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Abstract: Given the binding provincial goals of energy intensity reduction and total energy
consumption control in China, the main purpose of this study is to analyze the regional disparities
of energy consumption from the perspectives of energy consumption per capita (EP) and energy
intensity (EI), as well as to propose differentiated energy conservation policies. In doing so, quantile
regression and regression-based Shapley value decomposition are performed in the case of 30
provinces in China during 2000-2015. The results of quantile regression specify that the impact of
each determinant on EP differs distinctly at different quantiles. Income has a positive effect on EP,
conversely, industrial structure, population density and transportation infrastructure have negative
effects on EP. Similarly, the effect of each influencing factor on EI presents distinct dynamic varying
process at different quantiles. Industrial structure, FDI and technological progress have significantly
negative effects on EI, while energy mix has a positive effect on EI. Furthermore, based on the
results of median regression, the assessment of contributions of individual variables to regional
disparities of energy consumption per capita and energy intensity (i.e., EPD and EID) is conducted
by the Shapley value decomposition method. It is found that inequality in income level is the most
important reason for EPD and its annual average contribution rate is 70%. In addition, differences in
population density play an important role in explaining EPD, while the inequality in transportation
infrastructure contributes little to EPD. By contrast, EID is mainly due to differences in technological
progress, whose annual average contribution rate is up to 46%. Following technological progress,
the inequalities of FDI and energy mix are also important factors accounting for EID. On the whole,
the contribution of industrial structure or regional factors is always small. Then, this study explores
the provincial energy-saving development path based on the actual conditions of all provinces.

Keywords: energy consumption; regional disparities; quantile regression; Shapley value

1. Introduction

In recent years, climate change and air pollution have been increasingly prominent, which may be
mainly attributable to substantial energy consumption. However, the increase in energy consumption
is regarded as an inevitable cost of economic growth [1]. Since the economic reforms in 1978, China’s
economy has entered a sharp booming. China has exceeded the United States in energy consumption
and became the largest energy consumer in 2010 [2]. With China’s primary energy consumption
growing at over 5.3% per annum during 2005-2015, China accounted for 23% of world total primary
energy consumption in 2016, with the value of 3053 million tons o0il equivalent. What’s more, China
has remained the largest growth market for energy for the last 16 years [3]. According to the Energy
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Outlook 2035 [4], the share of China’s energy demand will increase from 23% in 2015 to 26% in 2035.
In addition, environmental deterioration has been increasingly prominent due to extensive economic
development in the past decades. As the byproducts of energy consumption, a mushrooming number
of Greenhouse gases (GHG) have posed a serious threat to environment because of the greenhouse
effect. In 2007, China surpassed the United States and became the largest carbon emitter in the
world [5]. Against the background of China’s new normal, it is supposed to realize the importance
and urgency of energy saving and consumption reduction. Because of large population and energy
consumption, the per capita environment capacity is small in China; consequently, China is confronted
with an urgent dilemma of resources and environment.

Energy consumption per unit of GDP (also called energy intensity) reflects energy utilization
efficiency in the process of economic growth, which is also the measurement of low-carbon economy
and an important indicator of China’s mitigation commitment. During the 13th Five-Year Plan period
2016-2020, China aims to decrease energy intensity by 15% for the whole economy [6]. Nevertheless,
the decline in energy intensity is found to result in an increase in energy consumption [7]. The rebound
effect of energy resource suggests the improvement of energy efficiency may lead to an increase in energy
consumption [8,9]. It is not advisable to use no increase in total energy consumption as a measurement
of sustainability [10]. Therefore, we can see China has formulated the dual control targets of energy
intensity and total energy consumption [11]. Thus, every province has been allocated its own burden in
terms of energy intensity reduction and energy consumption increment (see Table Al). These mandatory
targets aim to save energy resources, reduce pollutants and greenhouse gas emissions from the source
and promote changes in economic development patterns. In fact, a striking feature of energy use in China
is that there are significant regional differences in terms of total energy consumption and energy intensity
(hereafter, EI). For one thing, energy consumption is unevenly distributed, for example, Shandong had
the highest level of energy consumption with the value of 37945 tons of coal equivalent in 2015, while
the least energy consumption was recorded in Hainan with merely 1938 tons of coal equivalent. For
another, on the whole, El in Eastern China is distinctly lower than that in Central and Western China.
Specially, EI was the lowest in Beijing (0.51 tons per 10,000 yuan) in 2015 and slightly larger level of EI
was reported by Guangdong (0.69) and Jiangsu (0.71). However, Ningxia had the maximum EI of 2.96,
which was almost six times larger than that of Beijing. Thus, designing energy saving policies requires
knowledge of interprovincial inequalities of both energy intensity and energy consumption.

Recently, there are an increasing number of energy-related inequality studies, which involve
cross-country inequalities of per capita carbon emissions [12], energy intensity [13,14], energy
consumption per capita [15] and ecological footprint per capita [16,17]. These studies specify
intensity indicator and per capita indicator are commonly used in inequality research. Duro et al. [15]
apply a Theil index decomposition to inequality in energy consumption per capita and a variance
decomposition to inequality in energy intensity levels among 16 OECD countries. Teixido-Figueras
and Duro [18] perform regression-based inequality decomposition to investigate the contributions of
determinants to the inequality among countries in natural resource consumption, which is measured
by ecological footprint per capita. As interprovincial carbon inequality can be defined as the inequality
of per capita carbon emissions among different provinces [19], in the present study, interprovincial
energy consumption inequality is defined as the inequality of energy consumption per capita (hereafter,
EP) among different provinces. In comparison to aggregate energy consumption closely correlated
with regional size, EP in different provinces is more comparable. Moreover, ignorance of province size
(by population) may overestimate the real inequality performance. Specifically, provincial aggregated
data set (i.e., aggregated energy consumption) will conceal intra-provincial heterogeneity in terms of
energy consumption at individual level and residents’ energy welfare changes. For example, energy
consumption of Shandong is about seven times larger than that of Ningxia in 2015, while Ningxia’s EP
is twice larger than that of Shandong.

It is assumed that inter-national patterns of inequality in energy consumption per capita/energy
intensity would largely be paralleled on inter-provincial scale. Investigating interprovincial disparities
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of EP and EI (hereafter, EPD and EID) can provide important information for energy consumption
projection and energy policy making. Thus, it is of great practical significance to study EPD and EID
with respect to their formation mechanisms. Given the abovementioned, several important questions
naturally arise. First, how can the interprovincial differences in EP/EI be measured accurately? Second,
how can the heterogeneity of EP and EI be understood among different areas? In other words, why does
EP or El vary across different regions? Third, how can the contributions of individual determinants of EP
(EI) to EPD (EID) be quantified? Fourth, with the knowledge of the causes of regional differences in EP
and EI, what policies should be oriented to narrow the gaps of EP and EI among different regions? This
study intends to extend the literature by resolving the four aforementioned issues. In doing so, we merge
two traditions in energy-related literature: the analyses of determinants and the measure of inequalities.
Accordingly, an integrated framework mainly developed in the income inequality literature is to be
performed in a sample of 30 provinces in China during 2000-2015. Specifically, in terms of regression
equations, the inequality in EI or EP is decomposed by the Shapley value decomposition method. In this
study, quantile regression serves as the econometric model in this research and the results of median
regression (at the 50% quantile) are specified as the estimated equations for inequality decomposition.

As shown in Figure 1, an integrated framework provides the clear research path of this study.
Given that the provincial goals with respect to the integration of energy intensity reduction and
energy consumption control, this research aims to extend the literature by finding the reasons for the
disparities of EP and EI among provinces and ways to diminish these differences. Thus, in the case of
30 provinces in China, this study performs quantile regression and regression-based Shapley value
decomposition developed in the income inequality literature. On the one hand, the quantile regression
models for EP and EI are established, respectively. On the other hand, the estimated equations through
median regression are selected for Shapley value decomposition. Accordingly, the contribution of
each determinant to EPD or EID is got. In addition, provincial energy-saving development path is
explored based on the actual situations of EP and EI in 2015. In the final part of the study, we present
the conclusions and policy implications accordingly.
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The rest of this research is organized as follows. Section 2 provides the literature review. Section 3
introduces the methodology. Section 4 presents the data and summary statistics. Section 5 presents
the results of quantile regression and Shapley value decomposition. Section 6 discusses the results.
The final section concludes this study and provides some policy implications.

2. Literature Review

Many countries have sought their ways to protect environment and conserve energy. In fact, since
there are distinct differences in economic development, demographic indicators, energy utilization
efficiency, geopolitical position and wealth of energy resources among different countries, energy
consumption differs conspicuously as well. Accordingly, the international differences in energy
consumption have generated abundant research interest and there are lots of studies on energy
intensity convergence [20-24]. “Convergence” means decline in the differences of environmental
indicator among countries, therefore, divergence in energy intensity indicates more attention should
be paid to promoting knowledge diffusion in regions with high energy intensity [25]. Although
international differences of energy use/intensity have attracted much concern, little attention has
been paid to analyzing the reasons for these differences and these previous studies fail to quantify the
contributions of individual determinants to these differences.

China’s provinces display considerable heterogeneity in economic development, population,
technology and resource endowment [26,27], these factors may lead to different energy consumption
patterns. Recently, studies on the heterogeneity analysis of energy consumption in China are
increasingly found. Some scholars compare the effects of individual determinants on energy
consumption among different areas through sub-sample regression. For example, using three groups
of sample data, Li et al. [1] perform the random-effect model to investigate the effects of energy
mix, economic structure and technical progress on energy intensity and find that each determinant
presents different effects in three regions. Nevertheless, there exist some deficiencies in the previous
studies. For one thing, traditional regional division, that is, eastern, central and western regions, is not
suitable for all research issues; for another, the estimated coefficients through different sub-samples
may suffer from incomparability. In addition, index decomposition analysis (IDA) method has also
been employed by Jiang et al. [28] to decompose the difference between regional energy intensity and
national average into pure energy intensity, industrial structure and export structure. However, it does
not present the comprehensive inequality in energy intensity among provinces and fail to identify the
contributions of decomposed effects to the interprovincial inequality in energy intensity.

Previous inequality research is mainly based on Lorentz curve [29], Gini coefficient [30],
Theil index [12] or distributive tools [31]. Apart from these studies, regression model is also
utilized in inequality research. The traditional regression methods focus on revealing the central
tendency of conditional distribution (i.e., conditional mean) of dependent variable. For a long time,
an overwhelming of attention has been paid to the central position of dependent variable, thereby
cloaking scholars’ interest in non-central position (tail distribution). Quantile Regression depicts the
shape of conditional distribution in non-central position by means of changes in quantiles [32]. This
method of modeling the shape of conditional distribution is a breakthrough in inequality research
field. Quantile regression has been widely applied to inequality related research, such as economic
inequality in wage [33,34], education inequality in school quality [35] and health inequality in body
weight [36]. Quantile regression provides a new perspective for energy policy makers to understand
and narrow group differences under the given levels of energy consumption/energy intensity. In brief,
quantile regression can resolve the following issues. Is the impact of each determinant on energy
consumption/energy intensity different in different provinces? Hypothetically, what is the dynamic
varying process of their effects presented in different provinces? In this study, quantile regression
method is performed to provide evidence with regard to the differences in the effects of influencing
factors on EP (EI) at different levels of EP (EI).
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Combining the regression model with the inequality decomposition, Fields and Yoo [37] and
Morduch and Sicular [38] propose a regression-based inequality decomposition method, which can
identify and quantify the contributions of various determinants to total inequality. However, this
approach is restricted to the form of regression function and the selection of inequality measure.
In addition, the contributions of constant and residual terms are not handled properly. Shorrocks [39]
develops an inequality decomposition framework based on the Shapley decomposition. Furthermore,
Wan [40,41] proposes a framework that combines regression model with Shapley value decomposition
of Shorrocks [39], which has effectively addressed the said deficiencies of traditional regression-based
decomposition methods. Through the Shapley decomposition, inequality of the variable of interest can
be decomposed into the contributions of individual determinants. In recent years, the regression-based
decomposition has been increasingly utilized in energy-economics field [18,42,43]. Based on the OLS
regression results, these studies attribute inequality measured by variance (i.e., R-squared or R2) to the
contributions of individual variables. Rather, variance is rarely used as a measure of inequality because
it is measured by absolute change instead of proportional change [44] and largely affected by the choice
of measurement unit. In addition, these studies specify the regression models as semi-logarithmic
forms. In fact, inequality is decomposed in terms of the logarithm of dependent variable rather than
original variable, which may distort the decomposition results [40]. With no restriction imposed on
the form of regression function and the measurement of inequality, the regression-based Shapley
value decomposition approach can always be effective to obtain each determinant’s contribution to
overall inequality.

To our best knowledge, no previous study has investigated energy consumption/energy intensity
in China from the perspective of inter-provincial inequality. This study aims to provide adequate
evidence with regard to the issue how to achieve provincial energy conservation targets of energy
intensity reduction and energy consumption control. From the perspective of heterogeneity analysis,
this paper investigates the determinants of EP (EI) with respect to changes in their effects on EP
(EI) at different levels of EP (EI). In addition, we find the reasons for EPD (EID) and quantifies to
what extent the determinants of EP (EI) contribute to interprovincial EPD (EID), thereby narrowing
EPD and EID to achieve provincial and national energy conservation targets. Apart from previous
studies, this research contributes to the literature in the following ways. (1) The existing literature
cannot provide more detailed information about the characteristics of China’s energy consumption
by using a single indicator. Given China’s dual control targets of energy intensity and total energy
consumption, this study takes into account both energy consumption level and energy intensity.
(2) Although previous studies have investigated the regional heterogeneity of energy consumption in
China, little research has focused on achieving energy conservation by narrowing regional differences
in energy consumption/energy intensity, which is a research gap to be filled in this study. In doing
so, this paper performs the regression-based Shapley value decomposition, which has never been
employed to study regional disparities of energy consumption before. (3) This paper performs quantile
regression to explore several determining factors with respect to the changes in their effects on EP and
El at different quantiles, especially at the high and low quantiles. In addition, this method provides
flexibility for studying a certain province with particular level of EP or EI, which is beyond the scope
of mean regression model. (4) Following the results of median regressions, regression-based Shapley
value decomposition proposed by Wan [40,41] is employed to identify the contributions of individual
variables to inequalities (i.e., EPD and EID) measured by Gini coefficient, Theil index and mean
logarithmic deviation. (5) Based on the combined econometric and decomposition analysis, this study
enriches the application of inequality research method and extends the literature on energy-related
issues. The analytical methods used in this paper not only reveal the differences in the impacts of each
determinant on EP (EI) but also quantitatively attribute EPD and EID to the contributions of individual
variables, thereby providing an in-depth understanding of conspicuous heterogeneity in EP and EI
among different provinces.
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3. Methodology

3.1. Quantile Regression

Quantile regression is proposed by Koenker and Bassett [32]. This approach can describe the entire
picture of the conditional distribution of dependent variable rather than its conditional expectation.
Based on the choice of quantile, it is feasible to employ quantile regression to model any position
of the conditional distribution of dependent variable. The mean regression ignores some important
information about the conditional distribution of dependent variable, such as non-central position, scale
and skewness changes, which are the main limitations of mean regression. The above shortcomings
can be well addressed by quantile regression. Moreover, quantile regression can deal with the
heteroscedasticity and outliers and obtain more robust estimation results. In addition, quantile
regression is applicable to asymmetrical distribution and thick-tailed distribution.

Let the distribution function of the continuous random variable Y be F(y) = P(Y <y). For
any 7 ranging from 0 to 1, the tth quantile function of Y is defined as: Q,(7) = inf{y: F, > t}.
The probability that Y is less than Q,(7) is T, which can be expressed as T = P(Y < Q,(7)).

The basic model is described as:

Vie = a; + Y XipBi + it 1)

Y. Xj: represents all the explanatory variables, «; denotes the fixed effect and u;; is the residual
term. Specifically, the parameter estimates of model (1) at the tth quantile, that is, «;, f(7), can be
obtained by solving the following function:

min & &
arg (“i/ ‘B) l;t;ﬁr(yit — &= xitﬁ) (2)

For quantile T ranging from 0 to 1, the test function p(u) is formulated as:

pr(u) = u(t — Iuco) = tulj ey (1) = (1 = T)utl (o o) (1) ®)

where I,<o() is an indicator function, this function is explained as follows. For Ijg .oy (1), if u € [0, 00),
I = 1; otherwise, I = 0. Similarly, for I[(_e, 0)(u), ifu € (—o0,0), I =1; otherwise, I = 0.

In this study, two different models are established to estimate the effects of several explanatory
variables on EP and EI. In the first model for EP, variables are mainly selected from the perspective
of final energy demand side, which is our main interest. The aggregate energy consumption is
mainly from the industrial, commercial, household and transport sectors. Energy consumption in
industrial sector is mainly correlated to industrial structure. Energy consumption in commercial
and household sectors is mainly influenced by two factors. One is income level and the other is
distribution characteristics of residents and businesses, such as population density which may promote
the transition to low-carbon lifestyle and affect the “energy footprint”. Moreover, traffic energy
consumption depends largely on convenience of public transportation; convenient transportation
helps reduce energy consumption, while it may lead to the rapid growth of motor vehicles at the same
time. Therefore, referring to the research of Chai [45], four main factors comprising income, industrial
structure, population density and transportation infrastructure are introduced into the regression
model of EP, which is specified by Equation (4).

Zheng et al. [46] conclude several internal and external factors of China’s economy that contribute
to reducing energy intensity. Internal factors include technological progress, economic structure,
enterprises’” ownership type, energy mix and energy policy; external factors (i.e., trade and FDI)
represent China’s economic interactions with the outside world. Based on the studies of Li et al. [1]
and Zheng et al. [46], this study identifies the effects of four main factor characterizing economic
development on energy intensity, including three main internal factors and one external factor, thereby
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reflecting the energy efficiency of the whole economy. The second model for EI takes the following
form shown in Equation (5).

It should be noted that urbanization is highly associated with GDP per capita [47-49], in addition,
there is evidence to show that energy/electricity consumption causes urbanization [50]. Thus,
urbanization is not included in Equations (4) and (5).

LnEP;; = ay + a1 LnGPCj; + ap LnIND;; + a3 LnPD;; + ay LnINFRA;; + 6; + €4 4)

LnEly = Bo + B1LnEM;; + B2 LnINDy; + B3 LnFDI; + B4 LnTPy; + 6; + e ®)

where i denotes the ith province (i = 1,2,3---,30); t represents the tth year; EP; and EI;; signify
energy consumption per capita and energy intensity, respectively, in province i at time ¢; GPC, IND, PD,
INFRA, EM, FDI and TP refer to GDP per capita, industrial structure, population density, transportation
infrastructure, energy mix, foreign direct investment and technical progress, respectively. All variables
are expressed in the form of natural logarithms. ¢;; is random error term irrelevant to time and region. ¢;
is the regional non-observed effect not changing with time, which specifies persistent regional differences
among provinces, for example, different energy consumption characteristics caused by consumption
habits, resources endowments and environmental regulations. Thus, regional dummy variables are
introduced to capture the heterogeneity across regions. However, the degree of freedom may be easily
lost in the case of 30 regional dummy variables. In addition, if the estimators of most dummy variables
are insignificant, the validity of the models may be not robust accordingly. The traditional regional
division in terms of administrative hierarchy or geographic location doesn’t objectively reflect the
regional differences in energy consumption. Since China’s energy resources displays the feature of rich
coal, lean petroleum and little natural gas, this paper divides 30 provinces into four categories based on
the study of Zhang and Wang [51], in which regional classification is obtained according to the panel
cluster analysis of energy consumption. Table 1 presents the classification results, accordingly, four
regional dummy variables are introduced to Equations (4) and (5).

Table 1. Regional classification.

Category  Number Provinces

Region 1 10 Hebei, Henan, Shanxi, Inner Mongolia, Liaoning, Hubei, Jiangsu, Shandong, Zhejiang, Guangdong
Region 2 7 Beijing, Shanghai, Heilongjiang, Shaanxi, Sichuan, Chongging, Xinjiang

Region 3 10 Tianjin, Jilin, Gansu, Guizhou, Yunnan, Anhui, Hunan, Fujian, Jiangxi, Guangxi.

Region 4 3 Hainan, Qinghai, Ningxia

3.2. Shapley Value Decomposition

The regression-based Shapley decomposition method is originally developed in the income
inequality literature [40,41,52]. This approach can be applied to any economic, social or development
variables in addition to income [40] and it is used to study energy consumption related issues in
this study, that is, identifying the contribution of each determinant to EPD and EID. Essentially,
this method combines a regression model and the Shapley value decomposition approach proposed
by Shorrocks [39]. The inequality of the variable of interest measured by Gini coefficient or other
inequality indices (i.e., EPD or EID in this study), is attributable to individual determinants, constant
term and residual term. Specially, this approach is applicative to any inequality measure and not
restricted to a given functional form of regression model. Specifically, linear, semi-logarithmic and
double-logarithmic forms are feasible and even interaction items can be included in regression model.

To illustrate the Shapley value decomposition procedure, we take energy consumption per capita
(EP) for example. It is assumed that Y = f(X, u) is the regression function of EP or its logarithm form.
To simply demonstrate this approach, a linear regression model is specified for EP.

Y=a+pX+pu (6)
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where X = {xq,xp,x3,---xn} denotes all determinants of EP included in the regression
model, § = {B1, B2 - - - B} represents parameter estimates of the X vector and y is the residual term.
Following the natural decomposition rule [39,44], we remove y from Equation (6) and have

A

Y(u=0)=Y=a+pX @)

Let G refer to the Gini operator, we apply G to both sides of Equation (7) and obtain
G(Y|u = 0) = G(Y). Hence, the contribution of y to G(Y) can be defined as:

CO, = G(Y) — G(Y) 8)

G(Y) is attributable to the constant term and all determinants of EP, while CO,, is associated
with the residual term. That’s to say, the sum of G(Y) and CO, makes up the total inequality G(Y).
Applying the natural decomposition rule to Equation (7), we obtain

Y(a=0)=Y=8X )
Then

A

G(Yla=0)=G(Y) (10)

The contribution of the constant term can be expressed as:
CO, = G(Y) - G(Y) (11)

where G(Y) is attributed to all determinants in the vector X. The Shapley value decomposition
method by Shorrocks [39] can be utilized to quantify the contributions of individual variables to G(Y).
Specially, compared with traditional methods, the approach of Shorrocks [39] is the only alternative
when regression models are specified as the double-log form in Equations (4) and (5). The specific
process of Shapley decomposition is presented as follows.

For Equation (9), let x1 be evenly distributed among all provinces, we get its average value x7.

Then, Y can be formulated in the following form:

Y(x1 =7%1) = rx1 + Y Bi-xi (12)
i—2

Then, we calculate corresponding G(l?)* by using Equation (12). Accordingly, the difference
(G(Y) — G(Y)") is defined as the contribution of x; to G(Y). In other words, x;, which is equally
distributed, makes no contribution to G(Y) and G(lN/)* is attributable to other determinants of EP
(i.e., x3, x3- - - xy). Following this practice and the similar reasoning, we can identify the contributions
of other individual variables to G(Y). The aforementioned procedure is not limited to Gini coefficient,
rather, applicable to any inequality measure, including Theil index, Gini coefficient, variance, Atkinson

index and mean logarithmic deviation.
4. Data and Summary Statistics

4.1. Data

Quantile regression and Shapley value decomposition are performed in a sample of 30 provinces
over the period 2000-2015. The definition of all variables is shown in Table 2. In order to eliminate price
fluctuation, GDP per capita and EI are converted into 2000 constant prices. Compared with the tertiary
industry, the secondary industry depends more on energy consumption because of energy-intensive
industries. With industrial structural transformation in China, the share of added value of the
secondary industry (including industrial and construction sectors) in GDP is falling; by contrast,
the tertiary industry (including transport, commercial and other sectors) is increasing, while the
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share of the primary industry (i.e., agricultural sector) is relatively small. Therefore, it is feasible
to use the ratio of added value in the tertiary industry to added value in the secondary industry as
a measure of the advanced degree of industrial structure. The data used in this paper are mainly
derived from China Statistical Yearbook [53], China Energy Statistical Yearbook [54] and China City
Statistical Yearbook [55]. Specially, the data of FDI come from the provincial statistical yearbooks
of local statistical bureaus. Table 3 presents the descriptive statistics of variables. The results of
Jarque-Bera test show that almost all time-series variables follow non-normal distribution except LnTP,
which indicates quantile regression is prior to OLS regression.

Table 2. Definition of all variables.

variables Definition Unit
Dependent . . Aggregate energy Tons per 10,000 yuan (at
variable Energy intensity (EI) consumption/GDP 2000 constant prices)
Energy consumption per Aggregate energy Tons per person
capita (EP) consumption/total population
Indepgndent Income (GPC) GDP per capita Yuan per person (at 2000
variable constant prices)
. Added value of the tertiary
Industrial structure . o
(IND) industry/Added value of the %o
secondary industry
. . . person per square
Population density (PD) Total population/total area Kilometers
Transportation Area of paved roads by year Square meters per square
infrastructure (INFRA) end/total area kilometers
Foreign direct Amount of foreign direct o
investment (FDI) investment actually utilized/GDP ’
Energy mix (EM) Coal consumption/ .Total energy %
consumption
TeChnOIO%,}C;)l progress Patent applications granted Number per year
Table 3. Descriptive statistics of all variables.
Statistics LnEI LnEP LnGPC LnIND  LnFDI LnEM LnPD  LnINFRA LnTP
Mean 0.424 0.842 9.631 —0.153 0.539 4.16 5.671 6.507 8.549
Std. Dev 0.454 0.562 0.679 0.325 1.045 0.372 0.847 1.558 1.629
Min —0.674 —0.586 7.88 —0.704 —2.684 2.497 2.372 2.116 4.248
Max 1.759 2.091 11.15 1.398 2.732 5.02 7.73 10.44 12.51
Skewness 0.503 —-0216  —0.0273 1.883 —0.605 —0.329 —0.449 -0.222 0.0520
Kurtosis 2.775 2.61 2.315 7.948 3.076 3.826 3.907 3.195 2.750
Jarque—Bera 21.23** 6773 ** Q.44 7733 **  2937*** 2228 3263 **  4715* 1.463
Obs 480 480 480 480 480 480 480 480 480

Note: ***, ** and * denote the 1%, 5% and 10% significant levels, respectively.

4.2. Summary Statistics

Figures 2 and 3 plot the geographic distribution of China’s energy consumption in terms of
energy consumption per capita (EP) and energy intensity (EI). As shown in Figure 2, EP was very
unbalanced among different provinces. On the whole, the group of provinces with higher EP included
Ningxia, Qinghai, Xinjiang, Inner Mongolia and Shanxi, with values ranging from 5.29 to 8.09 tons per
capita. On the contrary, the least EP reported by Jiangxi was merely 1.85, slightly higher level of EP
was reported by Anhui (2.01) and Guangxi (2.04). Figure 3 depicts the regional distribution of El in
30 provinces in China, which demonstrates that EI in Eastern China was significantly lower than that
in Central and Western China. Ningxia had the highest EI of 2.96 tons per 10,000 yuan, followed by
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Qinghai (2.74) and Xinjiang (2.58). By contrast, the lowest EI was recorded in some eastern coastal
provinces, such as Beijing (0.51), Guangdong (0.69) and Jiangsu (0.71).

In order to fit inter-provincial EPD and EID, a general approach used in inequality literature is
performed in this study. The Theil index (GE1), Gini coefficient and mean logarithmic deviation (i.e.,
MLD or GEO) are the most commonly utilized indicators as the measures of inequality since they are
sensitive to changes in high, medium and low levels of the variable of interest, respectively. Therefore,
the applications of these three indicators can get more comprehensive and objective information. When
calculating these relative inequality indices, population shares and GDP shares serve as weights for
EPD and EID, respectively. Accordingly, population-weighed and GDP-weighed inequality indices are
obtained. The specific calculation methods are shown in Equations (13)-(18), where x; denotes EP in
the ith province, n represents 30 provinces, u is the population-weighted average EP of all provinces
and p; is the proportion of the ith province’s population in total population. y; represents EI in the ith
province, p is the GDP-weighted average EI of all provinces and g; is the share of the ith province’s
GDP in total GDP. All resulting indices range from 0 to 1 and the value closer to 1 means higher
inequality level (i.e., larger EPD or EID).

N

A

Legend

B .01 - 2.44
[] 245 - 3.96
I s-e7 - 5-34
I s-55 - s.00

Figure 2. Regional distribution of energy consumption per capita (EP) in China in 2015 (Tons per capita).

Legend
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Figure 3. Regional distribution of energy intensity (EI) in China in 2015 (Tons per 10,000 yuan).
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EPD is measured by using Equations (13)—(15). First, the Gini coefficient can be formulated as:

iy | — %
Gini = —— £n12|u i i=1,2---,30 (13)

Then, the generalized entropy indices (i.e., GE; and GEy) are estimated. GE; is defined as:

f(6) = GEy = — 1 Zp’x’l (ui)ife=1 (14)

zlpll u

GEj can be expressed as:

I() = GEy =

Zpllog< ) ifoe=0 (15)

1 1P

Similarly, EPD is also measured following the preceding process, the Gini coefficient can be
described as:

n n
. i—1 Lj=1 |yi — V]'}
Gini = 22 (16)
GE; can be formulated as:
1(0) = GEy = — | f 8iYi og(yi) ifo=1 17)
l lgl =1 H ]/l
GEj is given as:
1(6) = GEg = Zgl log< ) if0=0 (18)
l 1 i i=

The calculation results are plotted in Figures 4 and 5. As can be seen from Figure 4, EPD of China’s
30 provinces estimated by three indicators presents similar varying trend for the period 20002015,
which is also the case with EID in Figure 5. It can be found from Figure 4 that Gini coefficient, GEO
and GE1 were the maximal in 2001, which indicates EPD was the largest in 2001. EPD exhibited the
trend of decrease from 2001 to 2010, while it remained stable with little change after 2010. As shown
in Figure 5, the average values of GEO and GE1 were 0.065 and 0.07, respectively; the average Gini
coefficient was 0.201, while its maximum value (0.22) was recorded in 2001 and minimum value (0.186)
was reported in 2013. On the whole, EID tended to decrease during 2001-2010, conversely, it increased
slightly for the period 2010-2015.

—t— Gini ==@==GE1l GEO
03 r
0.25 F
02 | Hﬁ\‘\‘ﬂ_—‘_‘ﬁ\‘ﬂ—‘——‘—ﬁ-—‘—‘
0.15 F

0.05 F Rl P 074 17472 St

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Figure 4. EPD of China’s 30 provinces in 20002015 estimated by three indicators.
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Figure 5. EID of China’s 30 provinces in 2000-2015 estimated by three indicators.
5. Results

5.1. Results Through Quantile Regression

In quantile regression model, there are two competing methods for estimating the standard errors.
One is bootstrapping and the other is the progressive variance-covariance matrix which is the default
method of STATA. When the residual terms do not follow normal distribution and the iid hypothesis
(independent and identically distributed), the bootstrapped standard errors are more robust [56].
Therefore, we employ the bootstrapping method to estimate standard errors. In bootstrapping,
the seed is specified as 100 and the number of iterations is 1000. Three representative quantiles, that is,
25%, 50% and 75%, are selected for quantile regression estimates. The results of least square dummy
variable model (LSDV) are provided for comparison. Considering that China’s provinces are not
independent of one another, there may exist cross-sectional dependence accordingly; what’s more,
group-wise heteroscedasticity should also be taken into account. Given the above-mentioned problems,
LSDV can obtain the unbiased estimated coefficients but the standard errors are not robust [57].
Therefore, following Chen [57] and Herrerias et al. [58], the models are estimated by panel-corrected
standard errors. In addition, given that there may exist multi-collinearity among explanatory variables,
multi-collinearity test is conducted before the empirical analysis. For the regression model of EP,
the VIF values of LnGPC, LnIND, LnPD and LnINFRA are 1.88, 1.09, 2.41 and 3.64, respectively.
For the regression model of EI, the VIF values of LnEM, LnIND, LnFDI and LnTP are 1.65, 1.47,
1.30 and 1.16, respectively. All these VIF values are far smaller than 10, which indicates there is no
multi-collinearity problem in both data sets.

As shown in Tables 4 and 5, Column 2 presents the results through LSDV, while Columns 3-5
report the results through quantile regression. It can be seen that the estimated coefficients through
LSDV and the quantile regression are homogeneous in most cases, which specify that the influence
of each variable is relatively robust throughout the conditional distribution of dependent variable.
In addition, the elastic coefficient of each determinant presents distinct varying process at different
quantiles. That is to say, quantile regression provides more detailed description of changes in the
impact of each variable on EP (EI) within the conditional distribution of EP (EI), which provides an
in-depth understanding of conspicuous heterogeneity in EP and EI among different provinces.

According to the result through LSDV in Table 4, the estimated coefficients of all variables are
significant at the 1% level. Industrial structure, population density and transportation infrastructure
have negative impacts on EP, by contrast, GDP per capita has a positive impact on EP, which indicates
energy consumption level has significantly risen with the increase of income. Moreover, it can be seen
that the elastic coefficient of GDP per capita is less than unity, which indicates income contributes to
the decrease of energy intensity. The developments of economy and society are usually accompanied
by knowledge renewal and technology investment, thereby resulting in technological advance and
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improvement of energy efficiency. As shown in Table 5, all coefficients through LSDV are significant
at the 1% level. The result shows industrial structure, FDI and technological progress have negative
effects on EI, while energy mix has a positive effect on EI.

Table 4. Determinants of EP through LSDV and quantile regression.

Energy Consumption Per Capita (EP)

Variables Model 1 ModelIl Model IIIT Model IV
Mean 25% 50% 75%
LnGPC 0.784 *** 0.940 *** 0.758 *** 0.688 ***
(0.024) (0.030) (0.078) (0.042)
LnIND —0.277 ***  —0.255***  —(0.219 ¥**  —(0.269 ***
(0.040) (0.057) (0.072) (0.099)
LnPD —0.121 *** —0.008 —0.212*  —(0.144 ***
(0.019) (0.031) (0.085) (0.032)
LnINFRA —0.067 ***  —0.196 *** —0.010 0.009
(0.014) (0.023) (0.068) (0.022)
Constant —5.604 *** 7114 ** 5236 ** —485] **
(0.218) (0.312) (0.795) (0.399)
Obs 480 480 480 480

Note: ***, ** and * denote p < 0.01, p < 0.05 and p < 0.1, respectively. The figures in parentheses are standard errors;
quantile regression reports bootstrapped standard errors; LSDV reports panel-corrected standard errors. Quantile
25% denotes lower EP and quantile 75% indicates higher EP.

Table 5. Determinants of EI through LSDV and quantile regression.

Energy Intensity (EI)
Variables Model V. Model VI Model VII Model VIII
Mean 25% 50% 75%
LnEM 0.286 *** 0.202 *** 0.258 *** 0.368 ***
(0.030) (0.072) (0.052) (0.042)
LnIND —0.178 ***  —(.195 *** —0.140 *** —0.070
(0.035) (0.060) (0.046) (0.063)
LnFDI —0.141 = —0.141 *** —0.121 *** —0.107 ***
(0.010) (0.016) (0.013) (0.019)
LnTP —0.155 ***  —(.125 *** —0.157 *** —0.184 ***
(0.009) (0.015) (0.012) (0.012)
Constant 0.689 *** 0.589 0.804 *** 0.740 ***
(0.168) (0.371) (0.233) (0.247)
Obs 480 480 480 480

Note: ***, ** and * denote p < 0.01, p < 0.05 and p < 0.1, respectively. The figures in parentheses are standard errors;
quantile regression reports bootstrapped standard errors; LSDV reports panel-corrected standard errors. Quantile
25% denotes lower EI and quantile 75% indicates higher EI.

5.2. Results through Shapley Value Decomposition

5.2.1. Determining the Estimated Equations

Before the Shapley decomposition, it is necessary to determine the regression equations of original
EP and EI. Median regression is a special case of quantile regression (at the 50% quantile). It uses the
least absolute deviation estimate rather than the least squares estimate to describe the central tendency
of the distribution of dependent variable. The median and mean value both aim to model the central
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location of the distribution of dependent variable. When the distribution of dependent variable is
skewed, or there exists heteroscedasticity and outliers, the median is more applicable than the mean
value to depict the distribution center. Therefore, for the following decomposition procedure, we
choose the results by median regression to conduct the regression-based Shapley decomposition.

It should be noted that the objective of this study is to investigate the regional disparities in EP
and El rather than LnEP and LnEI Thus, solving the regression equations following Model III and
Model VII, we obtain:

exp(d;)- exp(e;r) (19)
EI = exp(0.804)- exp(0.258LnEM — 0.140LnIND — 0.121LnFDI — 0.157LnTP)- exp(J;)- exp(ejs) (20)

Based on Equations (19) and (20), EPD (EID) is estimated by using the original EP (EI) not the
natural logarithm of EP (EI). In addition, it should be noted that EPD and EID are gauged by relative
indices, that is, Gini coefficient, GE1 and GEO, as shown in Section 4.2. These indices conform to
homogeneity, in other words, the constant term does not contribute to total inequality because the
constant term is a scalar and can be removed without affecting inequality index. Accordingly, the final
equations are given as:

EP = exp(0.758LnGPC — 0.219LnIND — 0.212LnPD — 0.01LnINFRA + REG) (21)

EI = exp(0.258LnEM — 0.140LnIND — 0.121LnFDI — 0.157LnTP + REG) (22)

where REG is the new indicator constructed by regional dummy variables. This paper employs the
commonly used method in previous research [59,60] which combines the regional dummy variables
to represent regional factors impact. The contribution of the residual can be obtained according to
the study of Wan [40], as illustrated in Section 3.2. The total inequality is attributed to the residual

term and all independent variables and the explained proportion by independent variables is obtained

by solving 100 x (1 — lreéiigal‘) [60]. Table 6 shows that on average all independent variables in

Model III play 92.3% contribution role to EPD by using Gini coefficient as inequality measure, while
in Model VII 87.1% to EID. That'’s to say, about 90% of EPD or EID can be explained by the selected
explanatory variables in Model III or Model VII. The impact of the residual term is relatively little,
which indicates the modelling is valid and the policy implications can be forceful and convincing.
Accordingly, Equations (21) and (22) are suitable for the following decomposition process.

5.2.2. Decomposition Results in Different Years

In the preceding section, the contribution of the residual term has been identified. In order
to identify the contributions of individual determinants to EPD and EID measured by Gini, GEO
and GE1 obtained in Section 4.2, the Shapley value method proposed by Shorrocks [39] is the
only alternative. As the explained inequality by all determinants is denoted by G(Y) shown in
Section 3.2, G(Y) according to Equations (21) and (22) is specified as denominator to calculate the
relative contribution rate of each determinant to G(Y). Accordingly, the sum of the contribution rates of
all determinants is 100%. The results of Shapley value decomposition are shown in Figures 6-11. As is
mentioned in Section 3.2, if a certain determinant x; is equally distributed among regions, it would
make no contribution to inequality according to Shapley value decomposition. For the explanation
of decomposition results, the contribution of the ith determinant x; is obtained by quantifying its
effect on total inequality if x; is evenly distributed among all provinces or removed. Specifically,
EPD is attributable to inequalities in income, industrial structure, population density, transportation
infrastructure and regional factors among 30 provinces.

As shown in Figures 6-8, EPD is mainly due to interprovincial inequality of income, whose annual
average contribution rate is up to 70-81%. However, the inequality in transportation infrastructure
plays a role in reducing EPD over the analyzed period, although the absolute value of its annual
average contribution rate is smaller than 1% according to Figure 6. The second largest contributor to
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EPD is the inequality in population density, following by the inequalities in population density and
regional factors. In addition, the inequality in industrial structure makes little contribution to EPD,
the absolute value of its annual average contribution rate is no larger than 2.5%.

Table 6. The explained proportions by independent variables in EPD and EID.

EPD EID
Year . .
. Independent . Explained . Independent . Explained
Gini Variables Residual Proportion Gini Variables Residual Proportion
2000 0.238 0.194 0.044 81.5% 0.211 0.150 0.061 71.1%
2001 0.245 0.206 0.039 84.0% 0.220 0.159 0.061 72.1%
2002 0.242 0.204 0.038 84.3% 0.208 0.167 0.041 80.2%
2003 0.235 0.230 0.005 97.8% 0.220 0.179 0.041 81.5%
2004 0.222 0.231 0.009 96.0% 0.217 0.176 0.041 81.0%
2005 0.215 0.224 0.009 95.7% 0.206 0.172 0.034 83.5%
2006 0.214 0.234 0.020 90.7% 0.208 0.172 0.036 82.6%
2007 0.212 0.234 0.022 89.6% 0.205 0.168 0.037 82.0%
2008 0.207 0.226 0.019 90.6% 0.194 0.173 0.021 88.9%
2009 0.200 0.220 0.020 90.1% 0.193 0.180 0.013 93.5%
2010 0.192 0.200 0.008 95.9% 0.188 0.184 0.004 97.8%
2011 0.191 0.193 0.002 99.2% 0.189 0.183 0.006 96.9%
2012 0.190 0.186 0.004 97.9% 0.190 0.184 0.006 96.9%
2013 0.193 0.181 0.012 93.9% 0.186 0.180 0.007 96.5%
2014 0.189 0.180 0.009 95.2% 0.187 0.178 0.009 95.2%
2015 0.190 0.179 0.011 94.3% 0.188 0.176 0.012 93.8%
Mean 0.211 0.208 0.017 92.3% 0.201 0.174 0.027 87.1%
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Figure 6. Decomposition result of EPD measured by Gini coefficient.
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Figure 7. Decomposition result of EPD measured by GEj;.



Sustainability 2018, 10, 1806 16 of 26

100 -

S 80 -

[«5]

£ 60

S 40

2 20 -

£ o kbbb b b b D ke e ke k)
1200020012002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

EGPC mIND mPD mINFRA mREG

Figure 8. Decomposition result of EPD measured by GE.
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Figure 9. Decomposition result of EID measured by Gini coefficient.
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Figure 10. Decomposition result of EID measured by GE;.

From Figures 9-11, differences in technological progress are the most important factor in
explaining EID, whose annual average contribution rate is about 50%. Following technological
progress, inequality in FDI plays a prominent role in explaining EID, its contribution rate presents
the trend of decrease, which indicates the reduction in the inequality in FDI between provinces.
Furthermore, the inequality in energy mix is also an important reason for EID. It should be noted that
the contribution rates of both industrial structure and regional factor are quite small.
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Figure 11. Decomposition result of EID measured by GEy.

6. Discussion

6.1. Changes in the Effects of Determinants on EI and EP at Different Quantiles

Table 4 presents the impacts of various variables on EP through quantile regression. It is found
that the elastic coefficient of each determinant fluctuates distinctly at different quantiles. The elastic
coefficient of income is significantly positive at the 25%, 50% and 75% quantiles, which indicates
that income has a positive impact on EP within the entire conditional distribution of EP. The positive
effect of income decreases with EP rising, that’s to say, income in high-EP areas has a smaller positive
effect on EP than low-EP areas. It is believed that the increase of income will improve consumption
level, thereby leading to the increase in energy consumption. In low-EP areas, energy demand has
not been fully met, thus, the driving strength of income on energy consumption is relatively large.
By contrast, in high-EP areas, energy demand has been well met. Given the diminishing marginal
effects, the stimulating effect of income is smaller.

The elastic coefficient of industrial structure is significantly negative at all quantiles, which
specifies that industrial structure is an important factor to reduce energy consumption. Its elastic
coefficient fluctuates slightly at different quantiles, thus, the negative effect of industrial structure on
EP is quite robust and stable in different provinces. Thus, it is imperative to accelerate the optimization
and upgrading of industrial structure. With China’s economy entering “new normal”, traditional
extensive economic growth must be changed. The economic restructuring is not only the inevitable
choice of sustainable economic development but also an effective measure for energy conservation
and consumption reduction.

Population density has a negative effect on EP, which indicates population density contributes
to decreasing energy consumption and this finding conforms to the study of Otsuka [61] in Japanese
residential sector. The effect of population density on EP is not significant at the 25% quantile, which
suggests population density in high-EP areas is more effective in energy intensive utilization than
low-EP areas. In some high-EP provinces, such as Xinjiang, Qinghai, Inner Mongolia and Ningxia
with small population and abundant resources, the increase of population density leads to marginal
decreasing effect of energy consumption. In other high-EP provinces, such as Jiangsu, Beijing and
Shanghai with large population and advanced economies, high population density promotes the
development public transportation, facilities and infrastructures, thereby reducing energy consumption
in transportation and household sectors.

It is found that transportation infrastructure has a negative effect on EP. This is mainly because
dense transportation network is conducive to optimizing the distribution of energy resources and the
combination of inputs to improve the production efficiency of enterprises. The elastic coefficient of
transportation infrastructure is only significant at the 25% quantile. In fact, with the increase in energy
consumption level mainly caused by economic growth, the number of vehicles has increased as well,
thereby the negative effect of transportation infrastructure is gradually counteracted.
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Table 5 shows the effects of various variables on EI through quantile regression. The effect of each
determinant presents dynamic varying process at different quantiles. To clarify these changes, we
should first observe the regional distribution characteristics of EI (see Figure 3). El is the highest in
Western China, followed by the Central and Eastern China. This distribution feature is highly in line
with the level of development in China. Generally, compared with high-EI areas, low-EI areas have
high proportion of coal consumption, advanced technological level, optimized industrial structure and
more FDI inflows.

Energy mix has a positive impact on EI at different quantiles and the elastic coefficient of energy
mix presents a trend of increase with quantile increasing, which indicates energy mix in high-EI
areas has a larger positive effect on EI than low-EI areas. It is because that in high-EI areas the share
of coal consumption is higher, moreover, coal is not utilized in an advanced and clean way due to
technical limitations.

Industrial structure has a negative effect on EI, which suggests that the transformation of industrial
structure is conducive to reducing EI. However, this effect is insignificant at the 75% quantile, it is
because high-EI areas are in the stage of industrialization, economic development depends more on
energy-intensive industries than the service industry, furthermore, industrial structure optimization
is not high on the agenda. Therefore, it is particularly urgent for low-EI regions to optimize and
upgrade their economic structure, one way to do this is to promote high-energy consumption and low
value-added industries transferring from the Eastern China to Central and Western China.

FDI has a negative effect on EI at different quantiles. It is because technology spillovers of FDI
contribute to reducing EI [62]. The negative effect of FDI is the lowest at the 75% quantile, which
specifies that the effect of FDI has been offset to some extent in high-EI regions. It results from that
high-EI areas, mainly concentrated in Central and Western China (see Figure 3), have introduced
much foreign investments with the acceleration of openness in recent years. However, because of
mild environmental regulations, much high energy-consuming multinational companies have been
attracted (also called “pollution paradise” effect), which offsets partial technology spillover effect of
FDI on EL

Technological progress has a negative effect on EI at different quantiles and this effect in high-EI
areas is higher than low-EI areas. It results from the fact that the technological level is relatively low
in high-EI areas, such as Xinjiang, Ningxia, Qinghai and Shanxi. The potential for energy-saving
technology progress is large and there is more room for the technological diffusion in these areas;
furthermore, with innovation and assimilation of technologies, the effect of technological progress on
El is gradually enhanced.

6.2. Contributions of Determinants to EPD and EID by Shapley Decomposition

Figures 6-8 show the contributions of individual determinants to EPD by using Gini, GE1 and GEO
as inequality measures, respectively. Figures 9-11 present the contributions of individual determinants
to EID by using Gini, GE1 and GEQ as inequality measures, respectively. In terms of the absolute value
of the contribution rate, although the decomposition results differ from each other, the applications of
different inequality indices will not affect the ranking of the contribution rate of each determinant to
EPD (EID). Therefore, applying different inequality measures will display similar policy implications
and the following discussion is mainly based on the decomposition results using the Gini coefficient as
inequality measure.

Figure 6 specifies that inequality in income contributes the most to EPD with annual average
contribution rate of 70%, which indicates it is the inequality in income rather than other factors
that mainly influences the inter-provincial inequality in EP among 30 provinces. This finding is
highly consistent with Duro et al. [15]. According to the absolute income hypothesis by Keynes,
income is the dominant factor in consumption. In developed areas with higher level of economic
development, the energy demand for economic growth is higher and consumption capacity is larger.
Moreover, in most lagged areas, there is less financial input to support energy saving technology
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research. All these factors contribute to the inequality in EP. Following income, the annual average
contribution rate of population density is 15.8%, which suggests that differences in population density
are important factor accounting for interprovincial differences in EP. It results from that population
density has a negative effect on EP in high-EP regions. Population density, such as Xinjiang, Inner
Mongolia and Qinghai, is much lower than that in low-EP regions, such as Henan, Anhui and
Guangdong. As for the regional factors, the annual average contribution rate of regional factors is
11.7%, which cannot be ignored because its contribution rate increases gradually. With the annual
average contribution rate of 2.4%, differences in industrial structure present the smallest contribution
to EPD, which indicates the impact of industrial structure is limited. In particular, although the
improvement of transportation infrastructure contributes to reducing EP according to the results in
Table 4, the inequality in transportation infrastructure makes little contribution to EPD because the
absolute value of its annual average contribution rate to EPD is merely 0.3%.

Figure 9 indicates that EID is mainly due to differences in technological progress. The annual
average contribution rate of technological progress is up to 46% and the ranking of its contribution rate
is the highest during 2000-2015 with the maximal value of 52.2% in 2011. In fact, technological level
in developed areas with lower El is usually higher than that in lagged areas with higher EI. Hence,
the differences in EI between high-EI regions and low-EP regions (i.e., EID) are generated. The second
largest contributor to EID is the inequality in FDI, with the annual average contribution rate of 24.4%.
That’s to say, differences in FDI are important factor in explaining EID. This is because EI and FDI
display opposite regional differences among the Eastern, Central and Western China, that is to say,
FDI in the high-EI provinces, such as Xinjiang, Inner Mongolia and Qinghai, is much less than that in
Central and Eastern China with lower level of EI, such as Hubei, Beijing and Shanghai. Furthermore,
according to the results of quantile regression in Table 5, FDI is conducive to reducing EI, specially,
the negative effect is higher in low-EI areas. As a result, the gaps of EI between high-EI regions and
low-El regions (i.e., EID) have been yielded. Following FDI, the annual average contribution rate of
energy mix is 19.2%, which suggests differences in energy mix play an important in accounting for
EID. This is because energy mix has a positive effect on EI and its effect is larger in high-EI regions
(see Table 5); what’s more, high-EI areas depend more on coal consumption than low-EI areas. As for
industrial structure, its annual average contribution rate is 5.8%. By contrast, the inequality in regional
factors has the smallest contribution to EID with annual average contribution rate of 4.3%, which
indicates the impact of regional factors is limited.

According to the results of Shapley decomposition, it is found that differences in income and
technological progress are main reasons for EPD and EID, respectively, which suggests convergence in
both income and technological progress is of great importance to the reduction in EPD and EID among
provinces, thereby achieving the integration of energy intensity reduction and energy consumption
control. As newly proposed in 2017, the prominent social conflict in China lies in the unbalanced and
inadequate development. In fact, there are considerable disparities in socioeconomic development
among provinces, which demand our further attention to resolve.

6.3. Exploring Provincial Energy-Saving Development Path in China

In the previous discussion, quantile regression results provide important information about the
changes in the impacts of all determinants on EP (EI) in provinces with different levels of EP (EI).
Through the Shapley value decomposition, we find the main reasons for EPD and EID.

Based on the raw data of EP and El in China’s 30 provinces during 2000-2015, the values of EP
and EI at the 50% quantile are given as 2.433 and 1.466, respectively. Figure 12 is the scatter plot of
provincial EP and EI in 2015, the values of EP and EI at the 50% quantile are selected as reference
lines. Accordingly, 30 provinces are divided into four categories, that is, Area A with higher EP and
higher EI, Area B with lower EP and higher EI, Area C with lower EP and lower EI and Area D with
higher EP and lower EI. Each province’s EP and EI relative to the corresponding values at the 50%
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quantile are presented, which provides important information about each province’s energy-saving
development pattern.

Region A includes nine provinces comprising Hebei, Shanxi, Inner Mongolia, Liaoning,
Heilongjiang, Shandong, Qinghai, Ningxia and Xinjiang, most of which are rich in energy resources.
It can be found that these provinces are in the extensive economic growth mainly depending on
energy-intensive industries and they are in the stage of rapid developments of industrialization and
urbanization. For these provinces, the choice and combination of policies are particularly important
to achieve collaborative energy intensity reduction and energy consumption control. It is of great
importance for these resource-based provinces to avoid the traditional extensive economic growth
pattern. Specifically, it is imperative to accelerate the transformation and upgrading of industrial
structure, for one thing, it is necessary to formulate measures to attract more FDI and receive the
industry transferring from eastern coastal areas at the same time, thereby increasing the technology
level; for another, these provinces should promote the development of high value-added and low
energy-consuming industries. In addition, the high level of El is largely due to the overwhelming coal
consumption, thus, these provinces should decrease the proportion of coal consumption. Specially,
this type of provinces is mainly located in northern China, these provinces should follow the way of
compact development and try to enhance population agglomeration, thereby increasing the heating
efficiency and avoiding resource waste.

Area B covers six provinces, that is, Henan, Sichuan, Guizhou, Yunnan, Shaanxi and Gansu. This
type of provinces is mainly located in Western China. In these provinces, the flow of technology and
knowledge is slow and resources are relatively deficient for their economies. According to the results
of Shapley decomposition, the gap of technological progress is the main reason for EID. For these
central and western provinces, the most important thing is that the government should formulate
preferential policies to promote the improvement of technological level. Specifically, it is urgent to
introduce advanced technology from outside and stimulate enterprises to improve the production
efficiency and develop energy-saving technologies. Furthermore, it is necessary to attract more FDI
capital, thereby taking advantage of the technology spillover effect. It is found that these provinces
are largely dependent on coal consumption, therefore, it is expected to develop clean energy as an
alternative to coal consumption, such as natural gas, solar energy and wind energy.

Region C contains nine provinces, including Jilin, Anhui, Jiangxi, Hubei, Hunan, Guangdong,
Guangxi, Hainan and Chongging. These provinces have achieved the optimal allocation and utilization
of energy resources. As different provinces present distinct spatial heterogeneity in terms of EP and
EL this type of provinces should give full play to their own advantages and accelerate the pace of
regional development.

Region D comprises Beijing, Tianjin, Shanghai, Jiangsu, Zhejiang and Fujian, these provinces are
concentrated in eastern coastal areas and economically developed. The levels of economic development
and living standard are high in these provinces, accordingly, energy demand is high as well. Although
energy utilization efficiency in these provinces is quite high, EP is large as well, which confirms that
the increase in energy efficiency may lead to increasing energy consumption [8,9]. Based on the results
of Shapley decomposition, differences in EP among provinces are mainly attributable to differences in
income. Therefore, for one thing, as these provinces belong to the group of developed areas, this type
of provinces should devote sufficient resource and capital to developing energy saving technologies;
for another, people tend to buy high-energy consumption products with income increasing, these
provinces should actively advocate low-carbon lifestyles and enhance people’s awareness of energy
conservation, such as shared bikes and electric car. Furthermore, these provinces should accelerate
energy-intensive industries transferring to the central and western provinces, industry transferring
not only helps relieve the resource pressure in these provinces but also contributes to improving
the technological level in high-EI areas. Furthermore, these provinces are populous regions, this
type of provinces should take advantage of population agglomeration in intensive utilization of
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resources, such as central heating, public transportation and communal facilities, thereby reducing
energy consumption.
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Figure 12. Comparison of provincial EP and EI in 2015. Note: Numbers 1-30 represent 30 provinces in
China shown in Table A1.

7. Conclusions and Policy Implications

This paper analyzes the inter-provincial differences in China’s energy consumption from the
perspectives of energy consumption per capita (EP) and energy intensity (EI). Using the panel dataset
of 30 provinces over the period 2000-2015, the quantile regression method is performed to provide
evidence with regard to the issue how several influencing factors affect EP (EI), specially, the dynamic
varying process of their elastic coefficients at different quantiles is also presented. The results show
that the elastic coefficient of each determinant differs distinctly at different quantiles, which indicates
that each factor has different effects on EP (EI) with EP (EI) increasing. According to the empirical
results, income has a positive impact on EP, conversely, industrial structure, population density and
transportation infrastructure play important roles in reducing EP. Furthermore, industrial structure,
FDI and technological progress have negative effects on EI, while energy mix has a positive effect
on EL

The Shapley value decomposition is utilized to quantity the contributions of individual
determinants to EPD and EID. The result specifies that EPD is mainly attributable to inter-provincial
inequality of income and its annual average contribution rate amounts to 70%, which means differences
in income level account for almost 70% of EPD. In addition, differences in population density play an
important role in explaining EPD, while the inequality of transportation infrastructure contributes little
to EPD. By contrast, EID is mainly due to differences in technological progress with annual average
contribution rate of 46%. Following technological progress, the inequalities of FDI and energy mix
are also important factors accounting for EID, with annual average contribution rates of 24.4% and
19.2%, respectively. As a whole, the contributions of industrial structure and regional factors are both
small. Lastly, by the comparison of provincial EP and EI in 2015, this study explores provincial energy
conservation development path, accordingly, four groups of provinces are provided with different
energy-saving patterns.

The unbalanced nature of regional development across China indicates that the capacity to
meet the energy conversation goal differs distinctly among regions. Based on the aforementioned
conclusions, this study provides the following policy implications.
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Firstly, since inequality in income is the most important factor in explaining differences in EP,
it is of great significance to promote the coordinated development of regional economy. Our findings
show that income has a positive effect on EP, while a negative effect on energy intensity. For some
provinces with rich energy resources, high energy-saving potential and lagged economic development,
such as Ningxia, Qinghai and Inner Mongolia, financial assistance should be enhanced to support
technology research so as to improve energy utilization efficiency and reduce energy consumption.
In addition, in the course of rapid economic development, people’s income levels and living standards
are improved, so does the level of energy consumption. Thus, it is supposed to enhance people’s
energy-saving awareness and promote a low-carbon life.

Secondly, inequality in FDI plays an important role in accounting for differences in EI. Thus,
it is urgent for backward areas to attract more foreign capital. For some central and western regions,
the degree of openness is not high and there is poor favorable condition for foreign investment.
It is particularly important to formulate relevant policies to attract more FDI inflows. Nevertheless,
it is necessary to appropriately enhance the environmental regulations, thereby restricting foreign
high-energy consumption companies. At the same time, local governments should encourage
enterprises to follow the energy-saving development pattern

Thirdly, inequality in energy mix is an important factor in explaining differences in EI,
the traditional energy consumption pattern based on large share of coal consumption is supposed to
be improved, especially for some high-EI areas, such as Shanxi, Hebei and Liaoning. The development
of clean energy, such as natural gas, hydropower, solar energy and wind energy, is not only the
inevitable choice of environmental protection but also an effective measure for energy conservation
and consumption reduction. In addition, given China’s resource endowment, it is imperative to
improve the utilization efficiency of coal at the technical level in the long term.

Fourthly, although differences in industrial structure contribute little to EPD and EID, economic
restructuring is effective in decreasing both EP and EI. During the process of industrialization,
it is supposed to promote the growth of technology scale. Specifically, industrial capital intensity
and technology intensification are to be heightened, hence, energy consumption may present the
trend of marginal decline. At the same time, with the deep development of industrialization, local
governments should accelerate the transformation of industrial structure and promote the development
of low-energy industries, such as service and high-tech industries. Specially, high-EI provinces are
expected to receive the industry transferring from some low-EI provinces in eastern coastal areas.

Fifthly, the differences in technological progress are the most significant reason for inequality in
El and the negative effect of technological progress on El is larger in high-EI areas. Therefore, it is
urgent to improve the technological level in high-EI areas mainly located in Central and Western China,
so as to narrow technological gap among regions. Specifically, on the one hand, it is advisable for
high-EI areas to promote the collaborative innovation of Industry-University-Research, which breaks
barriers between multiple subjects, emphasizes resources sharing and becomes an important way of
independent innovation; on the other hand, it is necessary to promote technology diffusion by learning
and introducing energy saving technology.

Sixthly, the effect of population density on EP cannot be ignored. It is indispensable to
promote compact development and enhance population agglomeration in both urban and rural
areas. Population agglomeration is beneficial to energy intensive utilization, thereby enhancing the
“density effect” and concealing the “scale effect”. Specifically, on the one hand, compact development
contributes to promoting public transportation and reducing traffic energy consumption; on the other
hand, it helps improve heating efficiency and avoid resource waste.

Last but not least, inequality in persistent regional factors cannot be ignored in policy making.
For some provinces with abundant energy resources and high proportion of coal consumption,
such as Qinghai, Xinjiang and Shanxi, there is a need to introduce advanced production capacity
from developed regions so as to maximize the benefits of energy resource utilization. Meanwhile,
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the allocation and structure of resources are to be optimized among provinces, an integrated energy
market can be formed [63], thereby reducing the gap of energy supply and demand among provinces.
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Appendix

Table A1. Provincial mandatory targets of energy intensity (EI) reduction and energy consumption
(EC) increment during the 13th Five-Year period (2016-2020).

Province (No.) EI reduction EC Increment Province (No.) EI reduction EC Increment
i Target (%) (10,000 Tons) ) Target (%) (10,000 Tons)
Beijing (1) 17% 800 Hubei (17) 16% 2500
Tianjin (2) 17% 1040 Hunan (18) 16% 2380
Hebei (3) 17% 3390 Guangdong (19) 17% 3650
Shanxi (4) 15% 3010 Guangxi (20) 14% 1840
Inner Mongolia (5) 14% 3570 Hainan (21) 10% 660
Liaoning (6) 15% 3550 Chongging (22) 16% 1660
Jilin (7) 15% 1360 Sichuan (23) 16% 3020
Heilongjiang (8) 15% 1880 Guizhou (24) 14% 1850
Shanghai (9) 17% 970 Yunnan (25) 14% 1940
Jiangsu (10) 17% 3480 Shaanxi (26) 15% 2170
Zhejiang (11) 17% 2380 Gansu (27) 14% 1430
Anhui (12) 16% 1870 Qinghai (28) 10% 1120
Fujian (13) 16% 2320 Ningxia (29) 14% 1500
Jiangxi (14) 16% 1510 Xinjiang (30) 10% 3540
Shandong (15) 17% 4070 Tibet (31) - -
Henan (16) 16% 3540

Note: All data are collected from the State Council and data of Tibet is not found; the numbers in parentheses
represent different provinces.
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