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Abstract: The early growth stage is critical in the response of trees to climate change and variability.
It is not clear, however, what climate metrics are best to define the early-growth sensitivity in assessing
adaptation strategies of young forests to climate change. Using a combination of field experiments and
modelling, we assessed the climate sensitivity of two promising afforestation species, Jatropha curcas
L. and Moringa oleifera Lam., by analyzing their predicted climate–growth relationships in the initial
two years after planting on degraded cropland in the semi-arid zone of Benin. The process-based
WaNuLCAS model (version 4.3, World Agroforestry Centre, Bogor, Indonesia) was used to simulate
aboveground biomass growth for each year in the climate record (1981–2016), either as the first
or as the second year of tree growth. Linear mixed models related the annual biomass growth to
climate indicators, and climate sensitivity indices quantified climate–growth relationships. In the
first year, the length of dry spells had the strongest effect on tree growth. In the following year,
the annual water deficit and length of dry season became the strongest predictors. Simulated rooting
depths greater than those observed in the experiments enhanced biomass growth under extreme
dry conditions and reduced sapling sensitivity to drought. Projected increases in aridity implied
significant growth reduction, but a multi-species approach to afforestation using species that are able
to develop deep-penetrating roots should increase the resilience of young forests to climate change.
The results illustrate that process-based modelling, combined with field experiments, can be effective
in assessing the climate–growth relationships of tree species.

Keywords: climate sensitivity indices; Jatropha curcas; land degradation; Moringa oleifera; sapling
growth; WaNuLCAS; West Africa

1. Introduction

There is an increasing recognition of the roles of forests and trees in mitigation and adaptation
strategies to global climate change [1,2]. Tree planting can modify local climate through impacts on
temperature, wind speed, and humidity; it can also influence the landscape–scale water balance,
cloud cover and albedo, and contribute to global carbon sequestration [3–5]. In (sub-) tropical
developing countries, re– and afforestation have been included in the portfolio of mitigation efforts
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as a cost-efficient strategy to reverse the degradation of forests and to increase their atmospheric
carbon uptake [1,2,6,7]. Although trees are central to many climate change adaptation and mitigation
strategies, they are vulnerable (particularly in their early growth), to variation in solar radiation,
rainfall, and temperature as determinants of potential evapotranspiration (ET0). Changes in these
climatic variables, particularly temperature increases and precipitation shortages leading to higher
frequencies of extreme weather events (i.e., severe drought and intense rainfall), are expected to affect
tree growth and challenge the sustainable management of forests and tree plantations [8–10].

Tree growth sensitivity to drought may be substantial in West African semi-arid zones, where
water availability is one of the most limiting factors of plant growth, e.g., [11], and where extreme
drought events are projected to become more frequent [12–14]. In this region, extreme drought events
are associated with extended dry spells, low air humidity, high atmospheric evaporative demand, and
high air temperatures [15], potentially increasing water stress in trees [13]. Droughts and dry spells are
a major threat to the establishment and early growth of both tropical and temperate tree species [16–18],
suggesting the need to assess the effects of climate variability on their growth. However, studies
quantifying the relationships between these climatic factors and tree growth are lacking for tree
plantations in the semi-arid tropics. This information is urgently needed to explore species’ responses
to past and current climate and evaluate the effects of climate change on tree growth [19].

If drought occurrences are exacerbated by global warming, it stands to reason that the
sustainability of forests and plantations will largely depend on the physiological adaptations
and changes in silvicultural management [18,20]. For example, Abdulai et al. [14] revealed
drought vulnerability in a cocoa-based system in the forest–savanna transition zones of West Africa,
despite the availability of subsoil water below a depth of 75 cm. This observation suggests that
drought vulnerability may be related to trees’ ability to develop sufficiently deep root systems [21].
Hartl-Meier et al. [22] found that among three tree species growing under similar temperate climate
conditions, those with deep root systems benefited from the access to deep soil water, as reflected
in their higher photosynthetic activity and continued biomass production during severe drought
conditions. Therefore, the consideration of root systems in the analysis of climate–growth relationships
may give new insights on species’ responses to extreme climate events. Another plant strategy to avoid
mortality under drought conditions is to shed leaves and reduce transpiration losses; such drought
avoidance is likely to reduce the rate of photosynthesis and thus mean growth rates, but also reduce
vulnerability [23].

Assessing the sensitivity and/or response of (early) tree growth to climate change requires
the identification of the climate variables that most strongly influence tree growth or have the best
predictive power in evaluating the early growth risks, e.g., Teets et al. [24]. However, experiments
carried out in any given year to quantify climate–growth relationships of young trees may exhibit a
sample of bad luck, lucky exceptions or be representative of ‘normal’ conditions at the test location,
because experiments capture one (or a few) of the many possible weather (e.g., rainfall and temperature)
sequences for this location. Early growth sensitivity of trees to predicted climate change cannot thus
be directly derived from existing weather statistics because it is uncertain how tree transpiration,
soil evaporation and temporal rainfall patterns interact, e.g., Raz-Yaseef et al. [25]. In this regard,
we argue that well-calibrated tree–soil interaction models, simulating sapling growth responses for at
least 30 years of weather data can help in (a) identifying the best predictors among a wide set of metrics
that can be objectively derived from existing weather records; (b) evaluating where the years with
experimental data are positioned within current climate variability according to the metrics with the
highest predictive power identified in (a); and (c) using the results of (a) and (b) to assess the probability
of success for given species at a given location under various location-specific climate change scenarios.
Our study may be the first to test explicitly this generic approach to assess climate change risks for
newly established dryland afforestation sites. The datasets stem from a site in a semi-arid zone of
West Africa, where tree-based land restoration is high on the agenda and existing information is not
sufficient to assess the robustness of afforestation option for a range of tree species [18,20,26].
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Dendrochronology has been successfully used to analyze temporal and spatial climate–growth
relationships for tree and shrub species in tropical and temperate forests [9,23,27,28]. However,
dendrochronological applications may be inappropriate for young trees and compromised by
problematic anatomical features such as missing, vague, discontinuous and false rings common
in tropical species [29,30], thereby also restricting the use of biomass increments derived from tree-ring
series [31,32]. An alternative approach to assessing the climate–growth relationships of saplings
may be the use of process-based models in combination with field experiments. When supported by
reliable soil–plant–climate databases and empirically derived relationships between environmental
and plant eco-physiological parameters [33,34], process-based models can be used to investigate forest
responses to climatic change and silvicultural management [35,36], as well as predict tree growth and
productivity at both the plant and stand level. There have been few models capable of accurately
simulating processes in tree-based agroecosystems.

The process-based Water, Nutrient and Light Capture in Agroforestry Systems (WaNuLCAS)
model [35] has had various applications to improve the understanding of complex ecological processes
in tree-based farming systems [35,37,38]. It has also been tested for its performance to simulate
crop (e.g., Pennisetum glaucum L. and Sorghum bicolor L.) and tree (e.g., Parkia biglobosa Jacq. and
Vitellaria paradoxa C.F. Gaertn) growth in agroforestry parklands in West Africa [39–41]. The aim of
our research was to assess the climate sensitivity of two afforestation species—Jatropha curcas L. and
Moringa oleifera Lam.—in the early stages of their development (i.e., the first two years of growth),
decisive for the future growth [42] and also when plants are most sensitive to changes in water
availability [43–45]. The two species have been subjects of silvicultural trials on degraded cropland in
northern Benin [18,20,26]. The specific objectives were to (i) compare different indicators calculated
from climate records to identify those with the greatest predictive power for the first two years of
tree growth; (ii) quantify the climate–growth relationships of tree growth over the first two years,
and (iii) test possible adaptation strategies to reduce the sensitivity of saplings to extreme climate
events. Furthermore, we assessed the relevance of the empirical climate data vis-à-vis the long-term
climatic variability in the study area based on the most influential climate indicators. We hypothesized
that (i) there will be significant differences between the species’ growth responses to climate indicators,
particularly to drought-related indicators; (ii) drought sensitivity of sapling growth decreases over
time, depending on the establishment of roots; and (iii) deepening of the rooting system may aid the
adaptation of saplings to extreme drought conditions.

2. Materials and Methods

2.1. Study Area

Data for parametrization, validation, and simulations stemmed from a field experiment conducted
during 2014-2015 at Pouri village (10◦54′8.4” N, 1◦4′47.4” E), Atacora region, northern Benin [18,20].
The region has been significantly affected by land degradation driven by deforestation and soil
nutrient mining, which threatens the sustainability of forest and farming systems [18,46,47]. To combat
land degradation, national and local projects to intensify forest cover, reclaim degraded lands
and mitigate the effects of climate change (e.g., the project “10 Million Trees, 10 Million Souls”;
http://news.acotonou.com/h/61311.html) through the planation of commercially important food
(e.g., M. oleifera) and biofuel (e.g., J. curcas) tree crops have been carried out in the region [26,48].

The climate is semi-arid, characterized by two contrasting seasons, with one rainy season from
April to October and a dry season for the rest of the year (Figure 1). The annual rainfall totaled
757 mm in 2014 and 833 mm in 2015, albeit both below the long-term (1981–2016) average of 1034 mm.
The mean annual air temperature was 29 ◦C in 2014 and 28 ◦C in 2015. The area received an average
solar radiation of 0.2 kW m−1 (≈914 µmol m−2 s−1 of photosynthetically active radiation) in 2014 and
2015. Historical patterns of change in precipitation, evapotranspiration, and air temperature showed a
high inter-annual rainfall variability (676 < annual rainfall < 1509 mm; CV = 20%), along with extreme

http://news.acotonou.com/h/61311.html


Sustainability 2018, 10, 1931 4 of 23

dry (1985) and wet (1998) years, while inter-annual variations in evapotranspiration (CV = 4%) and
temperature (2%) were smaller compared to that of annual precipitation (Appendix A, Figure A1).

The soil at the experiment site is an epileptic Plinthosol [49], compacted and limited at a depth of
50 cm by a lateritic hardpan. More details on the study site have been reported previously [18].
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of water per sapling per day to satisfy 30% of the evaporative demand [18]. The saplings each received 
72.5 mm of irrigation water and an additional 33 mm of rainfall during the dry season. Manure was 
applied in both rainy seasons, i.e., at 2.5 and 11 months after planting (MaP), at the amount of 1 kg 
per sapling (ca. 7.7 kg m−2). The manure consisted of composted cow and pig dung, and contained an 
average of 18.7% carbon (C), 1.2% nitrogen (N), and 0.8% phosphorus (P). No pesticide or fungicide 
was applied. Weed growth was controlled by frequent manual weeding. 

Seeds of two multipurpose tree species, Jatropha curcas L. (physic nut, Euphorbiaceae) and 
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monitored over 15 months [18,20,26]. These local species were selected based on the fast growth rate 
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importance and increasing recent efforts to expand their plantation acreage in West Africa [18,26]. 
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Figure 1. Climate diagram (according to Walter and Lieth [50]) based on 1981–2016 data of Natitingou
(10◦19′ N and 1◦23′ E; altitude 460 m a.s.l), Tanguieta (10◦37′ N and 1◦16′ E; altitude 225 m a.s.l) and
Pouri (10◦54′ N and 1◦6′ E; altitude 175 m.a.s.l) meteorological stations in the Atacora region, northern
Benin. Top of the graph shows the long-term mean annual temperature and rainfall. The value at the
top-left of the temperature axis is the mean of the average daily maximum temperature of the hottest
month; the value at the bottom of the same axis is the mean of the average daily minimum temperature
of the coldest month. Area shaded in blue indicates the moist period and area shaded in red shows the
arid period. Area filled in blue indicates the period of excess water.

2.2. Experimental Design and Woody Species

The experiment compared the growth performance of saplings subjected to four management
options, along an increasing gradient of resource availability: control (C; with neither irrigation nor
fertilization), supplemental irrigation (I), fertilization (manure, F), and irrigation plus fertilization (IF).
Irrigation was applied during the dry season only (November 2014–May 2015) at a rate of 0.5 L of
water per sapling per day to satisfy 30% of the evaporative demand [18]. The saplings each received
72.5 mm of irrigation water and an additional 33 mm of rainfall during the dry season. Manure was
applied in both rainy seasons, i.e., at 2.5 and 11 months after planting (MaP), at the amount of 1 kg per
sapling (ca. 7.7 kg m−2). The manure consisted of composted cow and pig dung, and contained an
average of 18.7% carbon (C), 1.2% nitrogen (N), and 0.8% phosphorus (P). No pesticide or fungicide
was applied. Weed growth was controlled by frequent manual weeding.

Seeds of two multipurpose tree species, Jatropha curcas L. (physic nut, Euphorbiaceae) and Moringa
oleifera Lam. (drumstick tree, Moringaceae), were germinated in a local nursery. Seedlings were planted
in monospecific plots at the experimental site in July 2014 after 2.5–4 months, and were monitored over
15 months [18,20,26]. These local species were selected based on the fast growth rate of their shoots
and roots in response to water and nutrient supply, as well as their socio-economic importance and
increasing recent efforts to expand their plantation acreage in West Africa [18,26]. Each plot contained
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48 seedlings with a 2 m × 1 m spacing, resulting in an initial stand density of 5000 trees ha−1, which
was used in the simulations.

2.3. Data Collection

Tree morphological properties and biomass were measured at the beginning and end of the
2014 and 2015 rainy seasons (i.e., 5, 11, and 15 MaP) on two to six saplings randomly selected
per experimental plot [20,26]. After measuring the height (H, m) and stem diameter (D, cm),
the selected trees were felled for total biomass determination, and that of the different tree fractions.
The aboveground part was separated into leaves, branch, stem, and reproductive fractions. Roots
were manually excavated, sectioned into coarse (ø > 2 mm) and fine (ø < 2 mm) fractions, and gently
washed in a sieve to remove the soil. Subsamples of the harvested fractions were oven-dried at 75 ◦C
until they reached a constant weight, and their dry mass was determined [20,26].

2.4. Modelling Analysis

2.4.1. Description of WaNuLCAS

The process-based WaNuLCAS model was developed by van Noordwijk and Lusiana [35] to
improve the understanding of tree–soil–crop interactions in agroforestry systems, and runs on the
STELLA (version 7.0) modelling environment software (isee systems Inc., Lebanon, PA, USA) linked
to Microsoft Excel spreadsheets for data input and output, which allows modification by users [35].
WaNuLCAS simulates the daily tree growth as a function of resource (i.e., water, nutrient and light)
availability at plot-scale. The plot is represented by a four-layer soil profile and four spatial zones,
where trees (and/or crops) can be positioned (Figure 2).
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The model assumes homogenous site conditions within each of the four spatial zones.
The emphasis of WaNuLCAS is on above- and belowground resource capture, based on leaf area
and fine root length density interacting with resource supply as the basis for predicting interspecific
complementarity and competition [51]. Belowground competition is described by calculating the
demand and potential uptake of water and N and P nutrients using a zero-sink uptake model on the
basis of the root length density. This assumes that the root uptake of water and nutrients is driven
by plant demand, as long as the concentration of these resources at the root surface is above the
limiting concentration, assumed to be zero under most conditions found in agricultural settings [52].
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The demand for N uptake is defined by a “luxury uptake”, which assumes that growth will not be
reduced until N content falls below 80% of the demand [51]. At the aboveground level, shading by
trees is calculated as a function of the branch area index (BAI), leaf area index (LAI), and plant height
in each zone. LAI-dependent light capture triggers photosynthesis, with carbon capture calculated on
the dry weight basis. The distinction of the light captured by branch (BAI) and by leaves allows the
model to account for tree shading when trees are leafless [51]. The model includes drought–induced
litterfall and the re-emergence of leaves, controlled by phenological parameters.

The water balance of the system in WaNuLCAS includes rainfall, canopy interception, water
evaporation from surface soil layers, water uptake by crops and trees, and leaching. Water is exchanged
between the four zones by run-on and run-off. The vertical and horizontal transportation of water
is also included [51]. Calculations of water infiltration into the soil profile follow a “tipping bucket”
model [53]. Canopy interception is a function of ground cover (based on the LAI of trees and crops).
Soil evaporation depends on both the ground cover and soil water content of the topsoil. Water uptake
rate is driven by plant (i.e., trees and crops) transpirational demand, and is calculated based on soil
and plant water potentials and the corresponding matrix flux potentials, determined following the
methods of De Willigen et al. [52,54].

2.4.2. Input Data for WaNuLCAS

The WaNuLCAS model input data consist of weather data (daily rainfall, soil temperature,
and potential evapotranspiration), soil parameters (texture; bulk density; saturated hydraulic
conductivity; pH; and organic carbon, nitrogen, and phosphorus contents), tree management options
(planting dates, amounts and timing of fertilization/organic material applications, intensity and timing
of pruning), and tree library (i.e., growth parameters such as the length of the reproductive cycle,
specific leaf area (SLA), growth rate; Supplementary materials, Tables S1 and S2).

Weather data: The 2014 and 2015 daily rainfall and air temperature data were made accessible by
the Pouri weather station (Figure 1) located about 4 km away from the experiment site. Time-domain
reflectometry (TDR) sensors (CS655, Soil Water Content Reflectometers, Campbell Scientific Ltd.,
Shepshed, Loughborough, LE12 9GX, UK) were installed at the experimental site at the beginning
of the second rainy season to collect in-situ soil moisture and temperature data. Daily ET0 data was
generated using the FAO ET0 calculator [55].

Soil parameters: Soil physical and chemical properties used to parameterize the WaNuLCAS
model (Table 1) were set according to the four vertical layers of the model that correspond to the
four layers obtained from the soil profile description (Figure 2). The Hodnett and Tomasella [56]
pedotransfer function (PTF) in the WaNuLCAS model was used to generate soil hydraulic properties,
representative of tropical soil conditions [57]. Default values of initial soil N (ammonium and nitrate)
concentrations that were representative of a wide range of tropical cropping systems were used because
no site–specific data was collected.
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Table 1. Inputs of soil physical and chemical properties to parameterize the pedotransfer (PTF) module
of WaNuLCAS.

Parameter
Soil Layer (cm)

0–5 5–16 16–30 30–50

Clay (%) 11.8 15.7 25.5 29.4
Silt (%) 31.4 35.3 33.3 37.3

Sand (%) 56.9 49.0 41.2 33.3
BD (g cm−3) 1.5 1.5 1.6 1.6

pH-H2O 5.3 5.2 5.7 5.8
TOC (%) 0.7 0.6 0.6 0.6
Ntot (%) 0.1 0.1 0.1 0.1

P (mg kg−1) 15.7 15.3 14.5 14.8
CEC (cmol kg−1) 4.7 6.0 5.2 5.3

Ksat (cm d−1) 73.2 18.4 207.7 232.4

Legend: BD: bulk density, TOC: total organic carbon, Ntot: total nitrogen, P: available phosphorus, CEC: cation
exchange capacity, Ksat: saturated hydraulic conductivity. The data was obtained following a soil profile description
conducted at the experimental site at the beginning of the trial in June 2014.

Crop and tree management: Field-collected data as described above was used for parameterization
of this module. As the simulated system consists of trees only, the four horizontal zones of the model
were set at equal widths of 0.5 m (Figure 2).

Tree growth parameters: Field-collected data was integrated into the “tree parametrization” Excel
file (www.worldagroforestry.org/sea/Products/AFModels/wanulcas/down-loadc.htm) to generate
key growth parameters, including LAI, plant water potential, light extinction coefficient, and others,
for use in WaNuLCAS [35,51]. The parameters permitted the simulation of aboveground growth
and development, in particular the H, D, and aboveground biomass (AGB; kg m−2) production,
subjected to the abovementioned climate, soil, and management factors. The biomass accumulation
was simulated using the empirical allometric relationship between the biomass fractions (total AGB,
leaf plus twig biomass, wood biomass, and litterfall) and stem diameter:

Y = aDb (1)

where Y is the biomass of a given fraction (kg tree−1), D is the basal diameter (cm), and a and b are
allometric coefficients.

The allometric coefficients (Table 2) were generated previously by Noulèkoun et al. [26] using
the experimental data. The root growth in all zones and layers was assumed to be constant, which is
representative of a tree system with an equilibrium of root growth and root decay [51]. A maximum
root length density was thus given as an input, following van Noordwijk et al. [51].

Table 2. Allometric intercepts (a) and slopes (b) of the biomass components [26] used to simulate the
tree growth by WaNuLCAS.

Species Biomass Fractions a b

Jatropha curcas

Total 0.004 2.93
Stem 0.004 2.74

Leaf + Twig 0.003 2.48
Litterfall * 0.0002 3.29

Moringa oleifera

Total 0.010 2.36
Stem 0.008 2.38

Leaf + Twig 0.010 1.49
Litterfall * 0.0002 3.29

* The model default values were used for litterfall allometric parameters.

www.worldagroforestry.org/sea/Products/AFModels/wanulcas/down-loadc.htm
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2.4.3. Model Calibration, Validation, and Evaluation

The WaNuLCAS model was parametrized and calibrated with the two years of data gained from
the fertilization (F) treatment. The data from the other treatments (C, I, and IF) were used for model
validation. The three data collection periods (5, 11, and 15 MaP) served as comparison points between
the measured and simulated values. During the calibration process, a sensitivity analysis was used
to improve simulation results, following the method of Khasanah et al. [58]. Consequently, various
parameters, such as the maximum LAI, maximum growth rate, and litterfall caused by drought, were
modified for a more accurate reproduction of the observed values (Supplementary materials, Tables S1
and S2).

The model performance was evaluated by comparing the observed and simulated values of H, D,
and AGB based on goodness of fit (GOF) (Appendix A, Table A1) statistical indicators proposed by
Loague and Green [59], along with the coefficient of determination (R2) of the linear relationship
between the observed and simulated values (Figure 3). Based on these criteria, the accuracy
of the model simulations was evaluated for its suitability to analyze the climate sensitivity of
growth scenarios.

2.4.4. Climate–Growth Relationship Analysis

The model validated with data from the C treatment was used for the simulations, as this
represents the common, low-input silvicultural practice in the study area. After calibrating the
WaNuLCAS model to adequately capture the growth dynamics of saplings, 35 runs were performed,
each covering two consecutive years over the historical climate period of 35 years (1981–2016),
to quantify the strength of relationships between annual AGB growth and climate indicators [28].
These included indicators related to the rainfall amount (e.g., annual water deficit (AWD)), intensity
(e.g., very wet days (R95p)), and temporal distribution (e.g., length of the longest dry spell (LDSP))
(Table 3).

Only climate indicators that showed low correlation (r < 0.5) were considered and assumed to
influence the annual growth of plants. Air temperature was not directly included as an explanatory
variable because the WaNuLCAS model does not include a representation of the direct effect of
temperature on plant growth. Nevertheless, the effect of temperature was indirectly incorporated into
the length of extreme dry periods (LEDP) and AWD through the ET0 (Table 3).

The growth sensitivity of saplings to the prevailing climatic conditions was quantified by means of
a linear mixed-effects model [28,60]. This approach was employed to account for the variance in growth
between years. Climate indicators (Table 3) were used as fixed terms, i.e., as explanatory variables of
the response variables (AGB) in the models, and the random term was the year. The model selection
method [61] allowed the selection of the “best-fitting” model from a set of potential models fitted to
each climate indicator separately, based on the difference in the corrected Akaike information criterion
(∆AICc) between a null model (including intercept and random effect only) and the one-indicator
models. The ∆AICc describes the effects of a given climate indicator on a model’s fit. A model
was considered climate-sensitive when the ∆AIC was greater than two [28]. The preferred model
was that with the lowest AICc and the highest ∆AICc [62]. The mixed models were fitted using the
maximum likelihood estimation, restricted maximum likelihood estimation for slope estimates, and an
autocorrelation structure (first-order autoregression (AR1)). The analysis was conducted in R version
3.4.3 [63] using the ‘nlme’ package [64].
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Table 3. Climate indicators considered in the climate sensitivity analysis. The overall (1981–2016) value range of the climate indicators, and the value of the climate
variable for the current climate (2014 and 2015) are presented along with their rank.

Parameters Unit Description Definition Range 2014 Rank ** 2015 Rank **

AWD mm Annual water deficit Difference between annual potential evapotranspiration (ET0) and
precipitation 155–1153 931 29/36 978 31/36

LDSP Days Length of the longest dry spell Maximum number of consecutive days of no precipitation within the
rainy season (April–October; Figure 1) 3–40 24 32/36 19 29/36

LEDP * Days Length of extremely dry period Number of days within a year when daily maximum temperature
>99th percentile (40◦ C) and no precipitation (Zhang et al. 2011) 0–42 8 30/36 42 36/36

LDS Months Length of dry season Number of consecutive months within a year with less than 100 mm
of rainfall (Wood et al. 2001) 5–10 10 36/36 9 35/36

LWS Day Length of the longest wet spell Maximum number of consecutive rainy days within the rainy season
(April–October; see Figure 1) 2–21 10 30/36 21 36/36

ATWP mm Annual total wet-day precipitation Annual total precipitation from wet days (i.e., days with precipitation
≥1 mm) (Zhang et al. 2011) 670–1501 749 3/36 825 5/36

R95p * mm Very wet days Annual total precipitation from days with precipitation >95th
percentile (19 mm) (Zhang et al. 2011) 344–1096 395 4/36 424 7/36

R95pot - Total precipitation with respect to the R95p Fraction of precipitation accounted for by the very wet days (R95p)
(Zhang et al. 2011) 0.42–0.80 0.52 10/36 0.51 7/36

* The 95th and 99th percentiles of precipitation and temperature were identified from the historical (1981–2016) climate data. ** The ranking was done with regard to the 36
(i.e., 1981–2016) observations.

Table 4. Results of the model validation for two tree species based on the datasets from the control (C), irrigation (I), and irrigation + fertilization (IF) treatments based
on the GOF criteria (Loague and Green [59]). Values in brackets represent the optimum value of the criteria. Values close to the optimum value of each criterion are
indicated in bold.

Species Growth Parameters EF (1) CD (1) RMSE (0) CRM (0) ME (0) R2 (1)

Jatropha curcas
Height (H, m) 0.72 0.71 6.02 0.00 0.16 0.80

Diameter (D, cm) 0.72 2.48 11.12 −0.03 1.17 0.81
Aboveground biomass (AGB, kg m−2) 0.77 2.21 33.78 −0.04 0.19 0.83

Moringa oleifera
Height (H, m) 0.82 2.59 9.42 −0.03 0.40 0.97

Diameter (D, cm) 0.70 1.76 12.94 −0.08 1.32 0.88
Aboveground biomass (AGB, kg m−2) 0.78 2.23 28.55 −0.09 0.13 0.88

EF: model efficiency; CD: coefficient of determination; RMSE: root mean square error; CRM: coefficient of residual mass; ME: maximum error; R2: coefficient of determination of linear
regression between observed and simulated values.
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Assuming that the annual growth and weather parameters across sequential years are not
correlated [65], we compared climate effects in the first and second years of growth. Three indices of
climate sensitivity were considered during the comparison [28]: (i) the highest ∆AICc; (ii) the absolute
value of the slope of the best model, which describes the strength and the direction of the relationship
between the response and explanatory variables, as slopes were not bound to zero and can be either
positive or negative; and (iii) the pseudo R2 of the best model, which is a measure of the variance
explained by a mixed model. The higher the value of any of these sensitivity indices, the higher the
climate effects. Both the response and explanatory variables were standardized so that the slopes had
a common unit and were comparable. The R2 GLMM function of the ‘MuMIn’ library in R 3.4.3 was
used to compute the R2 value of each one-indicator mixed model [66].

2.4.5. Scenario Description

Scenario analyses were performed to evaluate the impact of rooting depth on the biomass
production of saplings under two contrasting water stress conditions, considering the spatial variation
in soil depth and depending on the landscape position and the depth of the lateritic hardpan, and
possible root penetration of the hardpan to capture leached rainfall [18] (personal field observation).
Two soil and rooting depth scenarios were thus built by keeping the total root length constant and by
changing the initial rooting depth (50 cm; Figure 2) by +50%. This resulted in (i) a shallower rooting
depth (33.3 cm) with obliquely oriented roots and (ii) a deeper rooting depth (75 cm) with vertically
penetrating roots. Water stress was imposed during the simulations by using the climate data of the
two consecutive years with the highest (i.e., severe water stress or extreme dry condition) and lowest
(i.e., mild water stress or extreme wet condition) cumulative water deficits.

3. Results

3.1. Simulation of Tree Height, Diameter, and Aboveground Biomass

The outputs of the model calibration revealed strong linear relationships (R2 > 0.8) between
the simulated and observed values of H, D, and AGB (Figure 3) for both species. The tree growth
increments were also reasonably well reproduced by the model (Appendix A, Figure A2). The overall
evaluation of the model indicated a good fit between the model estimates and empirical values for
the key parameters, as evidenced by the satisfactory values of model efficiency (EF), coefficient of
determination (CD), coefficient of residual mass (CRM), and maximum error (ME) (Figure 3).

The reproducibility was reduced due to the diameter shrinking (RMSE ca. 7–12%) and the biomass
loss as litterfall (root mean square error [RMSE] ca. 23–26%) during the dry season, which resulted in
the overestimation of D and AGB by the model at this point in time (Figure 3; Appendix A, Figure A2).

The model validation (with the independent datasets from the C, I, and IF treatments) showed
similar results to that of the model calibration, albeit with a reduced GOF compared to that of the
calibration (Table 4). Furthermore, the comparison of the relative increment in growth parameters
induced by the treatments between the model predictions and the field observations revealed that the
predicted values aligned well with the field measurements for both species (Supplementary Materials,
Table S3). Hence, the results of the calibration and validation revealed the model’s suitability for the
envisaged scenario analyses.
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Figure 3. Relationships between simulated and observed values of height (m), stem diameter (cm) and aboveground biomass (kg m−2) for J. curcas and M. oleifera
during calibration. The data from the fertilization treatment (F) were used. The lines are the 1:1 lines. EF: model efficiency; CD: coefficient of determination;
RMSE: root mean square error; CRM: coefficient of residual mass; ME: maximum error; R2: coefficient of determination of linear regression between observed and
simulated values.
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3.2. Climate–Growth Relationships of the Afforestation Species

The annual AGB growth varied substantially over the simulation period as a result of the
inter-annual rainfall and evapotranspiration variability inherent to the reference data (Figure 4 and
Appendix A, Figure A1), confirming the common climate–growth relationship.
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Figure 4. Variation in the predicted annual aboveground biomass (AGB, kg m−2) growth for J. curcas
and M. oleifera. Apart from the years 1981 and 2016, every year was used twice in the simulation, either
as year 1 (filled symbols) or year 2 (open symbols) year.

The observed variance reflected differences in the climate effects of a given year, when used either
as year one or year two during the two-year simulation period. Differences in climate–growth patterns
between the species are evident in Figure 4. For instance, the annual AGB growth of M. oleifera was
higher in year two than in year one in 86% (30/35) of the runs, indicating that the annual growth is
likely to be more influenced by climatic conditions in year two. In contrast, the biomass growth of
J. curcas was dependent on the climatic conditions in both years (one and two; Figure 4).

The computed climate indicators can be further categorized into two groups: (i) drought-related
indicators (AWD, LDSP, LEDP and LDS) and (ii) wetness-related indicators (LWS, ATWP, R95p and
R95pot). The values of the drought-related indicators for the two years in which tree growth data were
collected (2014 and 2015) were in the upper range of the 1981–2016 data (representing its maximum as
shown by the year 2014 ranking for LDS), whereas the wetness-related indicators were in the lower
quartile (Table 3). Furthermore, the results of the linear modeling analyses revealed that the AGB
growth of both species was influenced by the AWD, LDS, LDSP, and ATWP (Table 5).

Table 5. Mixed effect models comparisons for J. curcas and M. oleifera, showing the most important
climate indicators along with the corresponding climate sensitivity indices.

Variables Jatropha curcas Moringa oleifera

∆AICc Slope R2 ∆AICc Slope R2

LDSP1 12.22 −0.63 0.39 9.33 −0.58 0.33
LDSP2 9.91 −0.59 0.35 8.31 −0.57 0.31
LDS1 2.27 −0.43 0.18 2.16 −0.42 0.18
LDS2 12.16 −0.63 0.39 9.13 −0.58 0.33
AWD1 6.02 −0.53 0.27 5.05 −0.5 0.24
AWD2 14.92 −0.67 0.44 11.98 −0.63 0.38
ATWP1 3.60 0.46 0.21 2.96 0.45 0.20
ATWP2 10.44 0.60 0.36 8.32 0.57 0.31

Note: ∆AICc is the corrected Akaike Information Criterion; R2 is the pseudo coefficient of determination. Description
of the climate variables is provided in Table 2. Subscripts accompanying the climate variables stand for year one (1)
and year two (2).
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Across the years, drought-related indicators (AWD, LDS, and LDSP) best explained the variations
in the annual AGB growth, as reflected in their overall high ∆AICc and R2 values. The most important
and extensive climate factor influencing the annual biomass growth for both species was the AWD,
as evidenced by the highest values of the sensitivity indices (Table 5). The AWD was the easiest
to calculate, as it only required ET0 and annual rainfall, rather than details of the temporal rainfall
distribution. The biomass growth was inversely (slopes < 0) linked to the drought-related indicators,
but the ATWP had a positive effect on the AGB growth of both species. The AWD had the strongest
negative effect (highest slope values) on the sapling growth (Table 5).

The strength of climate–growth relationships and the identity of climate indicators in the best-fit
models varied between years one and two (Table 5). The climate sensitivity was greatest in the second
year of tree growth for all of the important climate indicators, except for the LDSP, which had the
strongest effects on annual growth during the first year. Overall, M. oleifera tended to be less sensitive
to climate than J. curcas, but the observed differences in sensitivity were too subtle to draw general
statements considering the threshold (∆AICc > 2) used to indicate a significant climate effect.

3.3. Simulated Effect of Rooting Depth on Sapling Biomass under Contrasting Water Stress Conditions

The simulation results revealed that the rooting depth influenced the biomass production of
saplings (Figure 5), and the magnitude of this effect varied between the water stress scenarios. After the
first two years of growth and irrespective of the species, AGB was 13–72% higher for deep–rooted
plants compared to the shallow-rooted ones. The relative change in AGB induced by the deep rooting
depth was greater under extreme dry conditions (i.e., 1984–1985) compared to that under extreme wet
conditions (i.e., 2004–2005) (Figure 5). For instance, the relative change for J. curcas was 72% and 27%
for the 1984–1985 and 2004–2005 runs, respectively. The enhanced biomass growth of saplings with
deeper roots was related to an increased water uptake and canopy interception, reduced runoff and
drainage, and thus increased the soil available water and its use by saplings (Figure 6).
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Sustainability 2018, 10, 1931 14 of 23
Sustainability 2018, 10, x FOR PEER REVIEW  14 of 22 

  
(A) (B) 

Figure 6. Water balance terms (mm) for two rooting depths (Shallow and Deep) under severe (1984–
1985) and mild (2004–2005) water stress for (A) Jatropha curcas and (B) Moringa oleifera. Cumulative 
values over the two-year simulation period are presented. 

4. Discussion 

Climate change is likely to affect trees in the early growth stage, altering the long-term productivity 
of forests and plantations [42,44,67]. Although climate–growth relationships have been quantified for 
mature trees of several tropical and temperate species [9,29,68], much remains unknown regarding the 
sensitivity of tree growth during the early stages of development in semi-arid areas. In this study, we 
used a generic approach of climate sensitivity assessment that combines field experiments and 
modelling as an alternative to the traditional dendrochronology technique. First, we calibrated and 
validated the process-based model WaNuLCAS based on the empirical tree growth data. Second, we 
quantified the effects of climate variability on the predicted annual biomass increment, based on the 
most influential climate indicators. We also assessed the relevance of the empirical climate data to 
historical simulations based on the frequency distribution of the long-term climate indicator data (Table 
3). Our results revealed drought-related indicators as the best predictors, which enabled to quantify 
their effects on sapling growth. Our approach has an advantage over the dendrochronological analysis 
because it uses actual biomass increment rather than biomass increment derived from tree-rings as 
recently suggested [31,32], thereby avoiding challenges associated with problematic anatomical 
features of tree rings common in tropical trees [29,30].  

4.1. Model Performance 

In accordance with previous studies [41,57,69,70], the range of the GOF statistics and the high 
correlation between the simulated and observed growth parameters for both the calibration (Figure 3) 
and the validation (Table 4) are indicative of the ability of the WaNuLCAS model to reproduce the early 
growth dynamics of the tested afforestation species with an acceptable accuracy and precision. A R² 
value of 0.5, CD value of 0.5–2, and EF value above 0.5 represent a good predicted–to–observed 
relationship [69]. However, the high values of the RMSE for AGB during the model calibration and the 
reduced GOF during the model validation indicated that not all growth limitations occurring under 
field conditions were adequately captured through simulations [39]. Most of the discrepancies between 
the simulations and empirical evidence arose from the limited capacity of the model to reproduce the 
monitored drought-induced trunk shrinkage and litterfall during the dry season. Shrinking tree 
diameters are not represented in the current version of the model, although they are known at both the 
diurnal and seasonal time scales [71]. Drought-induced litterfall is included in the model by a water 
potential threshold and a waiting period before new leaves emerge [72], but an accurate 
parametrization requires data beyond what is available for the site. While dry-season leaf shed is 
characteristic for drought-deciduous tree species, its accounting in our simulations resulted in large 
reductions of the total height rather than D and AGB (results not shown), implying that tree canopy 

Figure 6. Water balance terms (mm) for two rooting depths (Shallow and Deep) under severe
(1984–1985) and mild (2004–2005) water stress for (A) Jatropha curcas and (B) Moringa oleifera.
Cumulative values over the two-year simulation period are presented.

4. Discussion

Climate change is likely to affect trees in the early growth stage, altering the long-term productivity
of forests and plantations [42,44,67]. Although climate–growth relationships have been quantified for
mature trees of several tropical and temperate species [9,29,68], much remains unknown regarding
the sensitivity of tree growth during the early stages of development in semi-arid areas. In this study,
we used a generic approach of climate sensitivity assessment that combines field experiments and
modelling as an alternative to the traditional dendrochronology technique. First, we calibrated and
validated the process-based model WaNuLCAS based on the empirical tree growth data. Second,
we quantified the effects of climate variability on the predicted annual biomass increment, based on
the most influential climate indicators. We also assessed the relevance of the empirical climate data
to historical simulations based on the frequency distribution of the long-term climate indicator data
(Table 3). Our results revealed drought-related indicators as the best predictors, which enabled to
quantify their effects on sapling growth. Our approach has an advantage over the dendrochronological
analysis because it uses actual biomass increment rather than biomass increment derived from
tree-rings as recently suggested [31,32], thereby avoiding challenges associated with problematic
anatomical features of tree rings common in tropical trees [29,30].

4.1. Model Performance

In accordance with previous studies [41,57,69,70], the range of the GOF statistics and the high
correlation between the simulated and observed growth parameters for both the calibration (Figure 3)
and the validation (Table 4) are indicative of the ability of the WaNuLCAS model to reproduce the
early growth dynamics of the tested afforestation species with an acceptable accuracy and precision. A
R2 value of 0.5, CD value of 0.5–2, and EF value above 0.5 represent a good predicted–to–observed
relationship [69]. However, the high values of the RMSE for AGB during the model calibration and the
reduced GOF during the model validation indicated that not all growth limitations occurring under
field conditions were adequately captured through simulations [39]. Most of the discrepancies between
the simulations and empirical evidence arose from the limited capacity of the model to reproduce
the monitored drought-induced trunk shrinkage and litterfall during the dry season. Shrinking tree
diameters are not represented in the current version of the model, although they are known at both
the diurnal and seasonal time scales [71]. Drought-induced litterfall is included in the model by
a water potential threshold and a waiting period before new leaves emerge [72], but an accurate
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parametrization requires data beyond what is available for the site. While dry-season leaf shed is
characteristic for drought-deciduous tree species, its accounting in our simulations resulted in large
reductions of the total height rather than D and AGB (results not shown), implying that tree canopy
and height are more influenced by this process than D and AGB in the WaNuLCAS model. The lack of
calibrated litterfall data may have caused the poor fit of the predicted D and AGB, albeit only during
the dry season [57]. Despite these deviations between the observed and simulated values during the
dry season, the well-reproduced growth patterns and accurate prediction of D, H, and AGB at the
end of the growing seasons (Appendix A, Figure A2) are a sufficient basis for further analyses of
plant growth.

4.2. Climate Sensitivity of Afforestation Species

The predicted AGB growth series showed strong variations over the years (Figure 3), indicative
of the influence of climate on the early growth of tree plantations [68]. Although both species have
a semi-deciduous phenology and are fast growing and drought tolerant [18], their predicted annual
growth responses to climate variability differed (Figure 3), confirming our hypothesis that the responses
are species specific. This is likely due to the differences in stress tolerances [73] and/or allometry.
Species differences in climate–growth responses have been reported for older trees of winter-deciduous
broad-leaved species (Fagus sylvatica L. and Quercus petraea Matt.) under a temperate climate [68].
Together, these findings suggest that caution must be taken when parametrizing growth models
according to plant functional types [5].

Water availability emerged as the primary driver of the climate sensitivity of trees in the early
stages of growth in semi-arid areas. Similar climate–growth relationships were previously found for
temperate tree species [68,74] and for shrub species across the tundra biome [28]. Annual biomass
accumulation declined with annual water deficit, the length of the dry season, and the length of the
longest dry spell, but increased with the annual total wet-day precipitation (Table 5). This supports our
hypothesis that drought-related indicators negatively affect biomass growth in particular. The negative
climate–growth relationships with drought-related indicators suggested that drought-reduced sapling
growth occurred not only due to reductions in the total amount of precipitation and subsequent longer
dry seasons (e.g., AWD), but also due to variability in the distribution of rainfall (e.g., the LDSP).
This outcome is reminiscent of the findings by Elliott et al. [9], which showed that the distribution of
precipitation is more influential on the radial growth of deciduous tree species than the amount.

Increased aridity (AWD) had the strongest negative influence on the growth of saplings,
suggesting that the projected increase in aridity in northern Benin [75] may result in a substantial
decrease in growth. For instance, the predicted AGB of J. curcas after two years of growth was 0.34 and
0.49 kg m−2 under extreme (highest AWD) and mild (lowest AWD) drought conditions, respectively,
which represents a potential 31% loss in AGB growth. Applying the same calculations for M. oleifera
resulted in a 14% loss in growth if the aridity is increased. These estimates are obviously to some
extent simplified, as AWD is not the only climate factor that is likely to change in the future; however,
they do highlight the relative importance of water limitation for the early growth of tree plantations
and hence for the planted afforestation efforts in the region.

The influence of drought on tree growth and the identity of climate drivers were not uniform
between years. In year one, the duration of the LDSP in the rainy season had the best predictive power,
while in year two, the annual water balance (here, the difference between precipitation and ET0) was
the best predictor for both species (Table 5). This supports our hypothesis that the climate sensitivity
to ‘immediate’ drought is stronger at the very early stages of tree growth, when root systems are not
yet fully established [43–45], compared to later stages where the water balance dominates results.
Sensitivity to AWD and LDS was greater in the second year compared to the first. This could be
attributed to the increased tree water use and consequent reduction in soil available water related to
increased canopy interception and water drainage as a function of tree growth in the WaNuLCAS
model [51]. For instance, the water use efficiency of J. curcas, defined as the water uptake to total
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rainfall ratio, was 4% in year one and 10% in year two under the most extreme historical drought
scenario (1984–1985). This implies that the same AWD or LDS would result in more water stress in
year two than in year one. Hence, the climatic factors related to the amount of precipitation showed
greater sensitivity in year two, whereas greater sensitivity to LDSP, which describes the distribution of
precipitation, was more evident in year one.

Just as empirical data gives insights in the credibility of model predictions, the current analysis of
sensitivity of tree growth to a range of rainfall metrics can help to better judge the representativeness
of the empirical data regarding climate variability in the study area. The year 2014 had the longest
LDS of the available climate data set for the test site, while the AWD and LDSP of both years were
in the upper quartiles (Table 3). The values of the wetness-related indicator (ATWP) were in the
lowest quartile for both years. Apparently, the years in which experimental data were collected were
already foreboding what climate change predictions point out as a ‘new normal’ for the study area:
less predictable rain, with more extremes on both the high and the low end [12,13]. Therefore, the
tree performance measured during the two years is probably a conservative estimate of what can
be expected in years closer to the current average values and is more representative of the expected
growth under projected climate conditions.

4.3. Effects of Rooting Depth on Biomass Growth under Extreme Dry Conditions

The simulation results showed that deeper rooting depth was an advantage to sapling growth
of both species under extreme dry conditions (Figure 5). Moreover, the AGB at the end of year two
was greater for deep–rooted than shallow–rooted saplings in both extreme dry and wet conditions.
The improved performance can be attributed to enhanced tree water use under deep rooting depth
conditions as a result of increased water uptake and canopy interception, and reduced water drainage
and runoff (Figure 6). The relative increase in AGB, induced by the deep rooting depth, was greater
under severe water stress compared to mild water stress, suggesting that deep-rooted saplings are less
sensitive to extreme drought than shallow-rooted saplings. Similarly, Coulibaly et al. [41] has reported
that tree species with deep rooting systems are less vulnerable to water deficits. These results can be
attributed to the fact that during extreme drought conditions, deep rooted saplings take advantage
of their access to deeper soil horizons, which could result in increased photosynthetic activity and
continued biomass production, as reported by Hartl-Meier et al. [22] for beech (Fagus sylvatica L.) and
larch (Larix decidua Mill.) under a temperate climate.

4.4. Replicability of the Approach

Where trees of a wide range of ages can be found in a local environment of interest,
dendrochronological analysis can, in combination with climate records, be used for assessing the
effects of climate change on young forests. In the absence of such, the combination we used of
experiments, model calibration and identification of the local climate metric with the best predictive
skill can improve the value of experiments and increase their interpretation, at the interface of climate
change mitigation and adaptation strategies.

5. Conclusions

The WaNuLCAS model was successfully calibrated and validated to simulate sapling growth
of two afforestation species in semi-arid northern Benin. Although the stem diameter and biomass
predictions during the dry season were poorly simulated due to the limited ability of the model
to reproduce trunk shrinkage and litterfall during this period, the overall outputs of the model
calibration and validation were satisfactory. The model application to simulate the early growth of
the afforestation species under past climate conditions permitted the quantification of the climate
sensitivity of sapling growth.

The aboveground biomass growth was most sensitive to water availability, as evidenced by
the negative relationships between growth and drought-related indicators, and the positive growth
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response to annual total wet-day precipitation. The distribution, rather than the total amount, of
precipitation was the main factor limiting sapling growth at the very early stages of growth (year
one), when tree root systems are not yet well established. Given the projected increase in variability of
precipitation distribution, extended arid conditions, and longer dry spells in West Africa, the current
results suggest that increased aridity could play an increasingly important role in limiting future tree
establishment and forest growth. Based on the observed species-specific responses to climate variability
and the importance of root depth in buffering the negative effects of extreme drought on sapling
growth, a multi-species afforestation system with species that are able to develop deep-penetrating
root systems may increase the resilience of plantations to climate change.

The current results illustrate that process-based modelling combined with field experiments can
be effective in integration of multi-source data to assess the climate–growth relationships of tree species.
Further verification of the simulation results under field conditions, through dendrochronological and
rhizological studies, would be needed to develop confidence in the application of WaNuLCAS for
climate–growth analyses.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/10/6/1931/s1,
Table S1: Tree parameters used for simulating the growth of Jatropha curcas L. in WaNuLCAS; Table S2: Tree
parameters used for simulating the growth of Moringa oleifera Lam. in WaNuLCAS; Table S3: Relative increment
in height (m), diameter (cm), and aboveground biomass (ABG, kg m−2) in response to fertilization, irrigation and
fertilization plus irrigation as observed and as simulated by WaNuLCAS.
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Appendix

Table A1. Statistical criteria proposed by Loague and Green [59] to evaluate model performance.

Criteria Symbol Formula Acceptable Range Optimum Value

Model efficiency EF (∑n
i=1(Oi−Omean)

2− ∑n
i=1(Pi−Oi)

2)
∑n

i=1(Oi−Omean)
≤1 1

Coefficient of determination CD ∑n
i=1(Oi−Omean)

∑n
i=1(Pi−Omean)

0.5–2 * 1

Maximum error ME Max |Pi −Oi|ni=1 ≥0 0

Root mean square error RMSE
(

n
∑

i=1

(Pi−Oi)
n

)1/2
× 100

Omean
≥0 0

Coefficient of residual mass CRM (∑n
i=1 Oi−∑n

i=1 Pi)
∑n

i=1 Oi
≤1 0

Pi, predicted value; Oi, observed value; Omean, mean of the observed value. * The range for CD proposed by
Walker et al. [57].
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Figure A1. Relative changes in the annual rainfall (mm), annual potential evapotranspiration (mm),
and air temperature (◦C) between 1981 and 2016 compared to the long-term historical means presented
in Figure 1.
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Figure A2. Simulated height (H, m), stem diameter (D, cm), and aboveground biomass (AGB, kg m−2)
dynamics for Jatropha curcas (A–C) and Moringa oleifera (D–F) during calibration for which the empirical
datasets from the fertilization treatment was used. The three comparison points (circles) represent the
three harvest times (i.e., 5, 11, and 15 months after planting). Vertical bars are standard errors of the
mean. Seedling planting time was defined at 186 Julian days in the Water, Nutrient and Light Capture
in Agroforestry Systems (WaNuLCAS) model.
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