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Abstract: The goal of this study is to analyze the interrelated direct and indirect impacts of urban
development intensity (UDI) characteristics on carbon dioxide (CO2) emissions in Korea. The study
also compares the main arguments and analysis results of previous studies on cities that are effective
in reducing CO2 emissions. To do this, factors attributable to the UDI characteristics of Korea
were selected, and CO2 emissions were calculated. Then, the impact of UDI characteristics on CO2

emissions was analyzed using the partial least squares structural equation model. The main results
show that the physical, spatial, and socio-demographic characteristics of UDI have a direct impact on
CO2 emissions, and physical, economic, and city-type characteristics indirectly affect CO2 emissions.
As a result, we reach the following conclusions: (i) dense urban forms reduce CO2 emissions;
(ii) economic characteristics of UDI have impact on total CO2 emissions, having both negative and
positive effects; and (iii) medium and small cities have higher per capita CO2 emissions than do
large cities.

Keywords: urban development intensity characteristics; carbon dioxide emissions; partial least
squares structural equation model

1. Introduction

1.1. Theoretical Background

Global warming causes climate change and affects natural ecosystems, human health, residential
environments, industrial activities, and socioeconomic spheres. Carbon dioxide (CO2) has been
identified by numerous scientists to be the primary cause of global warming; CO2 emissions are
especially rampant in cities, due to human activities and the burning of fossil fuels [1]. Korea ranked
7th in global CO2 emissions in 2010, emitting 5.90 million tons; Korea also has the third largest rate of
CO2 emissions increase, with a 136% increase since 1990 [2].

In order to minimize CO2 emissions, policymakers are turning their attention toward the
development of energy conservation and emissions mitigation strategies [3]. Interest in the effects of
urban development intensity (UDI) on CO2 emissions reduction, in relation to urban planning and
spatial optimization measures [4], is increasing, as urbanization is known to affect the intensity of
carbon emissions activity within cities [5,6]. UDI is defined in terms of the various impacts that human
development activities exert on urban areas [7].

The following studies illustrate that UDI research is being conducted in various ways, depending
on the academic background and approach of the researchers, and factors with similar attributes
can be categorized as physical, social, or economic characteristics, amongst others. For example,
Ou et al. [4] studied the effects of land use spatial patterns and density, transportation, and

Sustainability 2018, 10, 1838; doi:10.3390/su10061838 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
http://www.mdpi.com/2071-1050/10/6/1838?type=check_update&version=1
http://dx.doi.org/10.3390/su10061838
http://www.mdpi.com/journal/sustainability


Sustainability 2018, 10, 1838 2 of 18

communication infrastructure on CO2 emissions. Land use patterns and density elements represent
spatial characteristics, and transportation and communication infrastructure facilities exhibit physical
characteristics. Similarly, Guerin et al. [8] found that factors such as age, gender, and education level,
which indicate social and economic characteristics, such as income and house ownership, affect energy
consumption. Brownstone and Golob [9] found that spatial characteristics, such as residential density,
affect vehicle mileage and fuel consumption. Tate et al. [10] and Mendes [11] developed the UDI index
based on physical characteristics, such as land coverage and infrastructure, and socio-demographic
characteristics, such as census block group.

However, as pointed out by Wang et al [7], virtually no studies comprehensively address
the UDI characteristics relevant to urban planning. For example, Newman and Kenworthy [6]
argued that physical factors, such as transportation-related automobiles and transportation facilities,
accelerate CO2, but their research fails to include economic factors, such as price or income changes.
Similarly, Talbi [12] studied the relationship between CO2 and economic aspects, such as GDP,
fuel consumption, fuel ratio, and energy efficiency, and found that the latter two are important
for CO2 emissions. However, this author did not consider the fact that energy consumption patterns
or CO2 emissions may vary due to other factors, such as age or city type. Schipper et al. [13] and
Guerin, Yust and Coopet [8] considered socio-demographic and economic characteristics but limited
their study of energy consumption to the residential sector. Similarly, Fragkias et al. [14] examined the
relationship between city size and CO2 emissions based on population, but they did not sufficiently
address other characteristics influencing this relationship.

Though previous studies do not comprehensively address UDI characteristics, a number of studies
have revealed that UDI characteristics can influence other characteristics ultimately affecting CO2

emissions indirectly. Liu and Shen [15] stated that, although urban forms do not directly affect vehicle
miles traveled or vehicle energy consumption, they can indirectly affect energy consumption through
other channels. O’neill and Chen [16] determined that per capita residential energy consumption
increases and transportation energy decreases with homeowner age. However, per capita energy
consumption (expressed as the sum of residential and transportation energy) increases with age until
reaching a maximum at age 55, after which it decreases. According to Fong et al. [17], the increasing
amount of time spent at home as citizens age leads to increased residential energy consumption and
decreased transportation energy.

The ability to quantify and structure UDI characteristics affecting CO2 emissions in terms of urban
planning is potentially valuable, as such research can present a logical foundation for the evaluation,
distribution, and management of limited resources during the implementation of high-level, long-term
policy plans (such as urban master or comprehensive planning). However, as discussed in previous
studies, only a single characteristic, not knowing the structural relationship with other characteristics,
and different levels of measurement among the factors that characterize it should be considered to
establish integrated urban planning for CO2 reduction. Studies on the impacts of urban form and
CO2 show good examples of these concerns. Urban form is defined as built-up areas, including the
shape, size, density, and configuration of settlements. It therefore refers to the spatial arrangement of
individual elements, and the interaction between the elements means a series of relationships, or flows,
that integrate patterns and behaviors of the individual elements in the city. In terms of UDI, urban
form is mainly measured using physical and spatial characteristics. There are discrepancies in previous
research of this type as to the specific urban forms that are advantageous in terms of CO2 emissions and
energy consumption. For example, Anderson et al. [18], Banister et al. [19], and Dhakal [20] found that
more compact urban forms with lower dispersion rates reduce CO2 emissions. Conversely, Newman
and Kenworthy [6], Jenks and Burgess [21], and Chiu [22] claimed that there is inadequate evidence
that dense cities contribute to energy conservation. Glaeser and Kahn [23] stated that large cities with
high populations have an efficiency advantage over small cities in terms of energy efficiency and CO2

emissions. In contrast, Fragkias et al. [14], who compared CO2 emissions from large and small cities,
concluded that large cities do not have more efficient emissions.
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The preceding studies highlight the variety of academic perspectives and methods employed
during research on the relationship between the UDI and CO2 emissions. However, there are almost
no studies on what UDI characteristics are and how they affect CO2 emissions from an urban planning
perspective. Earlier studies are restricted to the transportation and residential sectors, as opposed
to urban planning, and emphasize CO2 emissions from direct consumption over those from indirect
consumption. In addition, attempts to investigate how UDI characteristics can indirectly affect CO2

emissions by affecting other characteristics have been insufficient. As a result, the literature is not
consistent in identifying the most efficient urban form in terms of CO2 emissions. Based on these
implications, we ask the following research questions: (i) What are the UDI characteristics and
factors that affect CO2 emissions in Korea; (ii) what are the structural impact relationships between
UDI characteristics and CO2 emissions; and (iii) what is the most efficient urban form to mitigate
CO2 emissions?

Thus, it is necessary to investigate the integrated interactions between UDI characteristics and
CO2 emissions from an urban planning perspective, identify the most important relationships, and
present a possible direction for policy strategy. Accordingly, the goal of this study is to analyze the
interrelated direct and indirect impacts of UDI characteristics on CO2 emissions in Korea. We also
compare the main arguments and analytical results of previous studies on cities that are effective in
reducing CO2 emissions.

1.2. Research Hypotheses

By reviewing the literature, we found that existing studies related to UDI did not consider other
characteristics together or missed their relationships. Before we consider these, UDI characteristics
need to be classified and defined. By doing so, we can classify related factors according to their
characteristics and measure them at the same level. In this regard, the urban spatial structure can
explain UDI characteristics, because urban spatial structure is determined by the components of the
city and their interactions [24].

Parr [25] defined urban spatial structure as multifaceted, consisting of the distribution of
population, employment, built-up volumes, transportation networks, and land uses. To complement
the understanding of urban spatial structure, this morphological dimension can be completed by
functional features, such as flows of goods and services and interactions between people and
infrastructure [26]. Bourne [27] defined urban spatial structure as the interaction between an urban
form and its components. Hillier [24] further defined spatial structures as a structure in which
interdependent elements have a series of relationships. In addition, in the following studies,
the components of urban spatial structure were classified into several characteristics in comparison
with those that focused on physical and spatial characteristics. Antonescu and Ghisa-Silea [28] argued
that urban structure consists of all the relationships established between elements in an urban system,
namely functional, psychosocial, physical, and spatial, materialized in various forms and related to
the environment, by integrating the functional with the spatial structure. Snyder and Catanese [29]
argued that urban spatial structure needs to be understood as a total transformation that accompanies
physical, spatial, social, economic, and political changes in the city. Kaiser et al. [30] suggested it be
defined by three factors: economic, social, and public policy factors. Similarly, Foley [31] suggested
that urban spatial structure is composed of physical, functional, and social factors.

We discovered that the components of the urban spatial structure are interdependent and have
complementary relationships with each other. From the perspective of UDI, these components are
individual factors effected to the environment, and a set of factors with a similar nature are defined
as one characteristic. Each characteristic is expressed in size according to the intensity used in the
city; the pattern of the city is determined by which is stronger. By combining UDI-related studies and
definitions of urban spatial structure, we classify UDI characteristics into four categories as shown
in Table 1.
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Table 2 shows a classification of factors relating CO2 to UDI characteristics by examining previous
studies. These factors are important because previous studies have shown that they have a proven
association with CO2. However, since the factors used in Table 2 cannot be representative of each of
the aforementioned characteristics, they are named as potential factors. On the other hand, as the
correlation between city type and CO2 is revealed [14,23], it is necessary to analyze the relationship
including city type.

Table 1. Urban development intensity (UDI) characteristics and definition.

Characteristics Definition

Physical Characteristics The degree to which the macroscopic form represents the strength of the
use of physical elements of a city

Spatial Characteristics The degree to which the spatial form represents the strength of the use
of spatial elements of a city

Socio-demographic Characteristics The degree to which the sociodemographic state represents the strength
of the use of socio-demographic elements of a city

Economic Characteristics The degree to which the economic state represents the strength of the
use of economic elements of a city

Table 2. Urban Development Intensity factors.

UDI Characteristics Potential Factors Researchers

Physical Characteristics

Number of vehicles Lin and Yang [32]
Liu and Shen [15]

Total length of roads Reckien et al. [33]
Newman and Kenworthy [6]

Number of housing units Steemers and Yun [34]

Number of households using public transportation
Cervero and Murakami [35]

Lin and Yang [32]
Liu and Shen [15]

Spatial Characteristics

Land use

Liao et al. [36]
Ou et al. [4]

Wang et al. [37]
Liu and Shen [15]

Apartment residency ratio Steemers and Yun [34]

Urban population density Newman and Kenworthy [6]
Liu and Sweeney [38]

Employment number
Glaeser and Kahn [23]

Hankey and Marshall [39]
Newman and Kenworthy [6]

Socio-demographic Characteristics

Education level Guerin, Yust and Coopet [8]

Senior population ratio
Liu and Shen [15]
Guerin et al. [8]
Fong et al. [17]

Gender Guerin et al. [8]
Fong et al. [17]

Individual income Liu and Shen [15]
Brownstone and Golob [9]

Race Liu and Shen [15]

Economic Characteristics

Gross Regional Domestic Product (GRDP) Poumanyvong and Kaneko [40]
Wang et al. [7]

Financial independence rate Hankey and Marshall [39]

Employment rate (number of employers)
Reckien et al. [33]
Liu and Shen [15]

Brownstone and Golob [9]

Government revenue Wang et al. [37]

City Type City size Glaeser and Kahn [23]
Fragkias et al. [14]
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These characteristics are constantly interacting and changing [27]. Characteristics exist in
a dynamic state that can be changed by a new environment rather than in a static state that
can be changed in an interaction. For example, changes in physical characteristics that occur in
large-scale urban planning have significant impacts on changes in urban structure [41]. In addition,
changes in physical characteristics, such as the construction of infrastructure, play an important
role in determining spatial patterns [41]. In general, urban development is preceded by physical
characteristics, and functional and social characteristics gradually appear to follow. In this context, we
can assume that there are pre- and post-relationships among the characteristics that constitute the city.
In urban dynamic models, economic growth results from urban growth; however, in environmental
pressure models, economic growth is a causative factor in increasing infrastructure demand and
promoting energy production and consumption. Related theoretical models, including those
developed by the Organization for Economic Co-operation and Development (OECD) and the United
Nations Conference on Sustainable Development, have adopted Pressure-State-Response and Driving
Force-State-Response model frameworks. These models show the state of the environment (S) due to
human activity (P or D) and present policy (R) to resolve the given issue. Based on this theoretical
structure, this study uses the research model shown in Figure 1 to analyze relationships between the
UDI and CO2 emissions.
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Figure 1. Suggested model.

Here, “physical characteristics” are any physical factors affecting CO2 emissions in cities;
physical characteristics can be used to explain changes in spatial or socio-demographic conditions.
“Spatial characteristics” refer to spatial factors that affect CO2 emissions in a city and can be used to
explain the influence of the spatial density and urban form on CO2 emissions. “Socio-demographic
characteristics” include socio-demographic factors and patterns that affect CO2 emissions in a city.
“Economic characteristics” refer to economic factors that affect CO2 emissions in a city, including
those that indirectly promote energy production and consumption. Lastly, “city type” accounts for
differences in CO2 emissions based on differences between cities; these differences may be physical,
spatial, socio-demographic, and economic and can be used as variables to categorize the differences
between cities.
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2. Methods

2.1. Data and Sample Size

This study examines 107 of the 161 local governments in Korea that are categorized as cities
(i.e., involve a population greater than 50,000 (Local Autonomy Act, Article 7, Clause 1)). In this
study, data were collected from KOSIS (Korea Statistics Information Service) resources. The KOSIS
is a search service provided by the National Statistical Office, which stores statistical reports issued
by municipalities and approved by the central government. All data corresponding to Table 2 were
collected there.

On the other hand, to estimate CO2 emissions, this study obtained oil data from the Korea
National Oil Corporation’s 2013 materials on the state of domestic consumption and electricity data
from the Korea Electric Power Corporation’s 2013 materials on the state of domestic consumption.
These two companies are public institutions that manage the consumption data for all types of oil
(17 kinds including gasoline, kerosene, diesel, etc.) and electricity consumed according to the local
governments. These data are also by the central government.

Specifically, CO2 emissions can be calculated via application of the Intergovernmental Panel
on Climate Change (IPCC) guidelines or the use of the Eigen method for each country. This study
uses the 2006 IPCC Tier 1 method for oil sector calculations. A method developed by the Ministry of
Environment is used for the electricity sector, in order to utilize the country-specific emission factor
for Korea. This study uses oil conversion factors and carbon emission factors to calculate emissions
for oil and electricity consumption due to the differing units of consumption (i.e., L and MW·h;
refer to Table 3).

Table 3. CO2 emissions calculations.

Sector Calculation

Oil

EmissionsGHG,fuel = Fuel Consumptionfuel × EmissionFactorGHG,fuel
Total EmissionGHG = ∑Fuels EmissionsGHG,fuel

• EmissionsGHG,fuel: emissions of a given GHG by type of fuel (kg GHG)
• Fuel Consumption fuel: amount of fuel combusted (TJ)
• EmissionFactorGHG,fuel: default emission factor of a given GHG by type of fuel

(kg gas/TJ). For CO2, this includes the carbon oxidation factor, which is assumed to
be 1.

Electricity

Electricity sector greenhouse gas emissions (tCO2eq/year) = Σ Electricity Used
(kW·h/year) × Electricity Sector Indirect Emission Factor (gCO2/kW·h)

• The country-specific emission factor for Korea, which is 0.4585(tCO2/MWh)
(2011 standard), is used for electricity sector emission factors.

Green House Gas (GHG).

The total energy consumption in a given local government unit includes oil sector emissions
via direct consumption, expressed as CO2, and electricity and city gas sector emissions via indirect
consumption, also expressed as CO2. However, this study excludes city gas use due to the relatively
small associated energy consumption and the fact that some local governments lack relevant data.

An analysis of CO2 emissions from each energy source indicates that the oil sector emitted
2.67 million tons and was responsible for 55.7% of total emissions during the study period.
The electricity sector emitted 2.10 million tons, contributing 43.9% of total emissions. Comparing CO2

emissions per capita for each energy source, oil and electricity emitted 53.1% and 46.9%, respectively,
of the 11,799 kg CO2 mean annual emissions (Figure 2). The coefficients of variation of oil CO2 and
electricity CO2 were 3.77 and 0.79, respectively.
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The potential factors identified in previous research (Table 2) may not influence CO2 emissions
in Korea, specifically; thus, their suitability for use in this context must be determined. Final factors
were selected according to the following criteria. (i) The selected factors must be appropriate for
Korea specifically; Liu and Shen [15] argue that racial factors affect CO2 emissions, but, because
Korea is relatively racially homogeneous, racial factors can be excluded. Also, education level and
individual income cannot be collected, because they involve personal information, and there are a lot
of missing data about government revenue, since some local governments have released data while
others have not. (ii) The selected factors must be correlated with CO2 emissions; these relationships
are analyzed via the Pearson correlation coefficient, and only factors with significant correlations are
selected (see Table 4).

On the other hand, we selected city types as a dummy variable because its differences in CO2

emissions depend on the characteristics. The dummy variable is divided into 0 or 1, and the form of
city type can be determined by interpreting the influence and the sign. The criteria for categorizing
city types vary from researcher to researcher. In this study, city types were classified using UDI
characteristics. K-means clustering was performed to distinguish from 0 and 1. Table 5 shows the final
selected UDI factors.
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Table 4. Correlation between factors and CO2 emissions.

Classification Number of
Vehicles

Total Length of
Roads

Number of
Housing Units Residential Area Commercial Area Industrial Area Green Area Number of Households Using

Public Transportation

Oil
Pearson 0.663 ** −0.387 ** 0.719 ** −0.313 ** −0.298 ** 0.082 −0.159 0.691 **
p-value 0.000 0.000 0.000 0.001 0.002 0.400 0.101 0.000

Electricity Pearson 0.484 ** −0.408 ** 0.699 ** −0.072 0.054 0.521 ** −0.055 0.624 **
p-value 0.000 0.000 0.000 0.463 0.579 0.000 0.570 0.000

Classification Apartment
Residency Ratio

Population
Density

Employment
Density

Senior Population
Ratio GRDP Financial

Self-Reliance Rate
Employment

Number

Oil
Pearson 0.461 ** −0.518 ** 0.188 −0.509 ** 0.295 ** 0.395 ** 0.775 **
p-value 0.000 0.000 0.052 0.000 0.002 0.000 0.000

Electricity Pearson 0.506 ** −0.279 ** 0.208 * −0.544 ** 0.423 ** 0.419 ** 0.771 **
p-value 0.000 0.004 0.032 0.000 0.000 0.000 0.000

* p < 0.05, ** p < 0.01, *** p < 0.001 (both sides).

Table 5. Final selected UDI factors.

Classification Factors Unit Sample Size

Physical Characteristics

Number of vehicles Vehicles per capita 107
Total length of roads m per capita 107

Number of housing units houses per capita 107
Number of households using public transportation households 107

Spatial Characteristics Population density person/km2 107
Apartment residency ratio % 107

Economic Characteristics
Financial self-reliance ratio % 107

Employment number person 107

Socio-demographic Characteristics Senior population ratio % 107

City Type

Physical characteristics

dummy variables (0 or 1)

67/40
Spatial characteristics 79/28

Economic characteristics 70/37
Socio-demographic characteristics 43/64

CO2 emissions CO2 emissions from oil kg CO2 per capita 107
CO2 emissions from electricity kg CO2 per capita 107
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2.2. Methods Used to Analyze Relationships between Urban Development Intensity Factors and CO2 Emissions

We reviewed both the maximum likelihood structural equation model and partial least squares
structural equation model (PLS-SEM) methods. We chose the PLS-SEM because the independent and
dependent variables can be formulated into a linear equation; each variable can be classified by latent
variables, measurement indicators, and measurement error. Here, the UDI characteristics are the latent
variables, and the factors are the measurement indicators. In this study, we use SmartPLS 3 (SmartPLS
GmbH, Bönningstedt, Germany) which can simultaneously analyze the path coefficient of the latent
variable and measurements. SmartPLS 3 can also apply the method of formative indicators.

The measuring indicators can be classified into reflective indicators and formative indicators,
according to the causal direction. Reflective indicators are reflected as a result of the concept of
composition, and, when they are expressed as indicators, they are called reflection indicators and have
a very high correlation between the indicators. On the contrary, formative indicators are called molding
indicators if they constitute a constituent concept or cause a constituent concept. The reliability of
the measurement items is not necessarily required, because the correlation between the formative
indicators is low [42].

Jarvis et al. [43] suggests causality, interchangeable, and nomological net criteria for selecting
formative and reflective indicators. Götz et al. [44] stated that they depend on the researcher’s
judgment of the theoretical relationship between indicators and latent variables. All indicators of
the measurement model in this study were formative indicators because the indicators were formed
as latent variables and not as a result of latent variables. Unlike a reflective indicator that extracts
covariation among measuring indicators, a latent variable made using a formative indicator is a useful
method for constructing a measurement model when a latent variable is established by a limited
measuring indicator, because all measuring indicators act as a construct of a latent variable. Since the
latent variables estimated from two or more indicators have a complex meaning, it is necessary to clarify
the meaning of the latent variable so that the effect of each latent variable on the dependent variable
can be interpreted. In this study, we clarified the meaning of the latent variables in the discussion.

2.2.1. Coefficient Estimation Process of Structural Equation Model and Partial Least Squares Structural
Equation Model

The coefficient estimation process can be divided into four stages [45]. The first stage, called outer
approximation, uses the measurement indicators to approximate the latent variables. The second
stage involves finding the path coefficient of the structural model; the coefficient of determination,
which consists of the coefficient value that maximizes the explanation of variance, is computed for the
endogenous latent variable, and becomes the dependent variable in the structural model. In the third
stage, the score (i.e., inner approximation) of the latent variable is re-computed using the computed
path coefficient. Finally, in the fourth stage, the outer approximation from the first stage is used to
compute the inner approximation. The same process is repeated until the difference between the
computed outer load (i.e., weight) and the value used in the first stage falls below a prescribed level.

2.2.2. Verification Method of Structural Equation Model and Partial Least Squares Structural
Equation Model

Analysis of the test tool using PLS-SEM proceeded in two steps: (i) measurement model analysis
and (ii) structural model analysis. In this first stage, the measurement model of the reflective indicators
is evaluated in terms of reliability and validity. This involves four steps: individual item reliability,
construct reliability, convergent validity, and discriminant validity [46]. However, the verification
of formative indicators used in this study is different from the verification of general reflective
indicators. Since the measurement indicators are a component of the latent variables, a change
in the measurement indicators leads to a change in the latent variables [43,47]. For this reason, it has
been argued that traditional reliability and validity assessments are inappropriate and illogical [48].
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Their evaluation involves examination of (i) the convergent validity, (ii) indicator collinearity, and
(iii) statistical significance and relevance of the indicator weights [49].

In the second stage, the structural model is evaluated. The procedure consists of evaluating the
algebraic signs, magnitudes, and statistical significance of the structural path coefficients: the R2 values
(variance explained); the f2 effect size; the Q2 (predictive relevance) [48]; and the value of the
standardized root mean square residual (SRMR) as an approximate model fit for PLS-SEM [46].

3. Results

3.1. Evaluation of Measurement Model

The average variance extracted (AVE) can be used to decide whether a latent variable represents
the measurement indicators well. The latent variable must be greater than or equal to 0.5 to be
statistically significant [50]. Within this study, the AVE values of the latent variables ranged from
0.56 to 0.78, indicating that the latent variables explain 56–78% of the corresponding measurement
indicator information; thus, the latent variables are representative of the measurement indicators.
Table 6 shows the statistical significance of the measurement indicators that contribute to the
latent variable.

Multicollinearity needs to be verified, because the value of R2 can be extremely high and because
of the occurrence of information overlap, if multicollinearity exists between measurement indicators
and independent variables. This is because the relationship of measurement indicators to latent
variables is decided by multiple regression analysis. In general, if the value of Variance Inflation Factor
(VIF) is more than five, it is considered an indication that there is a problem of multicollinearity [51].
The highest value of VIF among every measurement indicator in this research was 3.191, so it was
judged that it is possible to run the model with no multicollinearity.

Adherence can be confirmed by evaluating the outer weight, which is the relative importance of
each indicator, and the outer loading, which implies its absolute importance [51]. The outer weight
is more than 0.1 [52], and the outer loading is more than 0.5 [53]. As a result of the analysis, it can
be shown that all the criteria mentioned above are satisfied, so the application of the formative
measurement model is appropriate. Table 6 presents the results concerning the measurement model in
this research.

Table 6. Statistical results concerning the measurement model used in this research.

Classification Measurement Indicators Outer Weights Outer Loading T Statistics
(|O/STERR|) VIF Result of

Testing

Physical Characteristics

Number of vehicles 0.293 0.624 4.774430 *** 1.189 Adoption
Total length of roads 0.274 0.800 3.780849 *** 1.812 Adoption

Number of housing units 0.428 0.811 5.503513 *** 1.590 Adoption
Number of households

Using public transportation −0.340 0.737 5.191831 *** 1.385 Adoption

Spatial Characteristics Population density 0.387 0.806 4.920767 *** 1.502 Adoption
Apartment residency ratio 0.725 0.949 9.013237 *** 1.502 Adoption

Economic Characteristics
Financial self-reliance ratio 0.793 0.943 17.047386 *** 1.202 Adoption

Employment number 0.966 0.691 5.430126 *** 1.202 Adoption

Socio–demographic
Characteristics Senior population ratio 1.000 1.00 - 1.000 Adoption

City Type

Physical Characteristics 0.201094 0.875 3.372 3.191 Adoption
Spatial Characteristics −0.234309 0.751 3.346 1.940 Adoption

Economic Characteristics −0.304029 0.879 3.804 2.921 Adoption
Socio–demographic

Characteristics 0.446543 0.853 4.633 1.756 Adoption

*** p < 0.001 (t > 3.30).

3.2. Evaluation of the Structural Model

The goals of the PLS-SEM include the estimation of both the path coefficient and the weighted
value that is used to predict the latent variables; these become the final dependent variables, and
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the prediction of the latent variables becomes the basis for evaluating the model suitability [44].
Thus, the R2 and Q2 values can be used to evaluate the PLS-SEM goodness-of-fit.

The Q2 index is a statistical estimator of the structural equation model; positive Q2 values indicate
good performance in the structural equation model [54,55]. The values of Q2 in CO2 emissions from
oil and electricity showed very high determination coefficients (0.415 and 0.234, respectively). In other
words, Q2 was greater than zero, so the prediction was deemed significant. According to these results,
the model for analysis of the influencing structure of CO2 emissions in this research has been validated
when considered for PLS-SEM—the explanation and prediction of dependent variables.

Meanwhile, the value of R2 in CO2 emissions from oil showed a very high determination
coefficient (0.428), and the value of R2 in the CO2 emissions from electricity showed a medium-level
determination coefficient (0.241). Physical, spatial, economic, and socio-demographic characteristics
were 0.78, 0.86, 0.83, and 0.74, respectively.

The difference in R2 indicates the overall effect size f2 for each interaction effect. The effect size f2

can be calculated as f2 = (R2 included − R2 excluded)/(1 − R2 included). f2 coefficients of 0.02, 0.15
and 0.35 indicate small, small and large effects, respectively [51]. The value of f2 in CO2 emissions
from oil is concluded that the effect of the Physical Characteristics (0.192) is medium, of the Spatial
Characteristics large (0.233) and of the Socio–demographic Characteristics small (0.011). The value of f2

in CO2 emissions from electricity is concluded that the effect of the Physical Characteristics is medium
(0.240), of the Spatial Characteristics small (0.031) and of the Socio–demographic Characteristics
medium (0.133).

PLS-SEM path coefficients are also subjected to significance testing. Generally, path coefficient
significance tests use bootstrap methods [55,56]. In this study, the significance is tested by extracting
5000 random specimens using a bootstrap technique. The path coefficient significance test results,
which represent causal links between latent variables, are shown in Table 7.

Table 7. Path coefficient analysis results.

Classification Original
Sample (O)

T Statistics
(|O/STERR|)

95% BCa Confidence
Interval

Result of
Testing

Physical Characteristics→ CO2 Emissions from Oil 0.444 2.837 ** (0.10, 0.72) Adoption
Physical Characteristics→ CO2 Emissions from Electricity 0.630 4.543 *** (0.35, 0.86) Adoption

Spatial Characteristics→ Emissions from Oil −0.720 3.892 *** (−1.21, −0.41) Adoption
Spatial Characteristics→ CO2 Emissions from Electricity −0.242 1.808 * (−0.55, −0.00) Adoption
Socio-demographic Characteristics→ Emissions from Oil −0.645 4.690 *** (−1.03, −0.40) Adoption

Socio-demographic Characteristics→ CO2 Emissions from Electricity −0.747 6.116 *** (−1.04, −0.49) Adoption
Economic Characteristics→ Physical Characteristics −0.256 2.134 ** (−0.49, −0.04) Adoption
Economic Characteristics→ Spatial Characteristics 0.196 1.765 * (−0.00, 0.38) Adoption

Economic Characteristics→ Socio-demographic Characteristics −0.251 2.499 ** (−0.43, −0.06) Adoption
Physical Characteristics→ Spatial Characteristics −0.172 1.972 ** (−0.31, −0.01) Adoption

Physical Characteristics→ Socio-demographic Characteristics −0.090 0.855 (−0.28, 0.13) Rejection
City Type→ Physical Characteristics 0.644 3.152 ** (−0.84, −0.35) Adoption
City Type→ Spatial Characteristics −0.598 3.131 ** (0.40, 0.85) Adoption

City Type→ Socio-demographic Characteristics 0.730 3.122 ** (−0.97, −0.47) Adoption
City Type→ Economic Characteristics −0.912 3.734 *** (−0.90, 0.93) Adoption

* p < 0.10 (t > 1.645), ** p < 0.05 (t > 1.96), *** p < 0.001 (t > 3.30).

Finally, we tested the model fit through the SRMR as the root mean square discrepancy between
the correlations observed and the model-implied correlations [46]. SRMR provides the exact fit of
the composite factor model, thus constituting a confirmatory composite analysis [49]. Our model
achieves an SRMR for the composite factor model of 0.071. This value can be considered acceptable for
PLS-SEM based on the usual cutoff of 0.08.

3.3. Total Impacts of Urban Development Intensity Characteristics that Affect CO2 Emissions

Based on the analysis shown above, the total impacts (i.e., the sum of the direct and indirect
impacts) of the UDI characteristics that affect CO2 emissions from oil and electricity are shown in
Table 8. Note that, because the total impact of a given UDI characteristic includes indirect impacts,
the total impact varies considerably depending on the energy source. In other words, the impacts of
oil and electricity may become smaller or larger.
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Table 8. Comparison of the influence of UDI characteristics on the direct and indirect impacts.

Classification Physical
Characteristics

Spatial
Characteristics

Socio-Demographic
Characteristics

Economic
Characteristics City Type

Oil
Direct Impact 0.444 *** −0.720 *** −0.645 *** - -

Indirect Impact 0.178 *** - - −0.136 0.485 ***
Total Impact 0.623 *** −0.720 *** −0.645 *** −0.136 0.485 ***

Electricity
Direct Impact 0.630 *** −0.242 *** −0.747 *** - -

Indirect Impact 0.109 *** - - −0.048 0.118 ***
Total Impact 0.739 *** −0.242 *** −0.747 *** −0.048 0.118 ***

*** p < 0.01.

These results support our hypothesis that physical, spatial, and socio–demographic characteristics
directly affect CO2 emissions from oil and electricity, while city type and economic characteristics
indirectly affect CO2 emissions through other characteristics (see Figure 3). Furthermore, the regression
equations are shown in order to determine whether the given relationships are positive or negative
and enable comparison with the results of previous studies.

Direct relationships can be represented as:

PCi = 0.29(number o f vehiclesi) + 0.27(total length o f roadsi)+

0.42(number o f housing unitsi)− 0.34(number o f households using busesi),
(1)

SCi = 0.725(apartment residency ratioi) + 0.387(population densityi), (2)

SDCi = senior population ratioi; (3)

and indirect relationships can be represented as:

PCi = −0.25(ECi) + 0.64(CTi) + e1, (4)

SCi = −0.17(PCi) + 0.19(ECi)− 0.59(CTi) + e1, (5)

SDCi = −0.25(ECi) + 0.73(CTi)− 0.08(PCi) + e1, (6)

ECi = 0.793( f inancial sel f reliance ratioi) + 0.366(employment numberi), (7)

ECi = −0.91(CTi) + e1, (8)

CTi = −0.234(PCi) + 0.201(SCi)− 0.304(ECi) + 0.447(SDCi) + e1; (9)

and total relationships can be represented as:

OEi = 0.62(PCi)− 0.72(SCi)− 0.64(SDCi)− 0.13(ECi) + 0.48(CTi) + e1, (10)

EEi = 0.73(PCi)− 0.24(SCi)− 0.74(SDCi)− 0.04(ECi) + 0.11(CTi) + e1, (11)

where i = 107 cities, e1 = error term, OE = CO2 emissions from Oil, EE = CO2 emissions from electricity,
SCs = spatial characteristics, PCs = physical characteristics, SDCs = socio-demographic characteristics,
ECs = economic characteristics, and CT = city type.
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4. Discussion

Physical characteristics (PC) values become larger with higher numbers of vehicles, total
road length, and numbers of houses, whereas PC values decrease with a higher number of
public transportation users (see Equation (1)). Areas with large PC values can be characterized as
vehicle-centric and having a high number of personally owned houses; these qualities increase CO2

emissions (see Equations (10) and (11)). These results are similar to those found in previous studies
regarding the relationships between automobiles and oil [15,32], road area and oil [6,33], and the
number of housing units and electric energy consumption [34]. Moreover, the number of households
using public transportation is related to transportation energy consumption. An increase in the
number of households using public transportation helps reduce oil energy consumption, as it decreases
overall vehicle use [15,32,35]. PC also indirectly affects CO2 emissions via SCs (see Equation (5)) and
socio–demographic characteristics (SDCs) (see Equation (6)).

Spatial characteristics (SC) values become larger with higher population densities and apartment
residency ratios (see Equation (2)). Areas with large SC values can be characterized as developed
with high spatial density, which decreases CO2 emissions (see Equations (10) and (11)). These results
support earlier claims that high-density development reduces CO2 emissions [18–20].

SDCs increase with higher senior population ratios (see Equation (3). The SDC category
includes only one measurement variable: the senior population ratio. Areas with large SDC values
feature high senior population ratios and reduced CO2 emissions, according to the formulas herein
(see Equations (9) and (10)). However, these results contradict previous studies that state that
energy consumption increases because elderly people spend more time in the home than other
age groups [8,16]. This may show that the energy consumption patterns for elderly people in Korea
differ from those in other countries. Specifically, the poverty rate of the elderly in Korea is 45.11%,
which is the highest among OECD countries [57]. Considering that the next highest rate is 30.6%,
the economic difficulties of the elderly in Korea are relatively large; it is possible that the elderly cannot
afford adequate heating, and, thus, energy use decreases despite increasing amounts of time spent at
home [58]. Meanwhile, CO2 emission reduction strategies based on socio–demographic characteristics
may be faster and more effective because SDCs have both large direct effects on CO2 emissions via oil
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and electricity (−0.654 and −0.747, respectively) and smaller effects on other characteristics. However,
there is no realistic policy to encourage the proportion of the elderly population per local government
to reduce CO2 emissions. Indirect plans and policies should be considered. To maintain low CO2

emissions as the lives of the elderly improve, there are plans to increase support spaces such as senior
citizen community centers and urban regeneration centered on energy efficiency improvement projects,
and energy poverty reduction plans.

Economic characteristics (EC) values increase with higher rates of financial independence and
numbers of employers (see Equation (6)). Large EC values decrease CO2 emissions, but the coefficients
are small and not statistically significant. ECs have a lower impact on oil and electricity CO2 emissions
compared to other characteristics, at −0.136 and −0.048, respectively (see Equations (10) and (11)).
However, these results do not necessarily mean that ECs do not have significant effects on CO2

emissions, as ECs’ indirect impacts may either increase or reduce emissions. Economic characteristics
exhibit a positive (+) relationship with spatial characteristics that directly affects CO2 emissions
(see Equation (5)), but, conversely, exhibit negative (−) relationships with physical characteristics and
socio–demographic characteristics (see Equations (4) and (6)). In other words, continuous economic
growth directly increases CO2 emissions but also has indirect reduction effects. These results contrast
with the findings of Wang et al. [7].

The city type (CT) may be characterized as either medium or small (see Equation (9)). Like EC,
CT also causes both increases and reductions in CO2 emissions. According to Glaeser and Kahn [23],
large cities are more efficient than medium and small cities in terms of per capita CO2 emissions.
Also, depending on the size of the city, CO2 emissions are different for each energy source. In medium
and small cities, oil CO2 emissions are three times larger than the total CO2 emissions from electricity
generation (see Equations (10) and (11)). However, there is a positive effect on SCs as a city grows
from small or medium to large, a negative effect on PCs (which reduce CO2 emissions), and a negative
effect on SDCs (which increase CO2 emissions). Clearly, because the sign of the effect differs with
the specific domain, emission reduction strategies must be appropriate to the development intensity
characteristics in the given area; this result agrees with those from (Heinonen and Junnila [59]).

The results of this study verify the claims of previous research and emphasize the need for
integrated urban policies for energy consumption reduction.

5. Conclusions

Studies relating to UDI are increasing with increased interest in the effects of UDI on CO2

emissions. However, from an urban planning perspective, attempts to investigate the direct and
indirect effects of the various UDI characteristics on CO2 emissions and the interrelationships between
those effects have been insufficient. This study investigates factors arising from UDI characteristics in
Korea, calculates CO2 emissions, and uses a structural equation model to analyze the interrelationships
between emission impact factors. The analytical results and implications thereof are described below.

First, we identified UDI characteristics and factors that affect CO2 emissions. Physical
characteristics, spatial characteristics, and socio-demographic characteristics directly affect CO2

emissions, while physical characteristics, economic characteristics, and city type indirectly affect
CO2 emissions; other characteristics have mediated effects. Among the factors analyzed, increasing the
number of households that use public transportation, population density, apartment residency ratio,
rate of financial independence, number of employers, and senior population ratio serves to reduce per
capita CO2 emissions, while increasing the number of cars, total road length, and number of housing
units increases per capita CO2 emissions.

Second, we compared our results with those from existing studies. Higher values of physical
characteristics cause increases in CO2 emissions, which is consistent with the results of most existing
research. Higher values of spatial characteristics reduce CO2 emissions. In other words, these results
support existing studies in stating that dense cities reduce CO2 emissions. On the other hand, economic
characteristics have an impact on the total CO2 emissions, since they affect other characteristics in both
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positive and negative ways. In other words, the results agree with the notion that continuous economic
growth inevitably increases CO2 emissions directly but can also lead to indirect reductions in certain
areas. Socio–demographic characteristics results are not consistent with the results of existing research,
as an increase in SDC values reduces CO2 emissions. This suggests that the energy consumption
patterns of certain groups affected by economic and other characteristics may differ by region and
country. As to city type, medium and small cities have higher per capita CO2 emissions than do
large cities.

Lastly, the following urban planning strategies for CO2 emissions were developed based on
the results and discussion presented herein. The government should continually execute strategies
to control factors that increase CO2 emissions. In other words, future plans should discourage the
construction of infrastructure such as personal houses, vehicles, and roads and instead encourage the
use of public transportation. Strategies that promote city density are three times more effective for
the reduction of CO2 emissions from oil than for those from electricity. Accordingly, it is necessary to
establish a plan that connects physical infrastructure, expands Transit Oriented Development–centered
urban space structure development, apartments, and public facilities and makes public transportation
more convenient. Because socio–demographic planning elements, such as certain groups of people,
have little connection with industrial infrastructure, changes in these factors may effectively decrease
CO2 emissions at comparatively low cost; for example, home improvement projects for the elderly
and high-efficiency electricity dissemination are effective CO2 emissions reduction strategies. CO2

emissions from the different energy sources vary with city size. In medium and small cities, the total
effect on CO2 emissions from oil is three times larger than the total effect on CO2 emissions from
electrical power. Accordingly, policies that strengthen urban infrastructure, promoting density and
green transportation options, should be established in order to reduce oil consumption in medium and
small cities. In large cities, green city development policies should be established.

This study reveals the direct and indirect relationships between UDI characteristics and CO2

emissions and emphasizes the necessity of research on urban policy packages during urban planning
for CO2 reduction.
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