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Abstract: The aim of this paper is to propose a methodology for supporting decision-making in the 

design stages of new buildings or in the retrofitting of existing heritages. The focus is on the 

evaluation of economic–environmental sustainability, considering the presence of risk and 

uncertainty. An application of risk analysis in conjunction with Life-Cycle Cost Analysis (LCCA) is 

proposed for selecting the preferable solution between technological options, which represents a 

recent and poorly explored context of analysis. It is assumed that there is a presence of uncertainty 

in cost estimating, in terms of the Life-Cycle Cost Estimates (LCCEs) and uncertainty in the 

technical performance of the life-cycle cost analysis. According to the probability analysis, which 

was solved through stochastic simulation and the Monte Carlo Method (MCM), risk and 

uncertainty are modeled as stochastic variables or as “stochastic relevant cost drivers”. Coherently, 

the economic–financial and energy–environmental sustainability is analyzed through the 

calculation of a conjoint “economic–environmental indicator”, in terms of the stochastic global cost. 

A case study of the multifunctional building glass façade project in Northern Italy is proposed. The 

application demonstrates that introducing flexibility into the input data and the duration of the 

service lives of components and the economic and environmental behavior of alternative scenarios 

can lead to opposite results compared to a deterministic analysis. The results give full evidence of 

the environmental variables’ capacity to significantly perturb the model output. 

Keywords: economic–environmental sustainability; Life Cycle Cost Analysis; Life Cycle Cost 

Estimates; risk and uncertainty; probability analysis; Monte Carlo analysis; stochastic Global Cost 

 

1. Introduction 

To achieve environmental sustainability in the construction sector, it is necessary to have a 

long-term view of every action undertaken during the building life-cycle. Indeed, initial design 

decisions have deep impacts on a building’s life. 

Life-Cycle Cost Analysis (LCCA) plays an important role in the technological–economic 

feasibility of a building project. Due to its nature, the construction industry is characterized by risk, 

as the times considered are very long. For example, an ordinary building is expected to last 50 years, 

but in the early design stages, when there is little information about the project, it is difficult to 

predict the future costs related to it exactly [1–3]. Besides, it is extremely difficult to forecast carefully 

the socioeconomic context in the long term, where the building operations will take place, and what 

their consequences will be on the project itself. 

For these reasons, the analysis conducted through the entire building life-cycle is subject to 

uncertainty, and although LCCA is considered one of the main tools for the analysis of projects’ 
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economic sustainability, its results are strongly influenced by the quality of the input. The input data 

are subject to some critical issues due to internal factors (linked, for example, to the construction 

stage) and external factors (that is, financial risk, timing, sale/rent, socioeconomic factors, and so 

forth). The deterministic nature of the input data used in the LCCA does not take into account the 

development of these variables in the considered system and the flexibility of decision-makers 

involved in the process. 

Therefore, the traditional deterministic cost estimation of building projects is economically 

questionable, and it is advisable to introduce a risk analysis in conjunction with a Life-Cycle Cost 

Analysis. The methodology proposed in this work is based on the use of risk analysis, which is 

developed through the probability analysis approach and solved through a stochastic simulation 

model. The aim is to support decision-making from the early design stages, starting with the choice 

from among different technological solutions (thus, investment alternatives) both in the case of new 

construction and in the retrofitting of an existing building [4]. A stochastic approach is useful to 

define the possible range of economic values assumed by the different options, identifying the best 

alternative that minimizes the probability of exceeding the cost limits previously imposed by the 

investors [5]. It is noteworthy that investors take most of the cost risks of a building project, so a 

stochastic approach gives them an idea about the importance of the uncertainties that are present in 

the project and their impact on the expected results [6]. 

Due to the complex and unpredictable situation in the world’s economic system, dealing with 

risk should be essential to develop more precise real estate assessment techniques. Making 

information available and measuring the risk factors would make stakeholders (that is, experts, 

investors and the inhabitants) fully aware of the possible future problems of the building project and 

of the potential impacts on the real estate market [7–10]. Therefore, the results carried out with 

LCCA could make stakeholders more sensitive to the issue [11]. Indeed, studies share that there is a 

strong relationship between project complexity and perceived risks: either overestimating or 

underestimating the life cycle assumptions are risks in life-cycle costing, which may cause the 

project to be underfunded in the future [12]. 

Assuming these premises, the aim of the research is to experiment the application of a risk 

analysis methodology in conjunction with life-cycle cost analysis, assuming the presence of risk and 

uncertainty. Risk and uncertainty are conceived as “structural components” both in input data, 

specifically in the cost items measurement, and in the LCCA exercise development. 

With this aim, the article is articulated as follows. In Section 2, the contribution selected from 

the literature on this topic is presented. In Section 3, the methodological background is illustrated. 

Section 4 is devoted to the case study presentation and, in Section 5, the results of the methodology 

application are presented and discussed. Section 6 concludes the work. 

2. Literature Background 

The risky nature of the construction industry and of the real estate market stimulated a huge 

scientific debate over the years. Recently, researchers have suggested implementing economic 

evaluation techniques, such as life-cycle cost analysis with risk management processes, to provide a 

better simulation of future costs related to a building project [11,13–15]. 

Since the 1980s, researchers have focused their attention on the risk factors characterizing the 

construction sector. However, many experts have mostly analyzed the different critical factors 

related to each stage of the life cycle, and only a few of them have actually dealt with and developed 

complete risk analyses within their studies on LCCA [16–18]. 

Among the first researchers who recognize the importance of these tests, Flanagan et al. [19] 

proposed the use of the sensitivity analysis as a main risk analysis tool; providing, in quantitative 

terms, the impacts of the various assumptions on the whole project, this approach can guide 

decision-making during the building’s life-cycle to achieve efficiency [20]. 

In addition to the sensitivity analysis, there are several risk management techniques that can be 

combined with the LCCA. These can be summarized in three major categories [21,22]: 
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1. Deterministic techniques through which it is possible to evaluate the influence on project results 

by altering one significant value or an array of values at a time; 

2. Quantitative techniques, which can be distinguished in statistical approaches (that integrate 

into economic performance measures, for example, Net Present Value (NPV) factors such as 

standard deviation and variance) and probabilistic approaches (that use probabilistic 

distribution functions and simulation techniques); 

3. Qualitative techniques solved through subjective and non-numerical evaluation criteria. These 

are often used to obtain general information about the risk associated with a project, but 

subsequently, it may be necessary to undertake a more specific and detailed quantitative 

analysis where risk has been identified as particularly important. 

Synthesizing from the literature, in Table 1, the most common approach in the risk and 

uncertainty analysis are summarized. 

Table 1. The categorization of risk management techniques in building investments (Source: 

Boussabaine, 2004, p. 57). 

Deterministic Approaches Quantitative Approaches Qualitative Approaches 

Conservative benefit and cost estimating Input estimates using probability distribution Risk matrix 

Breakeven analysis Mean-variance criterion Risk registers coefficient of variation 

Risk-adjusted discount rate Decision tree analysis Event tree 

Certainty equivalent technique Monte Carlo simulation SWOT analysis 

Sensitivity analysis Analytical technique Risk scoring 

Variance and standard deviation Artificial intelligence Brainstorming sessions 

Net present value Fuzzy sets theory Likelihood/consequence assessment 

 Event tree (quantitative)  

This categorization was also shared and resumed by Boussabaine and Kirkham [22], who 

provided a detailed description of each technique shown in Table 1. According to the authors, these 

different methodologies should be used coherently with the type and quantity of the data available 

during the development of the analysis. The key intent of defining a complete overview about the 

various risk management techniques that can be added to the LCCA is to ensure an improved 

accuracy in the assessments of the effectiveness of the projects over the long-term. 

Starting from these techniques, Kishk et al. [23] developed an integrated approach that 

combines random and non-random data into a common representation. This approach uses both 

probability theory and fuzzy set theory according to the uncertainty in the model. 

Although initially qualitative techniques were the most used, with the development of software 

that simplifies the calculation and the representation of the risk, there has been a significant increase 

of quantitative techniques, which were once criticized for their complexity and expense in terms of 

computation time and expertise required for extracting the knowledge [24–26]. 

More recently, the regulatory documents about LCCA [27,28] highlight the importance of risk 

analysis in the evaluation of projects’ economic sustainability. In the report produced by Davis 

Langdon Management Consulting that presents a common LCCA methodology, some specific 

operative steps are concerned with risk analysis. After the identification of risks present in the 

project, preliminary uncertainty/risk assessments are carried out (usually with a qualitative 

approach), followed by a detailed risk/uncertainty analysis (usually with a quantitative approach). 

Finally, a sensitivity analysis is carried out to calculate and present risk-adjusted LCC values. This 

report seems to confirm the importance of the sensitivity analysis and Monte Carlo method (MCM) 

as the main risk assessment tools. MCM is applied in different contexts of scientific research, but its 

applications within the LCC analysis of a building project are poorly used. 

Therefore, the present study would be a contribution to growing the recent line of international 

research which aims to implement the use of risk analysis in conjunction with the life-cycle cost 

analysis [5,6,12,29–31]. 
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3. Methodological Background 

This work assumes the methodology illustrated in a previous study [32], in which a 

“simplified” application of the LCCA was proposed to identify the preferable solution between 

different technological options. The study aimed at reducing the environmental impacts and the 

economic impacts; the economic impacts are expressed in terms of financial investment, 

maintenance, and end-of-life costs. The methodology followed the Standard ISO 15686–5:2008 

Buildings and constructed assets—Service-life planning (prepared by Technical Committee ISO/TC 

59, Building construction, Subcommittee SC 14, Design life), particularly Part 5: Life-Cycle Costing 

[27]. An application of global cost calculation was developed, including monetized environmental 

impacts (Embodied Energy (EE) and Embodied Carbon (EC)), disposal/dismantling costs, and 

residual value. The result of the global cost calculation was expressed through a “synthetic 

economic–environmental indicator” in order to select, from between two different technologies, the 

most viable solution for a multifunctional building glass façade project in Turin (Northern Italy). 

Specifically, LCCA was assumed as an approach for evaluating the economic sustainability of a 

project, with special attention to the relevant costs along the whole life-cycle, applicable in the case 

of new projects or the retrofitting of existing buildings. Furthermore, LCCA was assumed as an 

approach that is able to consider individual products or components (as in the present study), or an 

entire building system, as well as immediate and/or long-term costs and benefits. The approach was 

proposed with the purpose of comparing alternative technical solutions to assess the relative 

difference in terms of their life-cycle costs. The results of the LCCA application were expressed 

through a quantitative indicator—Net Present Value—starting from the input data on costs, the cost 

profiles of each option considered, and the financial input data. 

The global cost concept was the basis of the calculation, as defined in Standard EN 15459:2007 

[33] and in the guidelines accompanying the Commission Delegated Regulation (EU) No 244/2012 

[34], following the Directive 2010/31/EU–EPBD recast [35,36]. Formally, the global cost procedure 

was represented by Equation (1): 

( ) ( )( ) ( ) jViRjCCC fi diajIG 


 ,1 ,)( −+=  =  

(1) 

where CG(τ) stands for the Global Cost (referred to starting year τ0) [€]; CI stands for the initial 

investment costs; Ca,i (j) stands for the annual cost during year i of component j, which includes the 

annual running costs (energy costs, operational costs, maintenance costs) and periodic replacement 

costs; Rd (i) stands for the discount rate during the year i; Vf,τ(j) stands for the residual value of the 

component j at the end of the calculation period, referred to the starting year. 

In the previous study, the LCC simplified application was implemented considering the same 

energy performance for each design option and focusing on the differences in the building 

component maintenance costs towards the end of life stage. Though, the LCC approach was 

resolved according to Equation (2): 

CG = CI + ∑ (Cm + Cr)/(1 + r)t + (Cdm + Cdp−Vr)/(1 + r)N (2) 

where CG is the Life-Cycle Cost [€]; CI is the investment costs; Cm is the maintenance cost; Cr is the 

replacement cost; Cdm is the dismantling cost; and Cdp is the disposal cost; Vr is the residual value; t is 

the year in which the cost occurred; N is the number of years of the entire period considered for the 

analysis; and r is the discount rate. 

Cost items related to the environmental impacts (monetized) were summed to global cost, as in 

Equation (3): 

CGEnEc = CI + CEE + CEC + ∑ (Cm + Cr)/(1 + r)t + (Cdm + Cdp−Vr)/(1 + r)N (3) 

where CGEnEc is the life-cycle cost including environmental and economic indicators [€]; CI is the 

investment costs; CEE is the costs related to Embodied Energy; CEC is the costs related to Embodied 

Carbon; Cm is the maintenance cost; Cr is the replacement cost; Cdm is the dismantling cost; Cdp is the 
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disposal cost; Vr is the residual value; t is the year in which the cost occurred; N is the number of 

years of the entire period considered for the analysis; and r is the discount rate. 

Finally, the study concluded with a Sensitivity Analysis, which was applied for identifying the 

change of an estimated cost when an assumption changes. A deterministic sensitivity analysis was 

carried out in order to assess the outcomes in global cost calculations for the considered solutions. 

Specifically, it considered the sensitivity of outcomes to the variability in the economic input 

parameters related to the end-of-life stage (residual value, dismantling costs, and disposal costs), the 

environmental impacts (Embodied Energy and Embodied Carbon), and the discount rate. 

Starting from the assumptions and results of the first step of the research briefly summarized 

above, in this study, a methodological development is presented, including risk and uncertainty in 

the LCCA application. In fact, the decisions between different technological solutions aimed at 

reducing the environmental and economic impacts are often affected by risk and uncertainty 

conditions. 

In the premise, a distinction is made between “uncertainty in cost-estimating”, which is 

expressed in terms of Life-Cycle Cost Estimates (LCCEs), and “uncertainty in technical 

performance”, which is expressed in terms of Life-Cycle Cost Analysis applications (LCCAs) [37]. 

The first refers to the uncertainty in the application of cost-estimating procedures due, for example, 

to the uncertainty in cost amount measurements; the second refers to the uncertainty components 

that could affect the application of the model as a whole due to, in most cases, the difficulties in 

precisely setting the model assumptions, for example, the time horizon for the analysis, the financial 

inputs, and so forth. 

The aim is to quantify the risk or, in other terms, quantify the degree of uncertainty as much as 

possible through not only a deterministic sensitivity analysis (applied in the previous research), but 

through a formal quantitative risk analysis resolved through the probability analysis approach as 

well [38]. 

In fact, the deterministic Sensitivity Analysis, despite being one of the simplest methods for 

considering the variability in financial evaluations of projects, presents some limits. It follows a 

completely empirical approach, based on the variation of one input at a time and, frequently, on the 

basis of subjectively determined pessimistic and optimistic scenarios. Furthermore, it does not 

manage the simultaneous variation of the input variables, contrarily to the reality. 

Otherwise, the probability analysis seems more fitting, specifically in contexts characterized by 

instability and lack of transparency, such as the real estate market. 

Sensitivity Analysis can be used as the first step in order to select the variables to be included in 

the probability analysis. As known, this latter can be solved through two different approaches: the 

analytical method and the simulation method. The first one implies the use of probability functions 

related to the input variables or the use of expected values conceived in terms of mathematical hope 

(the weighted mean of possible values of the variable, as each value is weighted for its probability). 

These functions are related to continuous or discrete random variables and can be deduced by 

means of the observation of the reality. The simulation method is used as an alternative to the 

complexity of the analytical approach and to limit the costs of the analysis; on the contrary, it 

deduces the probability function using methods founded on random number generation. The output 

is coherently expressed in terms of a Probability Distribution Function (PDF). 

Therefore, according to the probability analysis approach, it is necessary to identify the most 

relevant variables, measure their functional forms, and then isolate and quantify the marginal 

contribution of each variable. Risk and uncertainty are internalized in the model through stochastic 

variables selected from among the most significant cost items and expressed in terms of “relevant 

cost drivers” [37]. Therefore, it is necessary to identify, preliminarily, the relevant cost drivers or 

critical input variables. These model inputs are expressed through stochastic variables in the 

evaluation of economic–financial and energy–environmental sustainability. Coherently, the model 

output is calculated in terms of stochastic global cost (as in Equation 4) and is expressed through the 

relative probability distribution: 
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ĈGEnEC = ĈI + ĈEE + ĈEC + ∑(Ĉm + Ĉr)/(1 + ȓ)t + (Ĉdm + Ĉdp−Vr)/(1 + ȓ)N (4) 

where ĈGEnEC is the Life-Cycle Cost, including environmental and economic indicators [€] expressed 

in stochastic terms; ĈI is the stochastic investment costs; ĈEE is the stochastic costs related to 

Embodied Energy; ĈEC is the stochastic costs related to the Embodied Carbon; Ĉm is the stochastic 

maintenance cost, Ĉr is the stochastic replacement cost; Ĉdm is the stochastic dismantling cost; Ĉdp is 

the stochastic disposal cost; Vr is the residual value; t is the year in which the cost occurred; N is the 

number of years of the entire period considered for the analysis; and ȓ is the stochastic discount rate. 

Notice that in the formula, the term Vr is expressed as a deterministic input. In fact, being the 

residual value directly linked to the duration of the service life of each component, in other words, to 

the time, it would be necessary to switch from stochastic variables to stochastic processes. In this 

work, as the first experiment, an empirical modality was adopted by setting three alternative 

scenarios with three different associated lifespans. We assume that the different lifespans fixed the 

time horizon for the evaluation and gave origin to three different residual values, modeling the 

possible temporal variability of the components, or even simplifying them. 

The analysis is conducted on elements with the same energy performance in order to identify 

the preferable component from a sustainability viewpoint. It is considered the construction phase 

[39], also taking into account the EE and the EC that the realization implies, in relation to both the 

service life of the components (in terms of maintenance costs, replacement costs, and so forth) and to 

the end-of-life phase of the same. Therefore, the focus is not on the energy performances of the 

components (being assumed equal), but rather on the characteristics of the constructive/executing 

process, including the environmental impacts in the realization phase (construction) and in the 

management phase (use–maintenance–adaptation). 

Starting from these premises, in order to develop the analysis and calculate the results of 

Equation (4), the model input definition represents a fundamental phase. 

The literature offers consolidated approaches to define the model input. For example, the 

methodology illustrated in Reference [37] is articulated in the following operative steps: 

(1) identification of each LCCE and, from among these, the selection of the relevant cost drivers 

(risky or uncertain input cost items); 

(2) for each relevant cost driver, the identification of the potential range of variability to the point 

estimate; 

(3) calculation of the overall range associated to the estimate, according to two different 

approaches: the deterministic one (variability range defined according to a minimum and 

maximum point estimates) and the probabilistic one (variability range expressed through 

probability distribution functions, calculated with the analytic approach or through 

simulation). 

In the application proposed in this work, the input definition phase follows a different 

workflow. The first two steps are developed in the same modality, while step three is solved through 

a “mixed deterministic–probabilistic conjoint application”. The probabilistic approach is proposed 

for defining every variable (cost item), with the exception of the lifespan of the alternative option 

elements. The latter is modeled according to the deterministic scenario analysis. 

The input definition phase is followed by the model output calculation according to the 

probability analysis approach. In summary, the methodology is articulated according to the steps 

illustrated in Scheme 1. 
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Scheme 1. The model input definition. 

Specifically, the steps illustrated in Scheme 1 are articulated as follows: 

• identification of the set of “relevant cost drivers”, or critical inputs, to be expressed as stochastic 

variables. Costs are subject to different degrees of uncertainty, also in relation to the time. For 

this reason, it is suggestable to define different confidence levels of the estimates, or “expected 

accuracy ranges” [37], in relation to the different cost items. Since the costs refer to the life-cycle 

of the components, the “expected accuracy ranges” can be appropriately expressed in terms of 

life-cycle cost estimates—LCCEs; 

• assignment of the Probability Distribution Function (PDF) to each stochastic input variable, and 

the identification of the relative probability distribution parameters. As said before, the 

triangular distribution can be considered the most used PDF to represent the uncertain 

variables present in the real estate investments (Figure 1) [40–42]. Therefore, this step is devoted 

to the assignment of minimum, maximum, and point estimate values for each variable; 

• definition of alternative scenarios with different lifespans in order to simulate different residual 

values for the components considered in the analysis. In this step, the aim is introducing 

uncertainty in the duration of the components. The duration is expressed through the variation 

of the residual values, being uncertain the lifespan of the components themselves; 

• Iteration and sampling resolved through MCM. For the simulation, it is necessary to define the 

number of iterations and the sampling modality, in our case the Latin Hypercube Sampling 

(LHS); 

• running the simulation and production of the regression analysis in order to quantify the effect 

of the input variables on the output value, expressed in terms of marginal coefficients of the 

dependent variables against the independent variable (Global Cost). This step is supported by 

the production of graphics (tornado graphs and spider graphs). Operatively, this step is solved 

according to the following passages: 

− Multiple regression analysis application (usually, sensitivity analysis according to the 

simulation approach is solved through multiple regression analysis. Formally, the 

regression model applied for the simulation can be approximated by the following 

Equation (see Kleijnen, J.P.C., Verification and validation of simulation models, European 

Journal of Operation Research, 1995, 82, 145–162, p. 156): 
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𝑥𝑖𝑘𝑥𝑖𝑘′ + 𝑒𝑖 (5) 

where yi represents the results of the simulation in the i combination (or run) of the 

simulation inputs k, for i = 1, …n (where n represents the total number of simulation runs); 

xik stands for the value of the simulation input, k, in the i combination; βk is the first order 

effect of input k; βkk is the interaction between the k and k’ inputs; and ei stands for the 

approximation or best-fit error in the i run.) The sampled values of the input variables are 

regressed against the output variable through multivariate stepwise regression analysis. In 

LCCA, if the global cost is taken as the dependent variable in the regression equation, then 

the marginal coefficient calculated for each input variable measures the sensitivity of the 

output variable with respect to each of them; 

− Degree of correlation calculation. This is expressed by coefficients of correlation between 

the output values and each set of input value samples. Operatively, this step is solved 

through the rank correlation analysis, calculating Spearman’s correlation coefficients in 

order to determine the correlation between the global cost and the samples for each input 

distribution; 

• output calculation in terms of the Probability Distribution Functions and statistics (minimum 

value, maximum value, standard deviation, skewness, kurtosis, and so forth) calculated for 

each alternative option. 

 

Figure 1. Probability distribution function: the triangular distribution described by the minimum, 

most likely, and maximum values. 

In conclusion, the following summary Scheme 2 shows a comparison between the consolidated 

procedure [28,37] on the left side and the simplified procedure proposed in this study on the right 

side. Specifically, the scheme highlights that the sensitivity analysis (according to the deterministic 

approach), input estimates calculation through probability distributions, Monte Carlo simulation, 

and analytical techniques, are combined differently in the methodological proposal. 
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Scheme 2. Comparison between the consolidated and the proposed life-cycle cost (LCC) with risk 

analysis workflows. 

4. Case Study 

The methodology proposed is applied for evaluating the preference between two alternative 

windows realized through different technological solutions. The windows are part of a building 

project outcome of a design experience considered as a case study in a previous research study [32]. 

As the present study is the continuation of the previous one, all of the data refers to the year 2015. 

The project, which is composed of four independent units, is a multifunctional building with 

two floors for a shopping mall and the above four floors as an office. It is characterized by a 

particular shading device that covers the terraces facing the glass façade in the office floors, which 

was intended to reduce the solar incidence in the summer and optimize the solar gain in winter 

(Figure 2). 

Only one of the four building units is considered, with a gross internal floor area of 4166 m2, a 

total glazing area of 1426 m2, and a glazing ratio of the external walls of 90%. 

  
(a) (b) 

Figure 2. The case study: (a) the whole building project, named the Red Ring Office; (b) an isometric 

view of the building. 
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The glass façade is solved through two different technological solutions. In the first case, a 

timber frame window is adopted; in the second case, an aluminum frame window (see Figure 3) is 

adopted. Both of them have double selected low-emission glazing filled with argon (4 + 4/12 mm 

argon 90%/3 + 3). In particular, the two solutions have both the same value of window transmittance 

(Uw), which is lower than the limit value imposed by the regulations issued in Italy, especially in the 

force in the City of Turin [43,44]. 

  
(a) (b) 

Figure 3. The window frame: (a) the timber frame; (b) the aluminum frame. 

It is important to notice that even in the presence of the same technological characteristics, 

according to an economic viewpoint, the timber window system is more expensive (about 30%) than 

the aluminum one [45,46]. The environmental indicators related to the alternative window systems 

are carried out with different software tools (see Table 2): 

• The IREEA tool (Initial and Recurring Embodied Energy Assessment, Version 2.4, IREEA, 

Turin, Italy) [47] for Embodied Energy calculation; 

• The Designing out Waste Tool (DoWT, WRAP, Banbury, UK) [48] for Embodied Carbon 

calculation. 

The following Table 2 summarizes the main economic and environmental characteristics of the 

two window systems. 

Table 2. The main economic and environmental indicators of window systems. 

Indicator Unit of Measurement Timber Frame Aluminum Frame 

Initial investment cost € 363,027.50 272,852.50 

Embodied Energy MJ 2,333,539.78  5,881,721.38 

Embodied Carbon kg CO2 eq (100 years) 665,485  1,100,860 

5. Application and Results 

According to the methodology illustrated in Section 3, and assuming the case study illustrated 

in the section above, the following results are obtained. 

5.1. Risk and Uncertainty in Model Input 

In order to define the uncertainty in LCCEs, firstly, the “critical” input variable or relevant cost 

drivers are identified. Then, in relation to the potential uncertainty in the estimates, two different 

ranges are identified in terms of minor (−5% to +10%) and major uncertainty (−10% to +20%). 

For each relevant cost driver, an expected accuracy range is fixed, which represents the 

confidence percentage. As suggested in the literature, the ranges are defined by firstly assuming the 

opinions expressed “by a group of subject matter experts” [37]. Secondly, the ranges adopted in the 
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risk analysis simulations, the results of recent studies, and the applications for similar items are 

taken into consideration [49,50]. 

The cost items and the relative expected accuracy ranges are illustrated in Table 3. 

Table 3. The cost drivers and the relative expected accuracy ranges. 

Cost Driver Expected Accuracy Range 

 Low High 

Initial investment costs (elements costs) −5% +10% 

Annual running and replacement costs:   

- Inspection −5% +10% 

- Preemptive maintenance −5% +10% 

- Maintenance work (light) −5% +10% 

- Maintenance work (main) −10% +20% 

- Replacement −10% +20% 

Dismantling cost −10% +20% 

Disposal cost −10% +20% 

Notice that the initial investment costs (element costs), dismantling costs, and disposal costs are 

expressed through the total amount of costs, whilst the others are expressed as yearly or periodic 

cost amounts according to the components’ lifespans.  

Then, the range of values for each cost item both in the case of the timber frame and in the case 

of the aluminum frame are defined (see Tables 4 and 5). These values, specifically the Low Range 

value, Point Estimate, and High Range value, represent the distribution parameters that are 

necessary to define a triangular distribution, as illustrated in the methodology section above. 

Table 4. The cost drivers and relative probability distribution parameters in the timber frame case. 

Timber Frame 

Cost Driver Unit Low Range Point Estimate High Range 

Initial investment costs (elements costs) €/m2 218.06 229.53 252.49 

Annual running and replacement costs:     

- Inspection € per year 6220.05 6547.43 7202.17 

- Preemptive maintenance  € per year 15,550.13 16,368.56 18,005.42 

- Maintenance work (light) € every 3 years 62,200.54 65,474.25 72,021.68 

- Maintenance work (main) € every 7 years 117,853.65 130,948.50 157,138.20 

- Replacement € 339,561.00 377,290.00 452,748.00 

Dismantling cost €/m2 29.70 33.00 39.60 

Disposal cost €/ton 49.50 55.00 66.00 

Table 5. The cost drivers and relative probability distribution parameters in the aluminum frame 

case. 

Aluminum Frame 

Cost Driver Unit Low Range Point Estimate High Range 

Initial investment costs (elements costs) €/m2 157.99 166.31 182.94 

Annual running and replacement costs:     

- Inspection € per year 2253.36 2371.96 2609.16 

- Preemptive maintenance € per year 11,266.82 11,859.81 13,045.79 

- Maintenance work (light) € every 5 years 45,067.29 47,439.25 52,183.18 

- Maintenance work (main)  € every 10 years 74,716.82 83,018.69 99,622.00 

- Replacement € 258,403.50 287,115.00 344,538.00 

Dismantling cost €/m2 29.70 33.00 39.60 

Disposal cost €/ton −640.00 −800.00 −880.00 

For the variables of discount rate, Embodied Energy (expressed in terms of the cost for 

electricity), and Embodied Carbon (expressed through the average value of the carbon taxes applied 

in the European Member States) [51], the ranges of the values are defined on the basis of specific 
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considerations. Specifically, the discount rate distribution parameters are fixed, assuming the 

indications of the official documents [28,33]. The Embodied Energy distribution parameters are 

defined, assuming an expected accuracy range that is coherent with the initial investment costs, and 

the Embodied Carbon parameters are fixed according to the lowest and the highest carbon tax tariffs 

(see Table 6). 

Table 6. The financial assumptions and environmental cost items: probability distribution 

parameters. 

Timber/Aluminum Frame 

Finacial Assumptions and Environmental Cost Items Unit Low Range Point Estimate High Range 

Discount rate % 1.25 1.39 2.50 

Embodied Energy—Cost for electricity €/Kwh 0.145 0.153 0.168 

Embodied Carbon—Carbon Tax EU  €/ton 13.50 22.25 33.00 

For the time horizon for the LCCA application, a 30-year lifespan is assumed. Then, in order to 

consider the residual value of the components as well, three alternative scenarios are assumed, with 

different lifespan each: 25 years, 20 years, and 15 years. These three alternative lifespan scenarios 

give origin to three different potential residual values. Consequently, in the 25-year lifespan case, the 

residual value is defined in relation to 20 years of residual lifespan, and in the 15-year lifespan case, 

the residual value will be zero. 

On the basis of the previous assumptions, a simulation is conducted through the software 

@Risk (release 7.5 by Palisade Corporation). The simulation is produced through a Monte Carlo 

Method application, specifically with 100,000 iterations and with a Latin Hypercube Sampling 

modality. 

The probability distributions obtained by processing the input data defined previously are 

presented in Table 7. In the table, the triangular distributions calculated for the 25-year scenario, for 

each cost element, and the elementary statistics (minimum, maximum, and mean values; 5% and 

95% percentiles) are specified. 

Table 7. The cost drivers and probability distribution values in the 25-year lifespan scenario; Monte 

Carlo simulation output. 

Cost Driver Graph Min Mean Max 5% 95% 

Disposal cost_glass 

 

72.04174 82.66666 95.9882 75.09819 91.6178 

Disposal cost_timber 

 

49.52516 56.83334 65.97852 51.63001 62.98751 

Disposal cost_aluminum 

 

640.3812 773.3333 879.7273 683.8148 849.0135 

Dismantling cost 

 

29.70633 34.1 39.59618 30.97808 37.7925 

Discount rate 

 

1.25% 1.71% 2.50% 1.34% 2.24% 

Embodied Energy_cost of electricity 

 

0.1453121 0.1555333 0.1682803 0.1482755 0.1641051 

Embodied Carbon_Carbon Tax mean 

EU 
 

13.51154 22.91667 32.9786 16.42056 29.7623 

Fixture Elements Cost:      

Fixture elements cost/Timber 

 

218.0984 233.3584 252.466 222.5009 246.2 
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Fixture elements cost/Aluminum 

 

157.9929 169.0794 182.8887 161.2125 178.3837 

Inspection:      

Inspection/Timber 

 

6221.259 6656.549 7200.021 6346.84 7022.841 

Inspection/Aluminum 

 

2253.682 2411.495 2608.782 2299.294 2544.194 

Maintenance Work (Light):      

Maintenance work (light)/Timber 

 

62,215.12 66,565.48 71,997.41 63,468.33 70,228.49 

Maintenance work (light)/Aluminum 

 

45,079.43 48,229.91 52,172.09 45,985.94 50,883.93 

Maintenance Work (Main):      

Maintenance work (main)/Timber 

 

117,859.3 135,313.5 157,064.5 122,924.9 149,965.5 

Maintenance work (main)/Aluminum 

 

74,738.78 85,785.84 99,568.09 77,931.94 95,074.59 

Preemptive Maintenance:      

Preemptive aintenance/Timber 

 

15,553.31 16,641.37 18,002.42 15,867.11 17,557.11 

Preemptive maintenance/Aluminum 

 

11,269.82 12,057.48 13,043.91 11,496.46 12,720.99 

Replacement:      

Replacement/Timber 

 

339,753 389,866.3 452,551.2 354,172.4 432,081.8 

Replacement/Aluminum 

 

258,436.4 296,685.5 344,450.6 269,523.2 328,811.6 

As illustrated in Table 7, the graphical representation of the probability distributions present, in 

one case, a triangular distribution with asymmetry on the right. In this case, the outcomes are 

replaced by incomes, which are represented by the recovery of the aluminum during the disposal 

phase. 

Analogously, the simulations are produced for the 20-year scenario and the 15-year scenario. 

5.2. Risk and Uncertainty in Model Output: Stochastic Simulation Through the Monte Carlo Method 

Using the inputs defined in the previous section, the Monte Carlo Method is applied in order to 

obtain the stochastic output values of the indicator GCEnEc, as defined in the methodology section. 

As illustrated in Figure 4, the first scenario presents the results considering the timber and 

aluminum frames for a 25-year lifespan. Comparing the probability distribution function of the 

GGcEnEc, the related Probability Density Function, and the statistics calculated for the two alternative 

frames, higher costs emerge for the timber frame, as expected from being in the presence of higher 

initial and periodic maintenance cost amounts. 

In Figure 4, the probability distribution graphics present a similar trend, given the homogeneity 

of the distribution in the input data. The differences are present in the minimum, mean, maximum 

values, and in the standard deviation values.  
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Timber Frame Aluminum Frame 

  

  

  

Figure 4. The output probability distribution function, probability density function, and statistics for 

the timber/aluminum frame scenarios for the 25-year lifespan option; Monte Carlo simulation 

output. 

Analogously, the simulations are produced for the 20-year and 15-year scenarios, considering 

both timber and aluminum frames. The results of the simulations are synthetically reported in 

Figures 5 and 6, in which the tornado graphs related to the effects of the inputs on the output mean 

and related to the Spearman correlation coefficients to determine the correlation between the global 

cost and the samples for each input distribution are illustrated. 

25-Year Lifespan Scenario 

 
 

 
 

Statistics

Minimum € 1.623.874,04

Maximum € 2.005.718,59

Mean € 1.826.082,46

Std Dev € 61.323,06

Variance 3760518122

Skewness -0,24496271

Kurtosis 2,52079847

Median € 1.830.840,27

Mode € 1.857.675,29

Left X € 1.718.837,11

Left P 5%

Right X € 1.919.278,79

Right P 95%

Statistics

Minimum € 1.108.475,07

Maximum € 1.332.700,19

Mean € 1.222.942,09

Std Dev € 33.568,46

Variance 1126841504

Skewness -0,246419934

Kurtosis 2,580507412

Median € 1.225.477,55

Mode € 1.242.853,68

Left X € 1.164.163,97

Left P 5%

Right X € 1.274.019,97

Right P 95%
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20-Year Lifespan Scenario 

  
15-Year Lifespan Scenario 

  

Figure 5. The inputs ranked by the effect on the output mean, the timber/aluminum frame scenarios, 

the 25/20/15-years lifespans. The Monte Carlo simulation output. 

25-Year Lifespan Scenario 

  
20-Year Lifespan Scenario 

  
15-Year Lifespan Scenario 

  

Figure 6. The Spearman correlation coefficients for the timber/aluminum frame scenarios, for the 

25/20/15-year lifespan options. The Monte Carlo simulation output. 
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Comparing the results of the regression analysis application, graphically represented through a 

tornado graph (see Figures 5 and 6), the following considerations emerge: 

• for every scenario, the discount rate is the variable that produces the largest perturbation on the 

output. In fact, considering the range of values assumed for this variable, the effects on the 

output are relevant; 

• cost items regarding preemptive maintenance, light maintenance work, and the main and 

elements costs are relatively significant, while the other items have a small influence on the 

results; 

• the relative influence of Embodied Energy is particularly significant in differentiating the 

aluminum frame and the timber frame; 

• the substantial effect of the residual value and the related uncertainty on components lifespans 

in differentiating the output results in favor of the aluminum frame technological solution. 

These considerations are supported also by the analysis of the spider graphs (see Figure 7). 

25-Year Lifespan Scenario 

  
20-Year Lifespan Scenario 

  
15-Year Lifespan Scenario 

  

Figure 7. The spider graphs for the timber/aluminum frame scenarios for the 25/20/15-year lifespan 

options. The Monte Carlo simulation output. 

The spider graphs confirm the relevant effect of the discount rate (red line) with a negative 

trend, whilst the results of the other lines (with positive trends) are rather overlapped in every case 

with a limited difference. 
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6.3. Results and Final Considerations 

Concluding the analysis, the simulation output results are compared as reported in Tables 8–10, 

respectively, for the 25, 20, and 15-year lifespans. 

Table 8. The output values of GcEnEc for the timber/aluminum frames: the probability distribution 

function and statistics for the 25-year lifespan option. The Monte Carlo simulation output. 

Output Graph Min Mean Max 5% 95% 

GcEnEc Timber 

 

€1,623,874.00 €1,826,083.00 €2,005,719.00 €1,718,837.00 €1,919,279.00 

GcEnEc Aluminum 

 

€1,108,475.00 €1,222,942.00 €1,332,700.00 €1,164,164.00 €1,274,020.00 

Table 9. The output values of GcEnEc for the timber/aluminum frames: the probability distribution 

function and statistics for the 20-year lifespan option. The Monte Carlo simulation output. 

Output Graph Min Mean Max 5% 95% 

GcEnEc Timber 

 

€1,664,037.00 €1,889,592.00 €2,093,332.00 €1,774,911.00 €1,988,238.00 

GcEnEc 

Aluminum 

 

€1,210,552.00 €1,353,980.00 €1,492,126.00 €1,278,157.00 €1,419,990.00 

Table 10. The output values of GcEnEc for the timber/aluminum Frames: the probability distribution 

function and statistics for the 15-year lifespan option. The Monte Carlo simulation output. 

Output Graph Min Mean Max 5% 95% 

GcEnEc Timber 

 

€1,768,091.00 €2,012,776.00 €2,250,914.00 €1,889,712.00 €2,119,987.00 

GcEnEc Aluminum 

 

€1,232,633.00 €1,395,225.00 €1,547,834.00 €1,320,232.00 €1,461,350.00 

From the results, it is also possible to extrapolate the effect of the residual value. 

In contrast with the considerations about the environmental impacts of the two different 

scenarios, the aluminum frame seems preferable under the economic viewpoint. 

In fact, the residual value assumes a higher significance in the case of timber, while for 

aluminum, the effect in terms of the global cost is lower or more stable. In the case of a lower or 

absent residual value for timber frame, the global cost increases considerably: timber seems more 

reactive to the residual value reduction, as the timber component is more expensive. On the 

contrary, the aluminum component scenario seems less reactive to residual value variations. 

These last considerations open up the opportunity to analyze deeply the behavior of the two 

technologies from a time perspective, in terms of the uncertainty over time, or, in other words, the 

necessity to analyze the residual value as a function of time by introducing stochastic processes into 

the analysis. 

6. Conclusions 

In this paper, a methodology aimed at supporting decision making in new buildings or in 

retrofitting design activities was proposed. The method assumed a life-cycle perspective and 

sustainable design principles [52]. The focus was on the evaluation of the economic–environmental 

sustainability, considering the presence of the risk and uncertainty components. The presence of 
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uncertainty in both cost-estimating (LCCEs) and in technical performance (LCCA) was particularly 

assumed. 

With these purposes, an application of the Life-Cycle Cost Analysis in conjunction with a risk 

analysis was proposed to select the preferred choice from among the alternative technological 

options, taking into account both the economic and environmental aspects. 

Specifically, the risk analysis was solved through the probability analysis approach, which was 

developed by the following steps: (1) identification of the set of “relevant cost drivers” expressed as 

stochastic input variables and the definition of the relative expected accuracy ranges; (2) the 

assignment of the probability distribution function (triangular distribution) to each stochastic input 

variable and the identification of the relative probability distribution parameters; (3) the definition of 

alternative scenarios with different lifespans in order to simulate different residual values for 

introducing uncertainty in the duration of the components; (4) iteration and sampling through the 

Monte Carlo Method; (5) the running of the simulation and the production of regression analysis; 

and (6) output calculation for each alternative option. 

The methodology was applied on a simulated case study regarding the selection of the 

preferable solution from between two alternative technological components, in economic and 

environmental terms, for a multifunctional building glass façade in Northern Italy. The same 

case-study was treated in a previous work of which this paper constitutes a development. 

Coherently, with this previous study, the evaluation of the sustainability of the project, both in 

economic and environmental terms, is analyzed with a synthetic “economic–environmental 

indicator”, calculated in terms of a stochastic global cost. 

Considering the results of the regression analyses produced, it emerged that the uncertainty in 

the discount rate input variable can determine the largest perturbation on the output, confirming the 

relevance of financial variables in long-term valuations such as LCCA applications. Contrarily, cost 

items are relatively or poorly significant in the results. Meanwhile, the relative influence of 

environmental variables is particularly significant in differentiating the aluminum frame and the 

timber frame. The presences of EE and EC are able to perturb the model output and lead to opposite 

results, with respect to the deterministic model application. Furthermore, the substantial effect of the 

residual value and the related uncertainty on components’ lifespans in differentiating the output 

results in favor of the aluminum frame technological solution was observed. 

The behavior of the two technological scenarios under uncertain conditions opens the necessity 

of developing a further step of the analysis that considers the influence of time (duration of 

components) as a stochastic variable. The progress of the research is directed to the exploration of 

stochastic processes in order to model the variation of economic impacts, assuming flexibility in the 

input data and in service lives. 
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