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Abstract: Given the situation of urban expansion and environmental deterioration, the government
and researchers are paying considerable attention to ventilation corridors. The construction of urban
ventilation corridors requires quantitative data support. Computational fluid dynamics (CFD) has
advantages in the fine assessment of wind environment, and a geographic information system
(GIS) has excellent performance in spatial analysis. With Changchun City used as an example,
this study proposes the establishment of ventilation corridors on an urban scale to mitigate
the urban-heat-island effect, and to accelerate the diffusion of air pollution. CFD simulations
provided detailed spatiotemporal characteristics of wind speed and wind direction at various
heights. These simulations were useful for identifying potential ventilation corridors. In general,
the wind-speed and wind-direction characteristics at a height of 30 m clearly indicated potential
ventilation corridors. Potential paths existed in the leading wind and south–north directions.
The areas that required improvement were favorably situated in the path of potential ventilation
corridors. The main roads, green spaces, and water had good connectivity. A total of five ventilation
corridors were constructed, and they will directly affect the poor urban thermal environment, and
enhance the mobility of air.
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1. Introduction

China previously underwent a dramatic urbanization process. Its urbanization level was 49.9% in
2010, and reached 57.35% by 2016 [1]. With the increase in the built-up area, the urbanization process
significantly changed the nature of urban land use and the urban spatial structure [2,3]. Urbanization
led to a series of ecological environmental problems, such as vegetation reduction, the urban heat
island (UHI) effect, and haze [4–7]. A city is a place where human life is concentrated. Thus, improving
the urban climate environment is essential in creating a green and livable city.

As the city expands, its three-dimensional (3D) structure also changes. The number of high-rise
buildings is constantly increasing [8,9], which changes the city wind environment. Urban wind speed
has generally exhibited a declining trend, and windy weather has also decreased. Such deterioration is
not conducive to the diffusion of heat, thereby aggravating the UHI effect [10–13].

Urban ventilation channels have become the focus of planning in China. From 2002 to April 2016,
36 cities in 17 provinces and regions in China were the subject of 63 special plans, or related research on
urban ventilation corridors [14]. In recent years, the government has paid significant attention to the
development of urban corridors. At the end of 2015, the Central City Working Conference presented
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a plan to enhance the rationality of the urban layout, urban permeability, and microcirculation capacity.
In June 2016, the National Development and Reform Commission and the Ministry of Housing and
Construction jointly issued an action plan for urban adaptation to climate change, which explicitly
demanded an urban natural ventilation corridor be opened up to increase air mobility in cities [8,9].

The common idea of research on ventilation corridors is to conduct initial scientific research on
the wind environment. Some studies assessed the urban wind environment by using statistics from
numerous meteorological stations [15,16], and wind field evaluation based on computational fluid
mechanics supplied additional details. However, such study methods require extra data and time,
and are mostly focused on a block or a single-building scale; research on a city scale is rare [17–20].
Evaluation based on geographic information systems (GIS) and remote sensing (RS) has the advantages
of easy access to data sources, and a large scale [21,22]. Many achievements were made with regard
to potential urban ventilation corridors because of the urban spatial layout. However, this idea
requires further consideration given the actual situation of a wind field [23–27]. The advantages of
computational fluid dynamics (CFD) and GIS must be integrated to provide reference for the planning
and construction of ventilation corridors.

This study aimed to construct urban ventilation corridors through quantitative analysis.
To achieve our objective, we (1) established an urban-scale digital simulation model of the central
area of Changchun, and transformed the complex urban space into a digital model that could be
simulated in CFD; (2) simulated the characteristics of the wind environment during summer and
winter in Changchun City on a city scale; and (3) proposed ventilation-corridor settings to improve the
urban wind environment, and to alleviate the UHI effect.

2. Materials and Methods

2.1. Study Area

Changchun City (43◦14′ N–44◦05′ N, 125◦03′ E–126◦00′ E) is the capital of Jilin Province, and the
natural geographical center of northeast China with an altitude of 250–350 m above sea level (Figure 1).
Its climate is characterized by temperate continental monsoons, and has obvious seasonal variations,
with the highest temperatures in July (mean value: 23.1 ◦C) and the lowest temperatures in January
(mean value: −15.1 ◦C) [28]. The predominant wind direction is southwest, the wintertime is long,
and most buildings are heated by coal. In the past 30 years, an obvious increasing trend was observed
in the mean air temperature. The annual average wind speed in Changchun has fluctuated, and the
overall wind speed has exhibited a significant downward trend. Our research area was set as the
central region of Changchun City planning, which was the main construction area of the city (Figure 2).
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2.2. Data Sources

The original data used in the study were divided into two major categories, namely spatial data,
which included terrain, architecture, green space, and water-system space data; and meteorological
data recorded in tabular form.

The raster terrain data were generated through elevation points extracted from a 1:500 topographic
map, using the inverse-distance-weighting method. The building data were obtained through the
following process: firstly, the building boundaries and building height data were extracted from
the 1:500 topographic map; then, the high-resolution worldview image of 2016 was loaded into
ArcGIS for building boundary renovation; finally, the updated height of the building was estimated
through a street-view map. The distribution data of green space and water were extracted from the
2016 worldview image, on the basis of the object-oriented classification method using eCognition8.9
software. Monthly meteorological data from 1985–2016, and daily meteorological data from July
2016 to July 2017 were acquired from the meteorological data sharing network (http://data.cma.cn/).
Air quality index (AQI) is defined as a dimensionless index that describes the air quality based on
six atmospheric pollutants, namely PM2.5, PM10, SO2, CO, NO2, and O3, measured at the monitoring
stations throughout each city in China. AQI is an index that presents air quality to the public, allowing
people to arrange their activities and schedules accordingly. The daily AQI data were collected from the
website of the Changchun Municipal Environmental Protection Bureau (http://www.ccepb.gov.cn/).
A high index corresponds to poor air quality. Daily AQI is calculated as follows [29]:

AQI = max{IQAI1, IAQI2, IAQI3 . . . . . . IAQIn}. (1)

IAQIp =
IAQIHi − IAQILo

BPHi − BPLo

(
Cp − BPLo

)
+ IAQILo, (2)

where IAQIp is the individual air quality index (IAQI) of pollutant p, Cp is the concentration of
pollutant p, BPHi is the high value of the concentration limit of the pollutant described by Cp, BPLo is
the low value of the concentration limit of the pollutant described by Cp, IAQIHi is the corresponding
IAQI of BPHi, and IAQILo is the corresponding IAQI of BPLo (Table 1).

http://data.cma.cn/
http://www.ccepb.gov.cn/
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Table 1. Individual air quality indexes (IAQIs) and their corresponding pollutant concentration limits.

IAQI
SO2 24 h
Average
(g/m3)

NO2 24 h
Average
(µg/m3)

PM10 24 h
Average
(µg/m3)

CO 24 h
Average
(µg/m3)

O3 8 h
Average
(µg/m3)

PM2.5 24 h
Average
(µg/m3)

0 0 0 0 0 0 0
50 50 40 50 2 100 35
100 150 80 150 4 160 75
150 475 180 250 14 215 115
200 800 280 350 24 265 150
300 1600 565 420 36 800 250
400 2100 750 500 48 1000 350
500 2620 940 600 60 1200 500

2.3. Methods

2.3.1. Data Preprocessing

GIS has advantages in data processing, and spatial analysis. The data processing function
of GIS was used for the processing of building, terrain, and meteorological data. For spatial
analysis, the GIS clustering analysis model was used to identify the homogeneous blocks. The
inverse-distance-weighted interpolation method was used in ArcGIS to describe the spatial distribution
of air quality. The functions of buffer analysis and overlay analysis were used in the identification of
spatial patterns of areas that required improvement, and of potential air guide channels.

The complex city was transformed into a digital model that was simulated in CFD.
The distributions of building density, population density, and greening degree in various areas of the
city differed in this model. Various thermal characteristics were noted under the same urban climate
conditions. In this study, regions with similar features were considered as a whole. In accordance with
the current layout of the city, with the city’s main roads, mountains, rivers, lakes, and other conditions
as boundaries, the central area of Changchun was divided into separate blocks. The average area of
the 3393 blocks was 9.5 ha.

Grouping analysis performed a classification procedure that tried to find natural clusters in
data. Given the number of groups to create, it looked for a solution where all the features within
each group were as similar as possible, and all the groups themselves were as different as possible.
Feature similarity was based on the set of attributes. The R2 value was computed for each variable,
and reflected how much of the variation in the original data was retained after the grouping process.
The larger the R2 value was for a particular variable, the better that variable was at discriminating
among features.

R2 = (TSS− ESS)/TSS, (3)

where TSS is the total sum of squares, and ESS is the explained sum of squares. TSS is calculated by
squaring and then summing deviations from the global mean value for a variable. ESS is calculated in
the same way, except deviations are group by group, and every value is subtracted from the mean
value for the group it belongs to, before being squared and summed.

According to the building data and the underlying surface data, the mean building height,
building density, volume ratio, and green coverage ratio in each block were calculated (Figure 3).
Grouping analysis was implemented in ArcGIS. Blocks were divided into four groups on the basis of
the blocks’ attributes (Figure 4).
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Building density, which is also known as building coverage, is the main index that reflects the
economic efficiency of construction land use. It refers to the ratio of the total base area of buildings to
the total area of land planned for construction. This index is formulated as follows [30]:

C = Su/Sa, (4)

where C is the building density, Su is the total base area of buildings, and Sa is the total area of land
planned for construction.

Volume ratio is a measure of the intensity of construction land use. It refers to the ratio of the
total floorage of all buildings, within the scope of the project, to the total area of the land planned
for construction.

R = Sb/Sa, (5)

where R is the volume ratio, and Sb and Sa are the total floorage and total area of land planned for
construction, respectively.

The coverage ratio of green space is one of the basic indexes that express the greening level
of a city. It refers to the ratio of the total area of green space to the total area of the planning and
construction land used in the scope of the project.

D = Sg/Sa, (6)

where D is the green coverage, Sg is the total green area, and Sa is the total area of construction land.
The mono-window algorithm (MWA) was used to map land surface temperature (LST). Through

the radioactive transfer equation, Landsat thermal-infrared (TIR) data establish direct contact with
LST. Many retrieval algorithms were proposed based on various assumptions for various data sources.
Among these algorithms, the MWA was used to map LST, in which only three parameters were
required: emissivity, transmittance, and effective mean atmospheric temperature. The basic form of
MWA can be written as follows:

Ts = [a(1− C− D) + (b(1− C− D) + C + D)Ti − DTa]/C, (7)

where a = −67.366351, b = 0.458606, C = ετ, D = (1− τ)[1 + (1− ε)], and Ts is the LST. Ti is the
at-sensor brightness temperature of the Landsat TIR band i, ε is the land surface emissivity of band i,
τ is the atmospheric transmittance of band i, which can be obtained on the United States Geological
Survey (USGS) website based on the time of image acquisition, and the central latitude and longitude
of an image; and Ta is the effective mean atmospheric temperature, which can be calculated using air
temperature [31].

2.3.2. Simulation Time Selection

Considering that this study aimed to alleviate the UHI effect, and improve the air environment to
enhance human comfort, the dates during the summer (June–August) with the highest temperatures,
and the adjacent dates with similarly high daily maximum temperatures were selected. Air pollution
mainly occurs in winter (December–February). Heating and straw-incineration periods also occur at
this time. Thus, the dates with the poorest air quality were selected.

From July 2016–July 2017, the highest temperatures appeared in July 2017. From 5 July to 7 July,
the daily maximum temperature exceeded 30 ◦C. Accordingly, 7 July was selected as the summer
simulation date. From December 2016–February 2017, the most severe pollution date appeared in
January. Accordingly, January 8 was chosen as the winter simulation date.

On the basis of the hourly meteorological data, the maximum wind speeds in Changchun were
detected in spring, followed by autumn and winter. The lowest wind speed was found in the summer.
Generally, the largest wind speed in Changchun appeared in the daytime. From July to January 2017,
the high-speed wind duration was short, appearing only at around 12:00 p.m. From March to June, the
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high-speed wind lasted from 8:00 a.m. to 8:00 p.m. Across different seasons, Changchun had a large
temperature difference. On a typical day, the highest temperatures appeared between 11:00 a.m. and
6:00 p.m. (Figure 5). High-speed wind and high temperatures appeared frequently in the afternoon,
considering daytime as the time when people were outdoors, with the leading wind direction in
Changchun. Finally, 12:00 p.m. on 8 January 2017, and 6:00 p.m. on 7 July 2017 were selected as the
simulation times (Table 2).
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Table 2. Meteorological data for the simulation times.

Time Wind Direction Wind Speed Temperature Relative Humidity

7 January, 12:00 p.m. 251◦ SW 1.7 m/s −6.7 ◦C 61%
7 July, 6:00 p.m. 146◦ SSE 3.0 m/s 27.1 ◦C 73%

2.3.3. Simulation Height Selection

The following heights were selected to simulate the meteorological features: 1.5 m for pedestrian
height, 10–30 m for human living environment height, and 100 m for city canopy area [14].

2.3.4. CFD Model Establishment and Simulation

Firstly, a block 3D model was established according to terrain in the Autodesk InfraWorks
software, based on the mean building height in the block. The model was then converted into the form
(.dxf), identifiable by the Ecotect software. Secondly, the blocks were given various material attributes
according to the average building density, volume ratio, and green ratio of each group. Blocks in group
1 and group 3 with high volume ratios or building densities were treated as cement, blocks in group 2
with low green coverages and low building densities were treated as brick, and blocks in group 4 with
high green coverages and low building densities were treated as clay. Green space and water were
assigned in Ecotect as two separate classes.

We chose WinAir as a CFD solver, which can be used in conjunction with Ecotect. The WinAir
model was suitable for analyzing the response of the wind environment to the shape of the blocks,
and had a high calculation speed. The model was efficient and feasible for studying the regional
wind environment.

In this macro-scale research, the simulation area was divided into 99 rows and 99 columns, and
the actual ground grid size was 320 m × 320 m. Finally, the meteorological information for the
selected simulated times was used for the simulation parameters in Ecotect. The meteorological data
of the Changchun area were used as the simulated boundary conditions. The entrance was set to the
windward side of the area, the inlet wind speed was set to 4 m/s, the pressure outlet was set to the
leeward side and the top of the region, the air viscosity was 1.8 × 10−5 Pa·s, and the surfaces of the



Sustainability 2018, 10, 1814 8 of 16

ground and the blocks were set to a rough wall without slip. The total number of simulated iterations
was set as 500 times, so as to obtain stable results.

3. Results and Discussion

3.1. Characteristics of Winter Wind Field

The wind speed was distinctly different at various heights (Figure 6). At the height of 1.5 m,
the wind speed was basically lower than 1 m/s. At heights of 10 m and 30 m, many buildings had
no shelter effect on the wind field. Wind speed had a significantly enhanced effect. At the same time,
wind on the south and north sides of the study area converged to the center. Finally, the highest
value of wind speed was superimposed on Jilin Road. At the height of 100 m, the wind speed of the
entire research area reached over 3 m/s. However, relatively low-speed wind occurred because of the
development of high-rise buildings in southern Changchun in recent years.
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The difference in wind direction was not apparent at various heights. In the beginning, wind
basically entered the research area from the southwest. The direction of the wind changed in various
regions. The direction of the northern wind changed to a southeast direction through the most northern
part of the block, while the southern direction of the wind changed to a northeast one, and the two
converged on the east side before leaving the research area. At the heights of 1.5 m and 10 m, the wind
speeds in the center were small because of the blockage caused by buildings, and Jilin Road was the
main outlet at heights of 30 m and 100 m.

In general, the characteristics of the 30-m-high ventilation corridor were obvious, and potential
paths existed in the leading wind direction. At the same time, the area below 30 m was the main space
for human habitation, which was suitable for ventilation corridor development on an urban scale.
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3.2. Characteristics of Summer Wind Field

The wind was toward the south direction, and the city-road direction, thereby increasing the
prominence of the potential wind corridor. The wind was slightly blocked at the heights of 1.5 m, 10 m,
and 30 m in the center of the city. The wind mobility in the east side of Changchun was better than that
in the west side. At the height of 1.5 m, the wind speed in the study area was lower than 1 m/s. At the
height of 10 m, a high-wind-speed region was formed in the north and west of the beltway. At the
height of 30 m, the wind speed displayed an evident increase, and the wind speed in the entire eastern
region was basically above 5 m/s. At the height of 100 m, the wind speed of the entire research area
was nearly 10 m/s. However, in a few areas with concentrated high-rise buildings, the wind speed
was still low, and the wind corridors were mainly distributed along the northwest direction. Potential
paths were noted at the height of 30 m along the Yitong River (Figure 7).
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3.3. Spatial Pattern of Areas Requiring Improvement

Land surface temperatures were derived from the RS image of LandSat to identify areas affected
by high temperature. The high-temperature areas included the railway station, east of People’s Street,
north of Liberation Road, and southeast of the central area. These areas exhibited the following
characteristics: low elevation, high population density, high building density, narrow roads, and few
green spaces. High temperatures were also observed in the southwestern parts of the research area,
which were covered by a vast expanse of cement ground (Figure 8).

On the basis of the AQI from meteorological stations, the inverse-distance-weighted interpolation
was used in ArcGIS to describe the spatial distribution of air quality. In general, the southwest regional
air pollution was more serious than that in other areas, and the ventilation environment in the region
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required improvement, with a need for reduction in pollution levels. Air quality was better in Jingyue
than in other areas (Figure 8).
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3.4. Potential Air Guide Channel

Guide channels lead the air to areas that require improvement. Corridors must be wide and have
no tall buildings or trees. Moreover, corridors must be in a straight line or have a small arc. In green
spaces, water connected with the road provides an ideal guide channel for the ventilation corridors.

The length of the guide channel in a certain direction must be at least 500 m, and preferably above
1000 m. The width of the channel should be at least 1.5 times that of the edge of the forest or the
building. In any case, the width of the channel should not be less than 30 m, and should preferably be
50 m [14]. The main road in Changchun had six or eight lanes which were 60–120 m wide within the
red line of the urban road. Buildings below the height of 30 m accounted for 95% of the total buildings
(Figure 9). Thus, the road was suitable for the construction of a guide channel.
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The green spaces and water bodies of Changchun had good spatial continuity. Many parks in
Changchun were larger than 100 hectares; these parks included the South Lake Park, the Sculpture
Park, and the Urban Wetland Park. Having many parks is rare for cities on the level of Changchun.
While constructing large parks, the government of Changchun built small green spaces that connected
the large and medium-sized parks, in an effort to maintain the continuity of urban green space.
The terrain of Changchun changes gradually, and is elevated in the west and south, but low-lying in
the east and north. The main river moves in a direction of south to north. These characteristics will
allow the southwest wind to pass through the city (Figure 9).

3.5. Development of Potential Ventilation Channels

Ventilation corridors mainly rely on existing green spaces, main roads, and water systems.
Moreover, efforts are made to ensure that the ventilation corridors have a small radius.
The predominant wind direction in Changchun was southwest, and a ventilation corridor in the
southwest–northeast direction was considered. Five ventilation corridors were developed. Fresh air
can reach the inner city through the ventilation corridors to alleviate the UHI effect, and to accelerate
pollution diffusion (Figure 10).
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3.6. Implications for Climate-Resilient Urbanization

UHI causes hot days to feel hotter. Extreme heat directly concerns the health and well-being of
human beings, and long-term changes in the average temperature also affect the natural environment.
Ventilation corridors can directly affect the poor urban thermal environment, and enhance the mobility
of air, thereby reducing the intensity of the hot weather, improving the air quality, and enhancing the
resilience of the city’s response to climate change [32]. Practical implementation advice, and financial
and technical resources should be used to support the implementation of the corridors’ construction.
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Using land belonging to the country of China, government departments should play a leading role in
the construction of urban ventilation corridors. Various strategies for the planning and implementation
of ventilation corridors should be adopted according to various circumstances. For built-up areas,
potential ventilation corridors should be delineated, and realized gradually upon urban renewal.
For new urban areas and new industrial areas, various climatic and environmental factors should be
integrated, the location and layout should be carefully selected, the height of the buildings should be
controlled, and the directions and development intensity of streets should be determined [14]. A buffer
zone should be established to control the height, and land use along the ventilation corridor, and
specific plans should be established in land-use planning, and urban design.

4. Conclusions

Providing quantitative data support is highly significant for the construction of urban ventilation
corridors in cases of urban expansion, and environmental deterioration. CFD has advantages in the
fine assessment of wind environment, and GIS exhibits excellent performance in spatial analysis.
With Changchun as an example, this study proposes the establishment of ventilation corridors on an
urban scale to mitigate the UHI effect, and to accelerate the diffusion of air pollution.

CFD simulations provided detailed spatiotemporal characteristics of wind speed and wind
direction at various heights; such information is useful when identifying potential ventilation corridors.
In general, the wind-speed and wind-direction characteristics at a height of 30 m indicated potential
ventilation corridors. Potential paths were found in the leading wind and south–north directions.
The areas that required improvement were favorably situated in the path of potential ventilation
corridors. The main roads, green spaces, and water had good connectivity. A total of five ventilation
corridors were constructed, and these corridors will directly affect the poor urban thermal environment,
and enhance the mobility of air.

This study developed ventilation corridors on an urban scale. Further studies must be conducted
on block and building scales, and on the relationship between wind environment and land use or
building layouts, so as to develop a ventilation-corridor system as a unit, and as an organic whole.
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