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Abstract: The market share of electric vehicles is growing and the interest in these vehicles is rapidly
increasing in industrialized countries. In the light of these circumstances, this study provides an
integrated policy-making package, which includes key features for electric vehicle diffusion and
its impact on the Korean power market. This research is based on a quantitative analysis with the
following steps: (1) it analyzes drivers’ preferences for electric or traditional internal combustion
engine (ICE) vehicles with respect to key automobile attributes and these key attributes indicate what
policy makers should focus on; (2) it forecasts the achievable level of market share of electric vehicles
in relation to improvements in their key attributes; and (3) it evaluates the impact of electric vehicle
diffusion on the Korean power market based on an achievable level of market share with different
charging demand profiles. Our results reveal the market share of electric vehicles can increase to
around 40% of the total market share if the key features of electric vehicles reach a similar level to
those of traditional vehicles. In this estimation, an increase in the power market’s system generation
costs will reach around 10% of the cost in the baseline scenario, which differs slightly depending on
charging demand profiles.

Keywords: electric vehicle diffusion; demand forecasting; mixed logit model; power market
simulation

1. Introduction

Electric vehicles are a critical part of a sustainable society development, but the interest in
electric vehicles in Korea until a few years ago was low due to their limited availability. However,
electric vehicles have experienced increasing popularity recently and are now considered an important
substitute for the internal combustion engine (ICE) vehicles [1]. In the wake of the release of Tesla’s
Model 3, the increasing attention paid to electric vehicles is threatening the traditional ICE vehicle
market. The dramatic changes in the car-making industry are often interpreted as realization of
disruptive innovation, since the emergence of electric vehicles is creating a new market and value
chain that could eventually disrupt the existing car market and value network [2]. The electric vehicle
market growth could thus influence related industries or markets in a variety of forms that cannot
easily be prejudged. However, even though this expectation might come true in the future, the real
market share of electric vehicles until now falls short of anticipations.
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Policy makers on environmental issues are grappling with the disappointing market share of
electric vehicles. In this regard, there are research streams dealing with the demand forecasting of
electric vehicles using stated preference data or substitution pattern analysis between electric and
ICE vehicles [3]. However, experts have been arguing that the impact of electric vehicle diffusion
would reach other related markets, as well as the traditional ICE car market [4]. For instance,
the popularization of electric vehicles significantly influences the power market [5,6], as well as
environmental issues [7,8]. In other words, the inter-industry effects of electric vehicle diffusion can
be substantial both quantitatively and qualitatively, and this aspect should not be neglected in policy
making for electric vehicle diffusion. However, despite its practical importance, few attempts have
been made to determine the inter-industry impact of changes in the automobile industry caused by
the emergence of electric vehicles and energy-related industries.

Electric vehicles use electricity to charge a battery as their energy source, whereas ICE vehicles
use petroleum-based fossil fuels. This major difference between electric and traditional vehicles
implies that electric vehicle diffusion is likely to lead to higher energy consumption, which inevitably
impacts electricity demand on the power market. Although it is obvious that the popularization of
electric vehicles affects power generation and the wholesale power market, little is known of the
relationship between changes in the number of drivers who adopt electric vehicles and the power
market equilibrium through increased electricity demand.

To understand the ripple effects of electric vehicle diffusion on the power market and prepare for
unforeseen circumstances, quantitative analyses on the relationship between electric vehicle diffusion
and increased electricity demand due to vehicle charging is vital, particularly for policy makers.
Without clear government schemes and detailed plans to address the dramatic changes in electricity
demand, a sudden increase in the power demand due to the need to charge electric vehicles is likely to
cause confusion and, ultimately, lead to market failure.

This study thus provides an integrated policy making package that includes the key features for
electric vehicle diffusion and its impact on the Korean power market based on quantitative analysis.
The analysis steps are as follows: (1) this study analyzes drivers’ preferences for electric or traditional
ICE vehicles with respect to key automobile attributes, such as maximum driving distance and
charging station accessibility. These key attributes indicate what is to be focused on by policy makers.
(2) The study also forecasts the achievable level of market share of electric vehicles in relation to
improvements in the key attributes of electric vehicles. (3) Finally, the study evaluates the impact of
electric vehicle diffusion on the Korean power market according to multiple scenarios of charging
demand distribution. Methodologically, we adopt a discrete choice experiment using conjoint design
and simulate an optimal power market operation model for the Korean power system with real
generation data, which accurately replicates the practical Korean wholesale power market operation.

This study contributes to the literature in a number of ways. First, we analyze a random-coefficient
logit model using a discrete choice experiment, which allows us to estimate the consumer utility
function at the individual level and observe a realistic substitution pattern. Second, based on the
conjoint analysis and market simulation, an optimal power market operation model successfully
derives the net impact on the power industry of electric vehicle diffusion. We specify and implement a
dozen scenarios according to charging time and season and conduct a simulation for each scenario.
This approach to providing a policy making package for electric vehicle diffusion can be useful for
policy makers in other countries that have conditions similar to Korea.

2. Literature Review

Various empirical studies have been conducted on consumer preferences for alternative fuel
vehicles (AFVs) including electric vehicles. Particularly, discrete choice models using stated preference
data are frequently adopted in previous studies, since AFVs are not sufficiently established in the
automobile market to provide revealed preference data. As a pioneering study on demand forecasting
of AFVs and its economic impact, Brownstone and Train [9] elicited customers’ preferences among



Sustainability 2018, 10, 1941 3 of 18

gas, electric, methanol, and compressed natural gas (CNG) vehicles using various attributes: price,
range, acceleration, top speed, pollution, size, luggage space, operating cost, and charging station
availability. The authors noted the number of miles the vehicles can travel between recharging and
the number of stations that have the capability to recharge the vehicles when capturing electric
vehicle consumer preferences. However, such attributes remain major bottlenecks in electric vehicle
diffusion both technologically and economically. Ewing and Sarigöllü [10] assessed consumer
preferences for clean-fuel vehicles (CFVs) versus conventional ICE vehicles using a discrete choice
experiment and applying a multinomial logit model. The results show that, although consumers
evaluate environmental impacts positively, vehicle performance characteristics are critical to car
selection. The authors also found that regulation was not sufficient to create a market for CFVs, and
identified three market segments to which CFVs should be positioned and targeted. Horne et al. [11]
empirically derived discrete choice models to identify key behavioral vehicle and commuting decision
parameters from a survey of 1150 Canadian respondents. Using discrete choice models, the authors
conducted simulations with carbon taxes, gasoline vehicle disincentives, and single occupancy vehicle
disincentives to show how different policy levers can motivate technological change. The authors
also used empirically-based choice models to portray uncertainty in technological change, costs,
and emissions.

While computationally convenient, multinomial logit models exhibit a well-known and restrictive
property-independence of irrelevant alternatives (IIA) [12]. This property states that the ratio of
the probabilities for any two alternatives is independent of the existence and attributes of any other
alternative. As a result of this property, the models necessarily predict that the introduction of
a new alternative or elimination of an existing one changes the probabilities of other alternatives
proportionately, such that the ratios of probabilities remain constant. This restriction has been noted
as a major limitation of multinomial logit models because the results show unreliable substitution
patterns between alternatives. In recent decades, studies have attempted to overcome the IIA property
limitations and estimate consumer preferences in electric vehicle diffusion studies. For instance,
Kim et al. [13] analyzed five fuel-type vehicles in their study using a mixed logit model to overcome
IIA property restrictions. The estimation results show that preferences regarding fuel and body types
are heterogeneous across consumers, while preferences for cost variables and horsepower are relatively
homogeneous. The results also show that an indirect network effect exists, influencing automobile
demand. The simulation results also indicate that diesel and hybrid vehicles will compete in the future
for market share, with lower costs being the main source of competitiveness. Elasticity results show
that fuel and maintenance costs are the most important factors influencing choice among alternative
fuel vehicles and that the indirect network effect is also important. Ahn et al. [14] analyzed how adding
alternative fuel passenger cars to the existing market will affect demand patterns for passenger cars.
In their study, the authors applied a multiple discrete–continuous extreme value (MDCEV) model
to successfully recover consumer heterogeneity by considering vehicle consumer choice and usage
behaviors. The results showed gasoline-fueled cars would still be the first choice for most consumers,
but alternative fuel passenger cars would offer a substitute to the purchase and use of gasoline-fueled
or diesel-fueled cars. Finally, the results showed that adding alternative fuel cars to the market would
lower gasoline and diesel fuel consumption and the emission of pollutants.

Recently, scholars have begun to show interest in inter-industry impacts triggered by electric
vehicle diffusion, because electric vehicles have emerged as substitutes to ICE vehicles among AFVs.
Shin et al. [15] studied the environmental impact following the introduction of electric vehicles and
government initiatives using survey data on 250 households in South Korea. Their conclusion was
that the market potential for electric vehicles is greater than that for hybrid, diesel, or gasoline vehicles
and the impact of electric vehicle on CO2 emissions is greater than that of hybrid vehicles.

Increasing the charging demand of electric vehicles can however create issues related to a
significant increase in power demand for the entire system and negative impacts on the local
distribution network. Weiller [16] studied how different charging behaviors of plug-in hybrid electric
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vehicles (PHEVs) affect the electricity demand profile in the US. He developed a simulation algorithm
for estimating the charging profiles with plug-in times and initial state-of-charge of batteries, finding
that PHEV charging may increase the power system load by 560–910 W per vehicle, based on the
developed estimation algorithm. Kiviluoma and Meiborn [17] estimated the costs and benefits of
plug-in electric vehicles (PEVs) with consideration of their smart charging for the Finland power system.
Detailed unit commitment and the economic dispatch model were used, based on the assumed power
plants’ portfolios for the future system. Additionally, the authors focused on the elaborate modelling
of PEVs’ charging patterns under various charging strategies, finding that the dumb charging of
PEVs without any smart charging strategy can result in a new peak in net load and increase the
need for reserve margin and generation flexibility. Wang et al. [18] simulated the total operating
cost of the Illinois power system with different PHEV charging strategies, using a unit commitment
model considering PHEV units. This study verified that smart controlled charging strategies by the
central system operator can effectively reduce the total operating cost compared to unconstrained
charging strategies. Foley et al. [19] evaluated the impact of electric vehicle charging on the Ireland
power market with peak and off-peak time charging scenarios, based on a power market simulation
model. The results showed that an off-peak charging strategy is more beneficial than peak charging,
and charging 213,561 electric vehicles will increase the energy supply by 1.45%. Bozic and Pantos [20]
investigated the impact of PEVs on the reliability of power systems, especially for reliability indices
such as loss of load expectation (LOLE) and expected energy not served (EENS). The assessment
was conducted based on an optimization model for charging and discharging decisions of PEVs.
The results showed PEVs can be utilized to system reserve with suitable charging and discharging
strategies, although increased system loading from uncontrolled PEVs may weaken system reliability.
Dharmakeerthi et al. [21] further evaluated the impact of PEVs on voltage stability in a distribution
network based on an original static load model. They discovered that PEV fast-charging stations
may substantially aggravate steady-state voltage stability on some local nodes. Gray and Morsi [22]
assessed the impact of electric vehicles on power quality in the distribution network. Under- and
over-voltage deviations and transformer overloads were quantified using Monte Carlo simulation for
different electric vehicle penetration scenarios. The results revealed the following key findings with
certain simulation configurations: some buses in the secondary distribution network may experience
under-voltage problems with increased penetration of electric vehicles and distribution transformers
can be overloaded by the charging demand of electric vehicles.

3. Methodology

3.1. Model to Forecast the Market Share of Electric Vehicles and Willingness to Pay

3.1.1. Random–Coefficient Logit Model

To derive consumer utility function and estimate the willingness to pay (WTP) with conjoint data,
this study uses a random–coefficient logit model based on a random utility framework among discrete
choice models. Typically, a logit model presumes an unrealistic substitution pattern over alternatives
and posits all consumers have the same preference structure for a certain alternative. To overcome this
limitation, some studies introduced discrete point masses [23,24], which is a well-known latent class
approach. A latent class logit model allows for separate subgroups or classes, each with its own set of
coefficients, but all consumers in the same class are assumed to have the same regression coefficient
vectors, which is also an unrealistic assumption. We use a random-coefficient logit model in this
study because this model is successful in recovering heterogeneity by estimating the individual-level
utility structure.
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The random-coefficient logit model considers a choice model for individual i choosing one from
among the j alternatives in each t choice occasion using a random utility framework [25]. The individual
i’s utility from alternative j in a choice occasion t that can be represented as follows:

Uijt = βT
i xijt + εijt (1)

where xijt is vector of covariates characterizing alternative j, βi a vector of the regression coefficients,
and εijt a random term representing the unobserved portion of random utility assumed to have a type
I iid extreme value distribution [26].

In a random-coefficient logit model, the individual level coefficient vector βi is assumed to
follow a normal distribution, with mean vector b and variance–covariance matrix W. However,
an unbounded normal distribution can be unrealistic for some attributes when all respondents have
similar preferences. For instance, it is implausible to think consumers prefer to pay more to purchase a
car if all other things including engine type, mileage, and available charging stations are equal. Thus,
it is natural to assume that, ceteris paribus, consumers prefer cost-efficient products. When an attribute
has such a characteristic, it is rational to assume another bounded distribution [27,28]. For instance,
the coefficients on desirable and undesirable attributes can be forced to have a log-normal distribution.
The log-normal distribution can be obtained from a transformation of normal βi using C = exp(βi)

and then changing the utility specification as follows:

Uijt = C(βi)
Txijt + εijt (2)

Therefore, in a random-coefficient logit model, the probability of representative consumer
choosing alternative j can be written as:

Pj =
∫ ( exp

(
β′ixij

)
∑j exp

(
β′ixij

)) f (β)dβ (3)

3.1.2. Parameter Estimation Using Bayesian Gibbs Sampling

We estimate the above random-coefficient logit model using the Bayesian tradition based on Gibbs
sampling, following previous studies [27,28]. Based on the model specification of utility function,
assumption of error distribution, and individual level coefficients of attributes, full posterior as a
multiplication of likelihood and prior distribution can be represented as follows:

p(b, W, βi, ∀i|Y) = ∏
i

L(yi|βi)p(βi|b, W)p(b, W) = ∏
i

L(yi|βi)p(βi|b, W)p(b)p(W) (4)

where L(yi|βi) = ∏
i

exp
(

βT
i xiyi t

)
∑j exp(βT

i xijt)
and prior distribution for βi is a multivariate normal distribution:

p(βi|b, W) ∼ MN(b, W) and the prior distributions of b and W are assumed to be p(b) ∼ MN(b0, s0)

and p(W) ∼ IW(v1, s1), where MN is a multivariate normal distribution with mean vector b0 and
variance-covariance matrix s0 and IW is the inverse-Wishart distribution with scale matrix v1 and
degrees of freedom s1.

Since the full posterior p(b, W, βi, ∀i|Y) does not have an analytic solution, Gibbs sampling can
be applied to estimate parameters for βi, b, and W. These parameters are easily obtained through
conjugate distribution, except βi. Using Gibbs sampling, we can easily determine the posterior
distribution of each parameter. The detailed procedure for Bayesian random-coefficient logit estimation
was described by Shim et al. and Jeong and Lee [27,28].

The estimated coefficients for the above model provide information on consumer preferences for
a given attribute based on the random utility structure; that is, coefficients cannot directly provide
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information on marginal WTP (MWTP) or relative importance that has economic meaning. The median
MWTP, by applying compensating variation theory, can be calculated as:

Median MWTPk = Median [− ∂Ui/∂xk
∂Ui/∂xprice

] = Median [−
βi,k

βi,price
] (5)

where xk and xi,price represent attributes other than price and price attribute, respectively.
Similarly, βik and βi,price represent individual specific regression coefficients, excluding price and
individual-specific coefficients other than price, respectively.

Undoubtedly, each attribute has a different impact when choosing an alternative, which is known
as relative importance (RI). The average RI of attribute k can be calculated using the part-worth of each
attribute as per Equation (6):

Average RIk =
1
N

N

∑
k=1

part− worthk

∑k part− worthk
× 100 (6)

where N is the total number of respondents and part− worthk is the interval of attribute k’s level βi.
Consequently, we can conduct a simulation on the market share of electric vehicles with estimated

coefficients βi. As previously mentioned, the choice probability of customer i choosing alternative j is
calculated using Equation (3). As a result, the average choice probability for an alternative across all
customers is considered the market share of electric vehicles.

3.2. Model to Analyze the Impact on the Korean Power Industry

The diffusion of electric vehicles can increase total power system demand. To quantitatively
analyze how the increase in power demand impacts the Korean power industry, the structure of the
Korean power industry and operation mechanism of the power market should be understood. On the
background of this understanding, an optimal power market operation model can be formulated with
real generator data based on the practical rule of the Korean power market.

3.2.1. Structure of the Korean Power Industry

In May 2017, the total generation capacity of the Korean power system was 109,493 MW,
which consisted of 23,116 MW nuclear generation, 32,708 MW coal generation, 4150 MW oil generation,
35,172 MW liquefied natural gas generation, 4700 MW hydro-pump, and the remaining 9648 MW
includes renewable generation. The peak demand of 2016, excluding the demand of Jeju Island,
was recorded as 79,940 MW in August [29].

After generation competition in the Korean power industry was introduced in early 2000,
the structure of the Korean power industry has been shaped as shown in Figure 1. There are
now six major public generation companies with base-load generations and several independent
power producers mostly with on-peak generations on the generation side. The Korea Electric Power
Corporation (KEPCO) is a vertically integrated monopolistic public company that owns transmission,
distribution, and the retail side. Additionally, the Korea Power Exchange (KPX) is an independent
system operator in charge of the power market and system operations. The generation companies
participate in the wholesale power market of KPX as sellers of electricity. KEPCO, district electric
power companies, and other large industrial customers purchase electricity through the power market.
Because the retail department of KEPCO purchases an estimated 97% of exchange volume in KPX’s
power market, we can state KEPCO holds a monopolistic position on the demand side of the market.
KEPCO’s retail rate of electricity is determined under Korean government regulations, considering
economic growth, consumer protection, and other political factors. Therefore, it is rational to assume
the changes in the cost of generation are not instantly reflected in retail rates.
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3.2.2. Korean Power Market Operation Mechanism

There is only a day-ahead market, operated by KPX, and the real-time system operation is
conducted at the discretion of KPX instead of market mechanisms. The day-ahead market is operated
according to a process based on cost-based pool (CBP) mechanisms as follows.

Under the CBP mechanism, generation companies only bid their available capacities by submitting
verified generation cost functions, instead of bidding prices in Step 1 in Figure 2. By creating a
virtual generation schedule in Step 2, KPX finds an optimal generation schedule for minimizing
system generation cost according to the economic dispatch principle based on the submitted available
capacities of generators and day-ahead forecasted demand. As a result of Step 2, the stacks of generators
starting from the one with the lowest to the one with the highest marginal costs are determined for each
hour. The generator located on the top of the stack for each hour is called the marginal generator and
its marginal cost is equal to the system marginal price in Step 3 for each hour. Additionally, the optimal
virtual system generation cost is also determined in Step 2. In Step 4, the virtual generation schedule
is adjusted considering the reserve requirement and potential system congestion. Some generators,
ordered to secure a generating margin to provide reserves, decrease their scheduled generation volume
during this step. Because the shortage of scheduled generation volume occurs from this adjustment
process, KPX optimally secures more generators with higher marginal cost than the system marginal
price to meet the forecasted demand on the stack for each hour. The final operation schedule after this
adjustment is used for real system operation. Therefore, to estimate the exact system generation cost,
the cost in Step 4 should be calculated rather than the cost in Step 2, in principle.

To conduct a simulation for the optimal operation of the Korean power market, the use of the unit
commitment technique is required, which can be modeled using the mixed integer linear programming
problem as in the study of Frangioni et al. [30].
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3.2.3. Impact Measurement of Electric Vehicle Diffusion on the Korean Power Market

Electric vehicle diffusion can affect some layers in the value chain of the power industry by
increasing power demand. An increase in power demand can increase the total net revenue on the
generation side and the yearly increment, ∆RGEN , can be calculated as follows:

∆RGEN = ∑365
d=1 ∑24

h=1[SMP′(d, h) · (DSYS(d, h) + DEV(d, h)− C′SYS(d, h)]

−
365
∑

d=1

24
∑

h=1
[SMP(d, h) · DSYS(d, h)− CSYS(d, h)]

(7)

where SMP′(d, h) and SMP(d, h) are system marginal prices calculated based on the market and
system operation process on the Korean power market with/without electric vehicles at the h-th hour
of the d-th day, respectively; C′SYS(d, h) and CSYS(d, h) are system generation costs with/without
electric vehicles at the h-th hour of the d-th day, respectively; DSYS(d, h) is the total power demand in
the power system without any electric vehicles at the h-th hour of the d-th day; and DEV(d, h) is total
charging demand of electric vehicles at the h-th hour of the d-th day. KEPCO, as a monopoly retail
company, purchases power from generation companies on the wholesale market and sells power to
customers at retail rates. The power purchase cost of KEPCO on the power market can be increased
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by electric vehicle diffusion. This increment in KEPCO’s yearly power purchase cost, ∆CPP, can be
modelled as follows:

∆CPP =
365

∑
d=1

24

∑
h=1

[SMP′(d, h) · (DSYS(d, h) + DEV(d, h))− SMP(d, h) · DSYS(d, h)] (8)

The yearly industry-wise incremental cost, ∆CIND, caused by electric vehicle diffusion can be
obtained from the net summation of changes in the net revenue of the generation side and power
purchase cost of KEPCO as follows:

∆CIND = ∆CPP − ∆RGEN

= ∑365
d=1 ∑24

h=1[SMP′(d, h) · (DSYS(d, h) + DEV(d, h))− SMP(d, h) · DSYS(d, h)]

−∑365
d=1 ∑24

h=1[SMP′(d, h) · (DSYS(d, h) + DEV(d, h)− C′SYS(d, h)]

+∑365
d=1 ∑24

h=1[SMP(d, h) · DSYS(d, h)− CSYS(d, h)]

=
365
∑

d=1

24
∑

h=1
[C′SYS(d, h)− CSYS(d, h)] = ∆CSYS

(9)

According to Equation (8), the yearly industry-wise incremental cost by the diffusion of electric
vehicles equals the increment in the system operation cost. Therefore, the impact of electric vehicle
diffusion can be measured by calculating the changes in the system generation cost, ∆CSYS. However,
although ∆CSYS should be calculated exactly by obtaining the system generation cost in Step 4 in
Figure 2, the virtual system generation cost can be used for simplicity, to estimate the change under the
assumption that electric vehicle diffusion does not affect reserve requirements and system congestion.

4. Empirical Analysis

The empirical analysis is composed of two steps. The first step estimates the random-coefficient
logit model using conjoint survey data to understand the consumer preference structure and predict the
achievable level of vehicle market shares, including the market share for electric vehicles. The second
step estimates the net impact of electric vehicle diffusion on the Korean power market by calculating
the change in system generation cost of the Korean power market according to the electric vehicle
diffusion scenarios.

4.1. Consumer Preference Analysis and Automobile Market Simulation

The conjoint data were collected during February 2017 by a specialized research company from
724 households that owned at least one vehicle and the respondent had a driving license. The sample
was selected using purposive quota sampling for each region, age, and income level. Table 1 represents
the socio-demographics characteristics of respondents.

Table 1. Demographic characteristics of the survey respondents.

Frequency Ratio

Sex
Male 364 50.27

Female 360 49.73

Age
20–29 85 11.74
30–39 167 23.07
40–49 192 26.52
50–59 193 26.66

60– 87 12.01

Sum 724 100%
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Based on the McFadden’s random utility theory [25], the individual consumer utility function can
be described as follows:

Ui = βi,1xDIESEL + βi,2xHYBRID + βi,3xEV + βi,4xACCESS + βi,5xDISTANCE + βi,6xFUEL + βi,7xPRICE (10)

where xDIESEL, xHYBRID and xEV are dummy variables representing fuel types for diesel, hybrid,
and electric vehicles, respectively. The coefficients of these fuel type dummy variables represent the
relative preference over a gasoline vehicle. For instance, if the estimated value of β1 is positive and
significant, it shows consumers prefer diesel over gasoline vehicles. xACCESS, xDISTANCE, xFUEL and
xPRICE represent accessibility of charging stations, maximum driving distance per refueling, fuel cost,
and price of vehicle, respectively. Table 2 shows more specific information on each attribute and level.

Table 2. Attribute and level of conjoint card.

Attribute Level Description

Fuel type Gasoline The vehicle uses gasoline as fuel
Diesel The vehicle uses diesel as fuel

Hybrid
The vehicle uses both gasoline and electric battery, or diesel
and electric battery as fuel

EV
The vehicle uses electric battery as fuel
(EV only needs battery charging in a station)

Accessibility (%) 10, 50, 80, 100 The ratio of charging stations to gas stations at present
Max driving distance (km) 100, 250, 400 Maximum driving distance of vehicle per one time refueling

Fuel cost (KRW/km) 50, 100, 150 The cost required to drive 1 km
Price of vehicle (million KRW) 25, 24, 45, 55 The initial price of vehicle

Note: “KRW” refers to the South Korean Won. According to the Bank of Korea (http://www.bok.or.kr), USD 1
equaled 1119.50 KRW as of May 2017.

Section 3.1 shows that the coefficients of some variables are forced to follow log-normal or negative
log-normal distributions when it is natural to assume that all consumers prefer or do not prefer to
increase the level of a certain attribute. For instance, all consumers would appreciate an increase in the
accessibility of charging stations and in maximum driving distances, but dislike an increase in fuel cost
or vehicle price. For parameter estimation, we conducted Gibbs sampling and drew 20,000 samples.
We discarded the first 10,000 samples as a burn-in period and used the subsequent 10,000 samples for
parameter inference. Table 3 represents the estimation results of consumer preference for key attributes.

Table 3. Estimation results of consumer preference.

Variable Mean
[5%, 95%] S.D. Distribution C(fi) Average Relative

Importance MWTP (Million KRW)

Diesel
−0.402

[−0.607, −0.211] 0.122 Normal −0.40206 10.97 −5.785

Hybrid
0.635

[0.396, 0.882] 0.146 Normal 0.63507 11.69 7.33

EV
0.515

[0.3012, 0.722] 0.128 Normal 0.51461 13.02 4.698

Accessibility
−4.294

[−4.474, −4.134] 0.104 log-normal 0.01364 21.00 0.4

Distance
−6.542

[−6.841, −6.292] 0.169 log-normal 0.00144 10.32 0.05

Fuel_cost
−5.043

[−5.279, −4.855] 0.127 Negative log-normal −0.00645 11.41 −0.187

Price
−3.337

[−3.516, −3.173] 0.105 Negative log-normal −0.03556 21.59

In terms of beta means, all parameters are statistically significant. The results related to fuel
types show consumers prefer gasoline to diesel vehicles and hybrid and electric to gasoline vehicles.
These results are similar to the findings of Hong et al. [31], except for our finding that electric vehicles

http://www.bok.or.kr
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are preferable to gasoline vehicles. The explanation of Hong et al. [31] was that most consumers
had no experience with electric vehicles in 2009. However, our results imply consumers perceive a
clear distinction between an electric and a gasoline vehicle, and prefer electric vehicles. The means
of coefficients on accessibility to charging stations and maximum driving distance are positive,
as expected, while fuel cost and vehicle price carry a negative value.

For relative importance, we found consumers consider the price of vehicles and accessibility
to charging stations to be the most important factors. Given that accessibility to electric vehicle
charging stations in Korea is still insufficient compared to the number of gas stations, this result
suggests building the infrastructure for electric vehicle charging stations could become a key factor in
promoting the purchase of electric vehicles. In addition to car price and accessibility, the consumers
in this study considered fuel cost and maximum driving distance to be almost equally important.
For fuel type, the relative importance of electric, hybrid, and diesel vehicles is 13.02%, 11.69%,
and 10.97%, respectively. Therefore, this study suggests the price and number of electric vehicle
charging stations are the most important factors in securing the electric vehicle market share on the
future automobile market.

For MWTP, the results reveal consumers are willing to pay 4.698 million KRW more to purchase
electric instead of gasoline vehicles. In addition, when accessibility to charging stations increases by
1% compared to current accessibility to gasoline stations, the consumer MWTP was 400,000 KRW
on average. Moreover, consumers are willing to pay 50,000 KRW on average for a 1 km increase in
maximum driving distance. Estimated consumer MWTP can be used as basic reference to establish
reasonable pricing policies, depending on technological improvements.

As a second step, we conducted market simulations based on the preceding estimation results for
forecasting the future demand for electric vehicles. Table 4 shows a specification of vehicles close to
reality and their choice probability. Regarding the high choice probability of a hybrid vehicle, the issue
is whether the figure is different from the current market status. We note that hybrid vehicles were
introduced on the Korean market and, moreover, ICE vehicles remain more of a focus than hybrid
vehicles for major Korean automobile manufacturers, such as Hyundai Motors or KIA Motors. Thus,
there can be a difference between the choice probability of hybrid vehicles and real market shares
at present. (The real market share of hybrid vehicles was only 2.1%, 3.4%, and 4.6% in 2015, 2016,
and 2017, respectively, but the growth rate has been recently increasing.) Under identical conditions
related to brand variety, promotion, company’s market power, and others, the choice probabilities are
as shown in Table 4.

Table 4. Choice probability based on baseline scenario at present.

Baseline Scenario Gasoline Diesel Hybrid EV

Accessibility (%) 100 100 100 10
Max driving distance (km) 400 400 400 100

Fuel cost (KRW/km) 135 73 65 50
Price of car (million KRW) 25 35 45 55

Choice Probability (%) 29.89 20.91 43.52 5.66

Additionally, we observe the change in the market share of electric vehicles according to the
improvement of key attributes associated with these vehicles. The assumptions for improvement
come from the experimental setups in similar studies [15,31]. Figure 3 shows how the market share
of electric vehicles changes depending on accessibility of charging stations, and maximum driving
distance, fuel cost, and price of electric vehicles.
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Next, we conduct a market simulation for the situation when more than two key attributes are
improved jointly, which is a more realistic assumption for the near future. Table 5 shows the expected
market share for each scenario.

Table 5. Estimated market share of electric vehicles with respect to improvement of key attributes.

Baseline Scenario Gasoline Diesel Hybrid EV S.2 Gasoline Diesel Hybrid EV

Accessibility 100 100 100 20 100 100 100 50
Max Driving Distance 400 400 400 200 400 400 400 300

Fuel cost 135 73 65 50 135 73 65 50
Price of car 25 35 45 55 25 35 45 45

Choice Probability 29.36 20.53 42.75 7.36 26.47 18.51 38.54 16.47

S.3 Gasoline Diesel Hybrid EV S.4 Gasoline Diesel Hybrid EV

Accessibility 100 100 100 80 100 100 100 100
Max Driving Distance 400 400 400 400 400 400 400 400

Fuel cost 135 73 65 50 135 73 65 50
Price of car 25 35 45 45 25 35 45 35

Choice Probability 23.6 16.5 34.36 25.54 19.29 13.49 28.08 39.14

In scenario 4 (denoted S.4), the infrastructure and technological level of electric vehicles are
improved to the same level as for ICE vehicles, that is, the accessibility of charging stations reaches
the current status of gasoline stations, maximum driving distance also becomes similar to that of ICE
vehicles, and price of vehicles drops to the level of ICE vehicles. Then, our simulation shows the
market share for electric vehicles on the Korean automobile market would be 39.14%.

4.2. Simulation for an Impact Assessment of Electric Vehicle Diffusion on the Korean Power Market

The simulation for impact assessment of electric vehicle diffusion on the Korean power industry
was conducted according to the following process:

(1) Develop an optimal market operation model with commercial optimization software, general
algebraic modeling system (GAMS) [32], under the practical rule of the Korean power market
operation with real data for 241 generators composing the Korean power system.
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(2) Estimate four representative daily electricity demand patterns for four seasons in 2016.
These representative power demand patterns are used to reduce simulation time compared
to the case where the simulation is conducted for 365-day demand patterns. The results of the
system generation cost for each representative daily demand pattern can be multiplied by the
number of days in the corresponding season and summed to calculate the total cost for one year.
The season classification criteria of KEPCO in Table 6 is used to sort the 365 days.

Table 6. The season classification criteria of KEPCO.

Season Date

Spring 1 March–31 May
Summer 1 June–31 August
Autumn 1 September–31 October
Winter 1 November–29 February of next year

A multivariate adaptive regression splines (MARS) technique was used to estimate representative
the daily power demand patterns for 24 h. MARS is a non-parametric regression technique that can
automatically model data nonlinearities [33–35]. The representative daily power demand patterns for
the four seasons were obtained through the MARS technique that can be represented as the following
functions for each hour:

DSPRING
SYS (h) = 49521.2 + 2219.1 ·MAX(0, h− 6)− 4779 ·MAX(0, h− 11)+

3754.4 ·MAX(0, h− 13)− 1180.1 ·MAX(0, h− 15)− 602.3 ·MAX(0, h− 20),
(11)

DSUMMER
SYS (h) = 28950.8 + 4753.5 ·MAX(0, h− 5)− 2804.3 ·MAX(0, h− 11)+

1533.4 ·MAX(0, 16− h)− 2734.6 ·MAX(0, h− 16)− 1604.6 ·MAX(0, h− 21),
(12)

DAUTUMN
SYS (h) = 30508.4 + 4410.4 ·MAX(0, h− 5)− 2480.3 ·MAX(0, h− 10)+

1365.9 ·MAX(0, 16− h)− 2305.5 ·MAX(0, h− 16)− 1487.3 ·MAX(0, h− 20),
(13)

DWINTER
SYS (h) = 52717.5 + 3063.5 ·MAX(0, h− 6) + 386.8 ·MAX(0, 11− h)−

5974.5 ·MAX(0, h− 11) + 3615.1 ·MAX(0, h− 13)− 1759.4 ·MAX(0, h− 18)−
1561.3 ·MAX(0, h− 22),

(14)

where DSPRING
SYS (h), DSUMMER

SYS (h), DAUTUMN
SYS (h) and DWINTER

SYS (h) are the functions for representative
daily electricity demand patterns at the h-th hour, respectively.

(3) Assume electric vehicle basic data. The number of registered passenger vehicles in Korea in
2016 was 17,338,000 according to Statistics Korea [36]. The average electric power consumption
of an electric vehicle per kilometer is assumed to be 0.183 kWh/km [37]. The average driving
distance in Korea has been estimated to be 39.7 km according to the Korea Transportation Safety
Authority [38].

(4) Assume several cases for the charging demand distribution of the electric vehicle over 24 h.
The total daily charging demand for electric vehicles changes depends on the penetration ratio
of electric vehicles multiplied by the total number of passenger vehicles in Korea. Additionally,
the impact of this total daily charging demand can also be changed depending on how the
charging demand would be distributed over 24 h. We assumed two different cases for the
charging demand profile in Figure 4 by benchmarking the empirically obtained profiles of
Weiller [16].
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Figure 4. Charging demand profile of three cases [Unit: %]. Note: Case A, and Case B means
“Charging at home, work, and commercial places” and “Home charging only,” respectively. Total
charging demands are set to be equal in two cases.

Table 7 shows the simulation results for the market operation model of the Korean power
market. The system generation cost of the baseline case without consideration of electric vehicles is
36,395,537,380 KRW. As expected, given the same profile of charging demand, system generation costs
increase as the penetration ratio of electric vehicles increases. In particular, the 39.14% penetration
of electric vehicles can increase system generation costs by more than 10% compared to that of the
baseline scenario on the Korean power market in both charging profile cases. However, a shortage of
supply was not observed for this simulation.

Table 7. Simulation results for each charging profile scenario: system generation cost analysis in 2016
[Unit: KRW].

Case A
(Charging at Home, Work, and Commercial Places)

Case B
(Home Charging Only)

Baseline 36,395,537,380

EV 7.36% 37,105,540,177 (+1.95%) 37,082,867,881 (+1.89%)
EV 16.47% 38,007,364,082 (+4.43%) 37,947,378,525 (+4.26%)
EV 25.54% 38,938,146,577 (+6.99%) 38,849,006,724 (+6.74%)
EV 39.14% 40,356,238,651 (+10.88%) 40,233,529,589 (+10.55%)

Note: “KRW” refers to the South Korean Won. According to the Bank of Korea (http://www.bok.or.kr), USD 1
equaled 1119.50 KRW as of May 2017.

From the comparison of the two cases designed to investigate the impact of charging demand
distribution, the costs of Case B are somewhat larger than those of Case A in all electric vehicle
penetration scenarios. Further, there is no dramatic difference between the results of the two cases
because the difference in hourly increased charging demand is still insignificant compared to the
system demand. This study assumes the electric vehicle charging demand is not concentrated over a
certain time interval but is well-distributed over several time intervals, as depicted in Figure 4.

5. Conclusions and Policy Implications

This study explored the net impact of electric vehicle diffusion on the Korean power industry
by specifying achievable market shares for electric vehicles based on customers’ preferences. To do
this, we first estimated the consumer utility function by applying a random-coefficient logit model

http://www.bok.or.kr
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using conjoint data and then simulated the power market operation with real generation data, which
accurately replicates the Korean wholesale power market.

According to the results of consumer preference analysis and demand forecasting, Korean
customers were found to prefer electric vehicles over diesel or gasoline cars. However, limited
access to charging stations, limited maximum driving distance, and a high vehicle price negatively
influence the consumer choice of electric vehicles on the automobile market. However, scenario-based
demand forecasting showed the market share of electric vehicles can reach approximately 40% of the
total passenger car market in the event that the key attributes of electric vehicles become similar to
those of ICE vehicles. This finding implies that an increase in the demand for electricity to charge
electric vehicles cannot be neglected in the near future and would impact Korea’s power industry.

In the view of the government or regulatory agencies, the national impact of electric vehicle
diffusion should be quantitatively estimated in advance. To analyze this impact, we quantitatively
calculated the net impact of electric vehicle diffusion on the power market by estimating changes
in system generation costs for the Korean power market using an optimal power market operation
model, which KPX applies daily. From the simulation, we learned there would be an increase in system
generation costs when a certain penetration ratio of electric vehicles is realized. Our results further
revealed that the system generation cost increases up to 10.88% compared to the cost of the baseline
scenario when the market share of electric vehicles becomes 39.14% of the total automobile market
share, whereas the system generation cost will increase 1.95% in the current status, where the expected
market share of electric vehicles is 7.36%.

Our empirical results have two policy implications. First, regarding the impacts on the electric
vehicle and power industries, the diffusion of electric vehicles will not have a substantial effect on
the power industry in the short term until the total market share of electric vehicles reaches a certain
tipping point, but may have significant impact after that. Given that the speed of technological
innovation related to electric vehicles is rapid, the tipping point for the demand of electric vehicles can
be hastened to surpass that of ICE vehicles. However, the impact of electric vehicle diffusion is not
that simple when we additionally consider the synergism with the expansion of renewable generation.
In particular, there is a unified view towards a solar boom throughout the world [39]. The new Korean
government has also announced they will do their best to increase the share of renewable energy in
the annual power generation volume. Therefore, as mentioned by Albanese [40], it is obvious that
the interaction between increasing electric vehicle demand and renewable energy expansion should
not be neglected. Specifically, on markets with cost-based pool mechanisms like the Korean market,
renewable energy sources with zero marginal cost may push conventional generators out of dispatch,
which can decrease the system marginal price and system generation cost but increase the balancing
cost for managing their intermittency simultaneously. If all these factors are tangled up with one other,
it is difficult to simply forecast the consequences. As such, this issue will be covered in further research.

Second, the difference in system generation cost depending on the charging profiles of electric
vehicles is not significant in our simulation results. However, if the charging demands are concentrated
at certain peak times, it can threaten the reliability of the supply power system and cause shortage
problems through ramping capabilities to cover up the sudden increased demand. If the charging
demand throngs into certain nodes in the power system, there can be overload problems on
transformers and other equipment. Additionally, exacerbating peak demand due to increased charging
may also increase demand for peak-generation fuels such as oil and gas and can lead to increasing
their import prices dramatically. Based on the views of Tverberg [41] and Kallis [42], it is expected
their prices have the potential to be boosted in the long-term because of scarcity. This problem may be
critical especially in Korea, which has very limited importing routes for these fuels. We should note
the situation is not simple to predict on consideration of the rapidly changing international situation
for Korea [43–45].

This study contributes to the literature on policy and strategy on electric vehicle diffusion by
quantitatively estimating the market share of electric vehicles and its impact on the power industry.
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The study provides policymakers with directions for incentives and penalties for electric vehicle
promotion and battery charging, respectively. However, further research should be conducted,
because there are still some issues not covered in this study. For instance, other costs caused by
the diffusion of electric vehicles must be identified. For instance, upgrading electricity transmission
and the distribution network for hosting a significant number of electric vehicles is another important
inter-industry impact of the diffusion of electric vehicles on the power industry. In addition, the issue
of how to share and distribute the incremental cost from the diffusion of electric vehicles to the
power industry should be discussed among stakeholders such as transmission companies, distribution
companies, retail service companies, electric vehicle owners, and authorities.
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