto 70% in comparison to PSO, 1% in comparison to ACO, and 75%
in comparison to ABC respectively". .

In case of scenario 2, the proposed algorithm took the least time to process the requests, as
presented in Figure 7, showing a similar behavior as depicted for the response time. With five VMs, all
algorithms performed better than with two VMs. With both 2 and 5 VMs, the overall processing time
of fogs is shown in Table 2. It is concluded from Table 2 that increasing the number of VMs results in
minimum processing time.

Fog-1 Fog-2

Number of Fogs

0

5

10

15

20

25

30

A
v
e
ra

g
e
 P

ro
c
e
s
s
in

g
 T

im
e
 (

m
s
) PSO-2-VM

ABC-2-VM

ACO-2-VM

HABACO-2-VM

PSO-5-VM

ABC-5-VM

ACO-5-VM

HABACO-5-VM

Figure 6. Average processing time of fogs for scenario 1.

Sustainability 2018, 10, 2079 16 of 21

Fog-1 Fog-2 Fog-3 Fog-4 Fog-5

Number of Fogs

0

20

40

60

80

100

120

140

160

180

200

A
ve

ra
g

e
 P

ro
ce

ss
in

g
 T

im
e

 (
m

s)

PSO-2-VM
ABC-2-VM
ACO-2-VM
HABACO-2-VM
PSO-5-VM
ABC-5-VM
ACO-5-VM
HABACO-5-VM

Figure 7. Average processing time of fogs in scenario 2.

Table 2. Processing time in scenario 2.

VMs Load Balancing Algorithm Average (ms) Minimum (ms) Maximum (ms)

2

PSO 103.86 0.05 66,000.85
ABC 102.58 0.05 66,000.85
ACO 21.67 0.05 61.92

HABACO 2.64 0.04 10.98

5

PSO 89.29 0.06 71,998.92
ABC 58.48 0.06 54,904.24
ACO 1.56 0.05 8.62

HABACO 1.56 0.03 10.41

4.3. Cost

In this section, three types of costs are calculated: VM cost, DTC, and TC. In any system, consumers
have to pay some cost according to resource usage. So, the cost computed in this system is based on the
number of fogs, cloud datacenters, the number of buildings, and the number of homes. Cost was also
calculated for the two scenarios: scenario 1 and scenario 2. For scenario 1: VMs cost was optimized
by using the PSO, ABC, ACO and our proposed algorithm, yielding values of upto $8, $9, $10, and
$7, respectively, using 2 VMs. Our proposed algorithm gave the best optimal results in scenario 1, as
shown in Figure 8. Using 5 VMs, the PSO, ABC, ACO, and HABACO, all algorithms gave the results
upto $12, $13, $11, and $10.5, respectively. DTC was computed as $152, $151, $150, and $149 using
PSO, ABC, ACO, and HABACO algorithms, respectively, considering 2 VMs as displayed in Figure 9.
For 5 VMs, DTC was computed as $148, $147, $154, and $146. TC was calculated as $170, $175, $168,
and $167 for all algorithms using 2 VMs as shown in Figure 10. For 5 VMs, TC was computed as $172,
$167, $172, and $167, respectively, for PCO, ABC, ACO, and HABACO in scenario 1. Our proposed
algorithm gave cost-effective results throughout scenario 1 of the proposed system.

Sustainability 2018, 10, 2079 17 of 21

0

5

10

15

V
M

 C
o

s
t

($
)

PSO
-2

-V
M

ABC
-2

-V
M

AC
O
-2

-V
M

H
ABAC

O
-2

-V
M

PSO
-5

-V
M

ABC
-5

-V
M

AC
O
-5

-V
M

H
ABAC

O
-5

-V
M

Figure 8. VM cost in scenario 1.

0

50

100

150

200

D
T

C
 (

$
)

PSO
-2

-V
M

ABC
-2

-V
M

AC
O
-2

-V
M

H
ABAC

O
-2

-V
M

PSO
-5

-V
M

ABC
-5

-V
M

AC
O
-5

-V
M

H
ABAC

O
-5

-V
M

Figure 9. Data transfer cost (DTC) in scenario 1.

0

50

100

150

200

T
C

 (
$

)

PSO
-2

-V
M

ABC
-2

-V
M

AC
O
-2

-V
M

H
ABAC

O
-2

-V
M

PSO
-5

-V
M

ABC
-5

-V
M

AC
O
-5

-V
M

H
ABAC

O
-5

-V
M

Figure 10. Total cost (TC) in scenario 1.

For scenario 2, VM cost was calculated for both 2 and 5 VMs, as displayed in Figure 11. As the
number of VMs increased, the cost of the system also increased. However, service providers can tackle
this issue by efficiently managing energy, as discussed earlier. Four algorithms were implemented for
effective resource management; however, our proposed HABACO algorithm showed high performance
as compared to its counterpart algorithms. The total DTC is shown in Figure 12. DTC is related to VMs

Sustainability 2018, 10, 2079 18 of 21

and techniques. According to these resources, if consumers’ requests are efficiently managed, then
they have to pay less cost. Here, with five VMs, DTC was less than with two VMs. Moreover, the cost
with HABACO was minimum as compared to the other algorithms. The TC of this system with both
numbers of VMs is presented in Figure 13.

PSO-2
VM

ABC-2
VM

ACO-2
VM

HABAC-2
VM

PSO-5
VM

ABC-5
VM

ACO-5
VM

HABAC-5
VM

0

10

20

30

40

50

60

70

V
M

 C
os

t (
$)

Figure 11. VM cost in scenario 2.

PSO-2
VM

ABC-2
VM

ACO-2
VM

HABAC-2
VM

PSO-5
VM

ABC-5
VM

ACO-5
VM

HABAC-5
VM

0

100

200

300

400

500

600

700

800

D
T

C
 (

$)

Figure 12. DTC in scenario 2.

Based on the simulation results, we can conclude that the proposed algorithm HABACO
outperformed ABC, ACO, and PSO. The reason behind HABACO’s superior performance is that
it is a mixture of the best features of the ABC and ACO algorithms. PSO and ABC gave global best and
local best solutions, respectively; however, response time, processing time, execution time, and cost
were slightly higher due to their slow convergence. However, ACO sometimes becomes stuck in local
optima, so it cannot find the global optimal solution. To overcome this issue, the ABC fitness step is
added in the ACO algorithm, which yields better response time, processing time, cost, and execution
time due to its higher convergence rate.

Sustainability 2018, 10, 2079 19 of 21

PSO-2
VM

ABC-2
VM

ACO-2
VM

HABAC-2
VM

PSO-5
VM

ABC-5
VM

ACO-5
VM

HABAC-5
VM

0

100

200

300

400

500

600

700

800

900

T
C

 (
$)

Figure 13. TC in scenario 2.

5. Conclusions and Future Work

In this paper, we presented a cloud- and fog-based model for efficient resource management in SGs.
Moreover, a cloud–fog–based SG model is proposed to connect these domains. There is a great potential
of using cloud–fog computing to serve in the SG domain regarding resource management, as fog
computing helps in minimizing delay and enhancing the overall response time of the system. Moreover,
four load balancing algorithms—PSO, ABC, ACO, and our proposed HABACO algorithm—were
used to manage resources optimally in a cloud and fog based environment, and their results were
compared with each other. Here, two scenarios were considered. Four load balancing algorithms
were implemented in both scenarios. Simulation results showed that the overall performance of
HABACO was better as compared to the other techniques presented in scenario 1. In the scenario 2,
the performance of the proposed algorithm was also found to be better as compared to PSO, ABC, and
ACO. From the numerical results, we conclude that in scenario 1, the response time of our proposed
algorithm outperformed PSO upto 60%, ACO upto 90% and it enhances its efficiency upto 36% in
case of the ABC using 2 VMs in scenario 1”. Our proposed algorithm also outperformed the other
algorithms in terms of average processing time: 7.8% as compared to PSO, 7.07% as compared to ABC
and 66% as compared to ACO for average processing time using one fog server and 2 VMs. In this
manner, the proposed hybrid algorithm outperformed its counterpart algorithms due to its capability
of finding the both global and local optimal solutions.

In the future, the investigation of this proposed model in the commercial sector is another
direction of our research. Furthermore, it will be extended towards the management of multiple load
balancing applications. That is, optimal scheduling of appliances, optimal generation of microgrids,
etc. for enhancing the efficiency of SGs. The proposed HABACO algorithm can be implemented
in real-time environments instead of simulation-based scenarios, and will be compared with more
artificial intelligence based methods in the future.

Author Contributions: All authors equally contributed.

Acknowledgments: The present research has been conducted by the Research Grant of Kwangwoon University
in 2018.

Conflicts of Interest: The authors declare no conflict of interest.

Sustainability 2018, 10, 2079 20 of 21

References

1. Ghasemkhani, A.; Hassan, M.; Ashkan R.-K.; Amjad A.-M. Optimal design of a wide area measurement
system for improvement of power network monitoring using a dynamic multiobjective shortest path
algorithm. IEEE Syst. J. 2015, 11, 2303–2314. [CrossRef]

2. Signorini, M. Towards an Internet of Trust: Issues and Solutions for Identification and Authentication in the
Internet of Things. Ph.D. Dissertation, University of Pompeu Fabra, Barcelona, Spain, 2015.

3. Blanco-Novoa, Ó.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Castedo, L. An Electricity Price-Aware
Open-Source Smart Socket for the Internet of Energy. Sensors 2017, 17, 643. [CrossRef] [PubMed]

4. Al Faruque, M.A.; Korosh, V. Energy management-as-a-service over fog computing platform. IEEE Int.
Things J. 2016, 3, 161–169. [CrossRef]

5. Aazam, M.; Eui-Nam, H. Fog Computing and Smart Gateway Based Communication for Cloud of Things.
In Proceedings of the 2014 International Conference on Future Internet of Things and Cloud (FiCloud),
Barcelona, Spain, 27–29 August 2014.

6. Bonomi, F.; Rodolfo, M.; Jiang, Z.; Sateesh, A. Fog Computing and its Role in the Internet of Things.
In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland,
17 August 2012.

7. Chiang, M.; Tao, Z. Fog and IoT: An overview of research opportunities. IEEE Int. Things J. 2016, 3, 854–864.
[CrossRef]

8. Suryawanshi, R.; Ganesh, M. Focusing on mobile users at the edge of internet of things using fog computing.
Int. J. Sci. Eng. Technol. Res. 2015, 4, 3225–3231.

9. Luan, T.H.; Gao, L.; Li, Z.; Xiang, Y.; Wei, G.; Sun, L. Fog computing: Focusing on mobile users at the edge.
arXiv Preprint 2015, arXiv:1502.01815.

10. Luo, F.; Zhao, J.; Dong, Z.Y.; Chen, Y.; Xu, Y.; Zhang, X.; Wong, K.P. Cloud-based information infrastructure
for next-generation power grid: Conception, architecture, and applications. IEEE Trans. Smart Grid 2016, 7,
1896–1912. [CrossRef]

11. Gan, L.; Ufuk, T.; Steven, H.L. Optimal decentralized protocol for electric vehicle charging. IEEE Trans.
Power Syst. 2013, 28, 940–951. [CrossRef]

12. Hao, X.; Fu, M.; Lin, Z.; Mou, Y. Decentralized optimal scheduling for charging and discharging of plug-in
electric vehicles in smart grids. IEEE Trans. Power Syst. 2016, 31, 4118–4127.

13. Mohamed, N.; Jameela, A.-J.; Imad, J.; Sanja, L.-M.; Sara, M. SmartCityWare: A Service-Oriented Middleware
for Cloud and Fog Enabled Smart City Services. IEEE Access 2017, 5, 17576–17588. [CrossRef]

14. Dam, S.; Gopa, M.; Kousik, D.; Parmartha, D. An Ant-Colony-Based Meta-Heuristic Approach for Load
Balancing in Cloud Computing. Appl. Comput. Int. Soft Comput. Eng. 2017, 204. [CrossRef]

15. Chen, S.-L.; Chen, Y.-Y.; Kuo, S.-H. CLB: A novel load balancing architecture and algorithm for cloud services.
Comput. Electr. Eng. 2017, 58, 154–160. [CrossRef]

16. Saman, Z.; Nadeem, J.; Asif, K.; Bibi, R.; Fatima, J.M.; Maida, Z. A Cloud-Fog-Based Smart Grid Model for
Efficient Resource Utilization. In Proceedings of the 14th IEEE International Wireless Communications and
Mobile Computing Conference (IWCMC-2018), Limassol, Cyprus, 25 June 2018.

17. Hussain, B.; Hasan, Q.U.; Javaid, N.; Guizani, M.; Almogren, A.; Alamri, A. An Innovative Heuristic
Algorithm for IoT-enabled Smart Homes for Developing Countries. IEEE Access 2018, 6, 15550–15575.
[CrossRef]

18. Yoldas, Y.; Ahmet, O.S.M.; Muyeen, A.V.V.; Irfan, A. Enhancing smart grid with microgrids: Challenges and
opportunities. Renew. Sustain. Energy Rev. 2017, 72, 205–214. [CrossRef]

19. Rajarajeswari, R.K.V.; Ashutosh, M. Demand Side Management in Smart Grid using Optimization Technique
for Residential, Commercial and Industrial Load. Indian J. Sci. Technol. 2016, 9, 43. [CrossRef]

20. Barbato, A.; Antonio, C.; Lin, C.; Fabio, M.; Stefano, P. A distributed demand-side management framework
for the smart grid. Comput. Commun. 2015, 57, 13–24. [CrossRef]

21. Mora, M.; O’Connor, R.V.; Tsui, F.; Marx Gómez, J. Design methods for software architectures in the
service-oriented computing and cloud paradigms. Softw. Pract. Exp. 2018, 48, 263–267. [CrossRef]

22. Armbrust, M.; Armando, F.; Rean, G.; Anthony, D.; Joseph, R.K.; Andy, K.; Gunho, L.; David, P.; Ariel, R.;
Ion, S.; et al. A view of cloud computing. Commun. ACM 2010, 53, 50–58. [CrossRef]

http://dx.doi.org/10.1109/JSYST.2015.2469742
http://dx.doi.org/10.3390/s17030643
http://www.ncbi.nlm.nih.gov/pubmed/28335568
http://dx.doi.org/10.1109/JIOT.2015.2471260
http://dx.doi.org/10.1109/JIOT.2016.2584538
http://dx.doi.org/10.1109/TSG.2015.2452293
http://dx.doi.org/10.1109/TPWRS.2012.2210288
http://dx.doi.org/10.1109/ACCESS.2017.2731382
http://dx.doi.org/10.4018/978-1-5225-3129-6.ch009
http://dx.doi.org/10.1016/j.compeleceng.2016.01.029
http://dx.doi.org/10.1109/ACCESS.2018.2809778
http://dx.doi.org/10.1016/j.rser.2017.01.064
http://dx.doi.org/10.17485/ijst/2016/v9i43/101858
http://dx.doi.org/10.1016/j.comcom.2014.11.001
http://dx.doi.org/10.1002/spe.2547
http://dx.doi.org/10.1145/1721654.1721672

Sustainability 2018, 10, 2079 21 of 21

23. Xia, Z.; Wang, X.; Zhang, L.; Qin, Z.; Sun, X.; Ren, K. A privacy-preserving and copy-deterrence content-based
image retrieval scheme in cloud computing. IEEE Trans. Inform. Forensics Secur. 2016, 11, 2594–2608.
[CrossRef]

24. Fu, Z.; Ren, K.; Shu, J.; Sun, X.; Huang, F. Enabling personalized search over encrypted outsourced data with
efficiency improvement. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 2546–2559. [CrossRef]

25. Xia, Z.; Wang, X.; Sun, X.; Wang, Q. A secure and dynamic multi-keyword ranked search scheme over
encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 340–352. [CrossRef]

26. Khiyaita, A.; El Bakkali, H.; Zbakh, M.; El Kettani, D. Load balancing cloud computing: state of art.
In Proceedings of the 2012 National Days of Network Security and Systems (JNS2), Marrakech, Morocco,
20–21 April 2012.

27. Sambit, K.M.; Bibhudatta, S.; Priti, P.P. Load Balancing in Cloud Computing: A big Picture. J. King Saud
Univ.-Comput. Inform. Sci. 2018, 1–32. [CrossRef]

28. Nikhit, P.; Umesh, K.L.; Nitin, A. A Hybrid ACHBDF Load Balancing Method for Optimum Resource
Utilization In Cloud Computing. Int. J. Sci. Res. Comput. Sci. Eng. Inform. Technol. 2017, 2, 367–373.

29. Bitam, S.; Sherali, Z.; Abdelhamid, M. Fog computing job scheduling optimization based on bees swarm.
Enter. Inform. Syst. 2017, 12, 373–397. [CrossRef]

30. Reka, S.S.; Ramesh, V. Demand side management scheme in smart grid with cloud computing approach
using stochastic dynamic programming. Perspect. Sci. 2016, 8, 169–171. [CrossRef]

31. Moghaddam, M.H.Y.; Alberto, L.-G.; Morteza, M. On the performance of distributed and cloud-based
demand response in smart grid. IEEE Trans. Smart Grid 2017, 1–14. [CrossRef]

32. Chekired, D.A.; Lyes, K. Smart Grid Solution for Charging and Discharging Services Based on Cloud
Computing Scheduling. IEEE Trans. Ind. Inform. 2017, 13, 3312–3321. [CrossRef]

33. Gu, C.; Fan, L.; Wu, W.; Huang, H.; Jia, X. Greening cloud data centers in an economical way by energy
trading with power grid. Future Gener. Comput. Syst. 2018, 78, 89–101. [CrossRef]

34. Wickremasinghe, B.; Rajkumar, B. CloudAnalyst: A CloudSim-based tool for modelling and analysis of large
scale cloud computing environments. MEDC Proj. Rep. 2009, 22, 433–659.

35. Kousalya, K.; Balasubramanie, P. To improve ant algorithm’s grid scheduling using local search. Int. J.
Comput. Cogn. 2009, 7, 47–57.

36. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report-tr06; Erciyes
University: Kayseri, Turkey, 2005; Volume 200.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIFS.2016.2590944
http://dx.doi.org/10.1109/TPDS.2015.2506573
http://dx.doi.org/10.1109/TPDS.2015.2401003
http://dx.doi.org/10.1016/j.jksuci.2018.01.003.
http://dx.doi.org/10.1080/17517575.2017.1304579
http://dx.doi.org/10.1016/j.pisc.2016.04.024
http://dx.doi.org/10.1109/TSG.2017.2688486
http://dx.doi.org/10.1109/TII.2017.2718524
http://dx.doi.org/10.1016/j.future.2016.12.029
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motivation
	Contributions

	Related Works
	SG-Based Architecture
	Cloud- and Fog-Based Architectures
	SG with Cloud-Based Architecture

	System Model
	Problem Formulation
	Processing Time
	Response Time
	Costs

	Proposed Algorithm

	Simulation Results and Discussion
	Response Time
	Processing Time
	Cost

	Conclusions and Future Work
	References

