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Abstract: Forecasting inflation rate is one of the most important topics in finance and economics.
In recent years, China has stepped into a “New Normal” stage of economic development, with a
different state from the fast growth period during the past few decades. Hence, forecasting the
inflation rate of China with a time-varying model may give high accuracy. In this paper, we investigate
the problem of forecasting the inflation rate with a functional coefficient autoregressive (FAR) model,
which allows the coefficient to change over time. We compare the FAR model based on the B-splines
estimation method with the autoregressive moving average (ARMA) model by extensive simulation
studies. In addition, with the monthly CPI data of China, we conduct both in-sample analysis and
out-of-sample forecasting. The forecasting result shows that the FAR model based on the B-splines
estimation method has a better performance than the ARMA model.

Keywords: B-splines; inflation forecast; monthly CPI data; out-of-sample forecast

1. Introduction

The inflation rate is a key index which is closely related to the economic stability and general
well-being of a country. It guides policy-makers to formulate the country’s macroeconomic and
monetary policies. In addition, the households and businesses can make well-informed decisions based
on future prices, and investors can construct long-run portfolios based on inflation rate (Bampinas
and Panagiotidis, 2016 [1]). Due to these reasons, inflation forecasting attracts much interests from
various fields.

The main methods to predict inflation rate include the Phillips curve model, the vector
autoregressive-type (VAR) model, and the univariate linear autoregressive moving average (ARMA)
model. In the past few decades, although the Phillips curve model has been widely adopted,
many research results show that this model cannot provide satisfactory inflation forecasting for
countries like China (Stock and Waston, 1999 [2]; Atkeson and Ohanian, 2001 [3]; Mcnelis and
Mcadam, 2004 [4]; Matheson, 2006 [5]). On the other hand, the VAR-type model depends on some
exogenous factors, for example the real GDP, unemployment, industrial production, manufacturing
production, and capacity utilization. Based on this model, inflation forecasting is highly affected by
the selection of exogenous factors (see Sekine (2001) [6], Ramakrishman and Vamvakidis (2002) [7]
and Ang et al. (2007) [8]). Besides, if the dynamics of the inflation is non-linear, its prediction can be
conducted in the framework of non-linear multivariate models. For instance, the regime-switching
smooth transition vector autoregressive model used in Lekkos et al. (2007) [9] and the non-linear
(asymmetric and polynomial) error correction models used in Milas et al. (2004) [10]. With the
development of time series, univariate linear ARMA models without exogenous factors are widely
adopted (Bos et al., 2001 [11]; Ang et al., 2007 [8]). In particular, Stock and Waston (1999) [2] found that
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the univariate linear ARMA models perform better than the Phillips curve model and the VAR-type
model in forecasting inflation rate.

However, the univariate linear ARMA model implies that the dynamic mechanism of
the underlying process is time-invariant, which is not satisfied by many real time series data
(Tong, 1990 [12]). In fact, many empirical studies showed that the dynamics of the inflation rate
is time-varying (Chen et al., 2016 [13]).

If a linear ARMA model is used to fit a non-linear data generating process (DGP), the order of
the ARMA model is always quite large, resulting in difficult and inaccurate estimation. Therefore,
many non-linear time series models are proposed to fit this type of data, for example the threshold
autoregressive model of Tong (1990) [12], the bilinear model of Granger and Andersen (1978) [14]
and the exponential autoregressive model of Haggan and Ozaki (1981) [15]. These well-known
non-linear models belong to parametric models, meaning that one needs to specify the formulation
in advance, which is difficult and questionable in many real applications. To overcome this hurdle,
some non-parametric time series models are proposed. For example, the non-parametric autoregressive
conditional heteroscedastic model and the non-parametric autoregressive model (see Fan and Yao,
2003 [16]).

Although the non-parametric approach is appealing, its application usually requires an
unrealistically large sample size when more variables are introduced into the model. This problem is
called “curse of dimensionality”. In order to avoid this problem and preserve the appreciable flexibility,
semi-parametric models are proposed by imposing parametric structures to part of the non-parametric
model. Chen and Tsay (1993) [17] proposed the functional-coefficient autoregressive (FAR) model
for time series. Similarly, Hastie and Tibshirani (1993) [18] proposed the varying-coefficient model to
increase the flexibility of ordinary linear regression model and improve the out-of-sample prediction.
Chen and Hong (2012) [19] constructed a test of the smooth transition autoregressive model versus
the FAR model. More recently, Chen et al. (2016) [13] established a functional coefficient moving
average (FMA) model, with the coefficients estimated by using the local linear estimation technique.
Application is made to the monthly CPI data of China. In this paper, we forecast the inflation rate
in China by the FAR model, which belongs to the semi-parametric non-linear time series models.
The FAR model has three main advantages. First, its formulation is analog to the linear ARMA model
and preserve the satisfactory forecasting power. Second, the FAR model is flexible in coefficient
specification and easy to interpret. Third, the semi-parametric formulation avoids the possible model
mis-specification problem.

A key step to use the FAR model is estimating the time-varying coefficient. The main estimation
methods include the kernel estimation method, the local polynomial estimation method, the spline
estimation method and the wavelet method. The first two estimation methods belong to local
estimation methods, while the last two methods belong to the global estimation method. Based on an
iteration algorithm, Chen and Tsay (1993) [17] adopted the arranged local regression estimation and
achieved good fitting results. Cai et al. (2000) [20] proposed the local linear estimators and investigated
the bandwidth selection problem. Chen and Liu (2001) [21] mainly focused on the local polynomial
estimators and associated hypothesis test. Huang and Shen (2004) [22] extend the FAR model to
the general functional coefficient regression model and adopted the polynomial spline estimator to
estimate the coefficient functions. They showed the consistency of the spline estimator and forecasted
the Dutch guilder-US dollar exchange rate based on the estimated model. In this paper, we adopt the
B-spline estimators (belonging to the polynomial spline estimator) to estimate the coefficient functions.
Compared to other polynomial splines, the B-spline method is numerically stable and the calculation
can be obtained recursively, thus significantly reducing the computational burden.

The rest of the paper is organized as follows. Section 2 introduces the FAR model and the
spline-based nonparametric estimation method, and provides some implementation details. Section 3
conducts some simulation studies to compare the performance of the FAR model and the ARMA
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model for fitting data generated from different DGPs. In Section 4, we apply the estimated FAR model
to forecast the inflation rate of China. Finally, in Section 5, we give some conclusions.

2. Functional Coefficient Autoregressive Model

2.1. Model Specification

The FAR(p) model proposed by Chen and Tsay (1993) [17] extends the autoregressive (AR) model
with the form

xt = θ1(Ut)xt−1 + θ2(Ut)xt−2 + · · ·+ θp(Ut)xt−p + εt, t = 1, . . . , T, (1)

where p is a positive integer representing the lag order, {εt}T
t=1 is a sequence of independent and

identically distributed (i.i.d.) random variables with mean 0 and variance σ2, Cov(xs, εt) = 0 for s < t,
and θi(·) i = 1, 2, . . . , p are unknown measurable functions. Here, xt is called the significant variable
and Ut is called the threshold variable which can be an exogenous or endogenous variable. In the time
series setting, Ut is usually set to be the lagged value of xt, i.e., Ut = xt−d with 1 ≤ d ≤ p. Then the
resulting model (denoted as FAR(p, d)) becomes

xt = θ1(xt−d)xt−1 + θ2(xt−d)xt−2 + · · ·+ θp(xt−d)xt−p + εt, t = 1, . . . , T. (2)

Throughout this paper, we impose some conditions on model (1).

Regularity Conditions (RC)

(a) The density function of Ut is nonzero and bounded.
(b) Let Xt = (xt−1, xt−2, . . . , xt−p)

′
, then for any u ∈ R, the eigenvalues of E(XtX

′
t|Ut = u) are

nonzero and bounded.
(c) The density function of εt is positive everywhere.

If RC is satisfied, the FAR(p) model (1) is geometric ergodic (Chen and Tsay, 1993 [17]).

2.2. Model Estimation and Prediction Based on B-Spline

We first discuss the identification of the coefficient functions θi(·), i = 1, . . . , p for model (1).
The coefficient functions are said to be identifiable if ∑

p
j=1 θ

(1)
j (Ut)xt−j ≡ ∑

p
j=1 θ

(2)
j (Ut)xt−j implies

that θ
(1)
j (Ut) = θ

(2)
j (Ut), j = 1, 2, . . . , p. We can prove that the coefficients in model (1) are identifiable

under Condition (b). In fact, if we denote θ(Ut) = (θ1(Ut), . . . , θp(Ut))
′
, then

E

{ p

∑
j=1

θj(Ut)xt−j

}2

| Ut = u

 = θ(Ut)
′
E(XtX

′
t|Ut = u)θ(Ut). (3)

If ∑
p
j=1

(
θ
(1)
j (Ut)− θ

(2)
j (Ut)

)
xt−j ≡ 0, then E

[{
∑

p
j=1

(
θ
(1)
j (Ut)− θ

(2)
j (Ut)

)
xt−j

}2
]

= 0.

From this, we can immediately obtain E
[{

∑
p
j=1

(
θ
(1)
j (Ut)− θ

(2)
j (Ut)

)
xt−j

}2
| Ut = u

]
= 0 for any

u. By applying (3) and Condition (b), we further get that θ
(1)
j (Ut)− θ

(2)
j (Ut) = 0 almost surely for

j = 1, . . . , p.
Since the coefficient functions in model (1) are identifiable, we can now estimate the model. In the

literature, the main estimation methods include the kernel estimation method, the local polynomial
method, the wavelet method and the spline method, see Fan and Yao (2003) [16] for more details.
In particular, as a global smoothing method, the spline method outperforms the kernel estimation
method and the local polynomial method for multi-step-ahead forecasting. Moreover, the spline-based
method is computationally feasible and the estimated model has a parsimonious explicit expression.
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Therefore, we can easily produce multi-step-ahead forecasts by iteratively generating one-step-ahead
forecast based on the previous forecasts. On the contrary, if the functional coefficients are estimated
based on the local polynomial method, then it is computationally intensive to conduct multi-step-ahead
forecasting. Pointed out by Huang and Shen (2004) [22], one needs extra effort to relieve the
computational burden for forecasting based on the local polynomial method.

With the aforementioned advantages, the spline-based estimation method is adopted in this paper
to estimate the FAR model. Among many different types of splines functions, we adopt the polynomial
splines, which are piecewise smooth. This means that the polynomial pieces join together smoothly at
a set of interior knot points. Specifically, a polynomial spline of degree K ≥ 0 on interval [a, b] with
knots a = ξ0 < ξ1 < · · · < ξM+1 = b is a polynomial function of degree K on each of the intervals
[ξi, ξi+1), 0 ≤ i ≤ M− 1 and [ξM, ξM+1], and has K− 1 continuous derivatives on [a, b].

When K = 0, 1, 2, 3, the polynomial splines are called constant spline, linear spline, quadratic
spline and cubic spline, respectively. For a given sequence of knots and degree K, the corresponding
collection of spline functions form a linear function space. Discussed in de Boor (1972) [23], there are
different basis for this space, among which the B-spline basis is most widely used. The B-splines are
numerically more stable than other polynomial splines and can be obtained recursively (see Fan and
Yao, 2003 [16]). Therefore, we use B-spline basis in this paper for its good numerical property.

In the following, we display the calculation of B-splines. Any spline function of degree K with
interior knot sequence {ξi}M

i=1 can be expressed as a linear combination of the corresponding B-spline
basis Bi,K(x), given by

B(x) =
M+K

∑
i=0

βiBi,K(x) , (4)

where B(x) is the spline function and Bi,K(x), i = 0, . . . , M + K are the B-splines. To calculate Bi,K(x),
we first define ξ−K = · · · = ξ0 < ξ1 < · · · < ξM+1 as the new augmented sequence of knots, and
relabel it as η0 = · · · = ηK < ηK+1 < · · · < ηM+K+1. The B-splines basis Bi,j(x) for j = 0, 1, . . . , K,
i = 0, 1, 2, . . . , M + K are as follows:

Bi,0(x) =

{
1, ηi ≤ x ≤ ηi+1,

0, otherwise,
(5)

and
Bi,j+1(x) =

x− ηi
ηi+j+1 − ηi

Bi,j(x) +
ηi+j+2 − x

ηi+j+2 − ηi+1
Bi+1,j(x). (6)

The recursive Formula (6) shows that the B-spline basis relies on the knot sequence and the degree K.
Now, we give an example to demonstrate the calculation process for the B-spline function.

Assume the interval is [0, 1] with the interior knot sequence {0.25, 0.5, 0.75} and K = 3, then the
augmented knots vector is (0, 0, 0, 0, 0.25, 0.5, 0.75, 1). When x = 0.1, the values of Bi,j(x),
i = 0, 1, 2, 3, j = 0, 1, 2, 3 are shown in Table 1.

Table 1. An example of the calculation process of B-spline.

j = 3 B0,3(0.1) B1,3(0.1) B2,3(0.1) B3,3(0.1) B4,3(0.1) B5,3(0.1) B6,3(0.1)

0.216 0.592 0.1813 0.0107 0 0 0

j = 2 B0,2(0.1) B1,2(0.1) B2,2(0.1) B3,2(0.1) B4,2(0.1) B5,2(0.1) B6,2(0.1)

0 0.36 0.56 0.08 0 0 0

j = 1 B0,1(0.1) B1,1(0.1) B2,1(0.1) B3,1(0.1) B4,1(0.1) B5,1(0.1) B6,1(0.1)

0 0 0.6 0.4 0 0 0

j = 0 B0,0(0.1) B1,0(0.1) B2,0(0.1) B3,0(0.1) B4,0(0.1) B5,0(0.1) B6,0(0.1)

0 0 0 1 0 0 0
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The B-spline is then used to approximate the coefficient functions θi(Ut), i = 1, . . . , p. According to
de Boor (1978) [23] and Schumaker (2007) [24], if θi(Ut) is assumed to be smooth, then as the number of
knots tends to infinity, θi(Ut) will be well approximated by a linear combination of the corresponding
K-degree B-spline basis. That is, there exist a vector of constants βi = (βi1, . . . , βip)

′
and spline function

θ?i (Ut), such that

θi(Ut) ≈ θ?i (Ut) =
M+K

∑
j=0

βijBj,K(Ut), i = 1, . . . , p. (7)

Then we approximate model (1) by

xt ≈
p

∑
i=1

(
M+K

∑
j=0

βijBj,K(Ut)

)
xt−i + εt . (8)

Based on (8), the estimation of approximation model (8) is equivalent to the estimation of the
vector of parameters β = (β

′
1, . . . , β

′
p)
′
. We estimate β by the method of ordinary least squares

(OLS), i.e.,

β̂ = argmin
β

T

∑
t=p+1

(
xt −

p

∑
i=1

M+K

∑
j=0

βijBj,K(Ut)xt−i

)2

. (9)

Once β̂ is obtained, the OLS estimate of θi(Ut) is given by

θ̂?i (Ut) =
M+K

∑
j=1

β̂ijBj,K(Ut), for i = 1, . . . , p . (10)

In particular for the FAR(p, d) model (2), the estimated model becomes

xt =
p

∑
i=1

M+K

∑
j=0

β̂ijBj,K(xt−d) + εt . (11)

where εt are residuals. Based on (11), we can construct multi-step-ahead forecasts for xt. Let x̂t(l) be the
minimum mean square error prediction of xt+l , then it can be carried out by iteratively implementing
one-step-ahead prediction as

x̂t+1 =
p

∑
i=1

(
M+K

∑
j=0

β̂ijBj,K(x̂t+1−d)

)
x̂t+1−i ,

...

x̂t+l =
p

∑
i=1

(
M+K

∑
j=0

β̂ijBj,K(x̂t+l−d)

)
x̂t+l−i , (12)

where x̂t+l−d equals xt+l−d if l − d ≤ 0.

2.3. Selection of Threshold Variable and Significant Variables

For ARMA(p, q) model, the impact of the past value xt−i, i = 1, . . . , p on the current value xt is
direct and linear. However, in the real world, the impact may be related to another past value xt−d.
Compared to the ARMA(p, q) model, the FAR(p, d) model (2) is more flexible, where the impact of xt−i
on xt can be related to the threshold variable xt−d. The flexibility of the FAR(p, d) model can alleviate
the model mis-specification problem and reduce forecasting error caused by choosing wrong models.
In addition, the FAR(p, d) model does not involve the selection of exogenous variables. Due to these
advantages, the FAR(p, d) model is widely used in empirical studies. Chen and Tsay (1993) [17] used
the FAR(p, d) model to fit the monthly records of cases of chickenpox in New York City and the Wolf’s



Sustainability 2018, 10, 1691 6 of 16

annual sunspot numbers data set. Harvill and Ray (2005) [25] applied the FAR(p, d) model to forecast
the U.S.GNP and the unemployment rate. Recently, the FAR(p, d) model has been extended and used
in many fields, including survival analysis and risk management. For example, Xie et al. (2014) [26]
proposed the varying-coefficient expectile (VCE) model to estimate the value at risk. In particular,
by using the closing bid prices of the Euro in terms of the U.S. dollar, they applied the VCE model to
fit the expectile of the weekly exchange return.

In this paper, we use the FAR(p, d) model to fit and forecast the inflation rate of China, and in the
following we discuss some issues arising in the implementation of the FAR(p, d) model. In modelling
and estimating the FAR(p, d) model, a key issue is choosing an appropriate threshold variable xt−d
and a set of significant variables {xt−i}

p
i=1. This is equivalent to selecting the threshold lag d and the

significant lag p with d ≤ p. In practice, this can be achieved by a two-stage procedure. At the first
stage, the significant lag p can be chosen based on subjective determination or by objective data driven
methods such as information criteria. At the second stage, based on the chosen p, one decides d by
minimizing the information criterion such as AIC (Akaike, 1974 [27]) or BIC (Schwarz, 1978 [28]) when
p is fixed.

2.4. Selection of B-spline Basis Related Quantities

A crucial step in the B-spline estimation is to determine the B-spline basis, which is equivalent
to determining the degree K, the number of knots M and the knots locations. The most commonly
used degrees of the B-splines are 2 and 3, corresponding to the quadratic spline and the cubic spline.
The determination of K can be conducted by the method of information criterion. Essentially, M is
a smoothing parameter. As M increases, the spline function becomes less smooth leading to a more
complicated model, while as M decreases, the spline function become more smooth with worse
model fitting. In practice, M is chosen to balance the smoothness and model fitness. Huang and
Shen (2004) [22] showed that the AIC outperforms other criterions such as the BIC and the modified
cross-validation (Cai et al., 2000 [20]) in choosing M. Therefore in this paper we use the AIC to
determine M.

For a given M, there are two popular ways to arrange the interior knots: a < ξ1 < · · · < ξM < b.
One method gives the equally spaced knots, meaning that the distance between two adjacent knots is
the same. The other one is the quantile knots, meaning that the knots locate at the i/(M + 1) sample
quantiles (i = 1, . . . , M) of the threshold variable. If the distribution of the threshold variable is not flat,
the quantile knots are preferable (Huang and Shen, 2004 [22]).

3. Simulation Study

In this section, we check the fitting performance of the FAR model for different DGPs. Intuitively,
if the underlying DGP follows a constant coefficient process, the linear ARMA will provide a better fit
than the non-linear FAR model. On the other hand, if the underlying DGP follows time-varying
coefficient process, then the FAR model can outperform than the ARMA model. Specifically,
we compare the performance of the FAR and autoregressive (AR) model for different DGPs. The first
case is a constant AR(2) model:

Case I:

{
xt = θ0

1xt−1 + θ0
2xt−2 + εt ,

θ0
1 = 0.4, θ0

2 = 0.5 ,
(13)

with εt
i.i.d.∼ N(0, 1). The second case is the exponential AR model in Haggan and Ozaki (1981) [15] and

Huang and Shen (2004) [22]:
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Case II:


xt = θ0

1(xt−1)xt−1 + θ0
2(xt−1)xt−2 + εt ,

θ0
1(xt−1) = 0.138 + (0.316 + 0.982xt−1)e−3.89x2

t−1 ,

θ0
2(xt−1) = −0.437− (0.659 + 1.26xt−1)e−3.89x2

t−1 .

(14)

In each simulation, a series of length T = 100, 400, 1000 and 2000 are drawn and the experiment is
replicated 1000 times. For each case, we fit the generated data by both FAR(2,1) and AR(2) models.
The coefficients of FAR(2,1) model and AR(2) model are estimated by the B-spline method and the
OLS method, respectively. For each run s, the resulting estimates are denoted as θ̂?i,s(xt−d) and θ̂i,s,
respectively, i = 1, 2, s = 1, . . . , 1000. All the simulations are run in R 3.4.3. To estimate the ARMA(p, q)
model, we use the “arima” function built in the “stats” package.

To evaluate the fitting performance of both the FAR(2,1) model and the AR(2) model in the Cases
I&II, we adopt the bias (BIAS) and the root mean square error (RMSE) of the corresponding estimates.
Since the coefficients of the FAR model are functions of the threshold variable, the definitions of BIAS
and RMSE of FAR models are different from those of AR models. Specifically, the BIAS and RMSE for
Case I are defined as

BIASi =

{
1

1000 ∑1000
s=1 (θ̂i,s − θ0

i ) , AR(2) ,
1

1000 ∑1000
s=1 (

1
T−2 ∑T

t=3 θ̂?i,s(xt−1)− θ0
i ) , FAR(2,1) ,

and

RMSEi =


√

1
1000 ∑1000

s=1 (θ̂i,s − θ0
i )

2 , AR(2) ,√
1

1000 ∑1000
s=1

1
T−2 ∑T

t=3(θ̂
?
i,s(xt−1)− θ0

i )
2 , FAR(2,1) ,

respectively, i = 1, 2. The BIAS and RMSE for case II are defined as

BIASi =

{
1

1000 ∑1000
s=1 (

1
T−2 ∑T

t=3 θ̂i,s − θ0
i (xt−1)) , AR(2) ,

1
1000 ∑1000

s=1 (
1

T−2 ∑T
t=3 θ̂?i,s(xt−1)− θ0

i (xt−1)) , FAR(2,1) ,

and

RMSEi =


√

1
1000 ∑1000

s=1
1

T−2 ∑T
t=3(θ̂

?
i,s − θ0

i (xt−1))2 , AR(2) ,√
1

1000 ∑1000
s=1

1
T−2 ∑T

t=3(θ̂
?
i,s(xt−1)− θ0

i (xt−1))2 , FAR(2,1) ,

respectively, i = 1, 2. The results of BIAS and RMSE are reported in Tables 2 and 3.

Table 2. BIAS and RMSE of AR and FAR modelds for Case I.

T Index
θ1 θ2

AR(2) FAR(2,1) AR(2) FAR(2,1)

100 BIAS −0.0332 −0.0486 −0.0454 −0.0051
400 BIAS −0.0063 −0.0094 −0.0117 0.0042

1000 BIAS −0.0025 −0.0036 −0.0053 0.0028
2000 BIAS −0.001 −0.0015 −0.0026 0.0015
100 RMSE 0.0971 2.2412 0.1058 1.8270
400 RMSE 0.0449 1.8076 0.0455 1.5866

1000 RMSE 0.0278 1.7246 0.0281 1.5442
2000 RMSE 0.0191 1.6309 0.0194 1.5191
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Table 3. BIAS and RMSE of the two models for case II.

T Index
θ1 θ2

AR(2) FAR(2,1) AR(2) FAR(2,1)

100 BIAS 0.0735 0.0003 0.0050 −0.0001
400 BIAS 0.0628 0.0001 0.0150 −0.0001

1000 BIAS 0.0609 0.0001 0.0177 0
2000 BIAS 0.0622 0.0001 0.0161 0
100 RMSE 1.8801 0.0038 2.8682 0.0060
400 RMSE 3.4010 0.0038 5.4510 0.0057

1000 RMSE 5.2670 0.0053 8.5164 0.0096
2000 RMSE 7.4267 0.0074 11.9953 0.0145

The results in Tables 2 and 3 show that, in terms of bias, when the DGP follows Case I,
the performances for the FAR(2,1) and the AR(2) are similar, while the performance for FAR(2,1) is
better than the AR(2) when the DGP follows Case II. Note that the RMSE for the FAR(2,1) specification
in Case I is relatively large. This fact is reasonable because the squared sum of the difference between
the constant true coefficients and the fitted time-varying coefficients becomes large as the time varies.
Similarly, the RMSE for the AR(2) fitting for Case II are larger than that for the FAR(2,1). In terms of the
RMSE, the difference between the performance of FAR(2,1) and AR(2) in Case II are larger than that in
Case I. This result is due to the complicated time-varying coefficients of Case II. This fact implies that
the FAR model works well when the underlying DGP is a constant coefficient, but the AR model works
poor when the DGP is a time-varying coefficient model. In conclusion, the FAR model can reduce the
risk of model mis-specification and thus can be widely used in empirical study when one has no prior
information on the true model.

4. Empirical Analysis

4.1. Data Preprocessing

In this paper, inflation is measured in terms of the Consumer Price Index (CPI). The growth rate
of CPI can be regarded as a proxy for the inflation rate. In particular, we use the monthly CPI data of
China from Jan. 1995 to December 2017, with a total of 276 observations denoted as {xt}276

t=1. The data is
displayed in Figure 1, showing that the CPI is quite large in the beginning of this period and drops down
slowly. The inflation rate has been relatively stable at a level around 2% since 2012, which indicates that
the development of the economy of China has stepped into the stage of “New Normal”. Intuitively,
the underlying inflation process may change since the beginning of the “New Normal” period.

Time

C
P

I

1995 2000 2005 2010 2015

10
0

11
0

12
0

Figure 1. Monthly CPI data of China from January 1995 to December 2017.
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In practice, we take the logarithm of the raw CPI data, and check the stationarity of the log-CPI
data, at significance level 0.05. The result of the Phillips-Perron unit root test shows that the log-CPI
data is nonstationary (with p-value 0.1494), but the first order difference of the log-CPI is stationary
(with p-value 0). Therefore, the following analysis is based on the first order difference of the log-CPI
denoted as

yt = log(xt)− log(xt−1) . (15)

The plot of yt is shown in Figure 2. Parameter instability is also observed in our analysis of the
data. We build an AR(1) model yt = θyt−1 + εt and estimate the AR coefficient θ on an expanding
window basis and rolling window basis with a 60 window-width. These estimates are plotted in
Figure 3. It can be seen that the estimates of θ are quite variable. In conclusion, a non-linear FAR(p, d)
model with time-varying coefficients is more reasonable and flexible than the linear ARMA model.
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Figure 2. The first order difference of the monthly log-CPI.
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Figure 3. Estimates of θ. Left: expanding window; right: rolling window.

4.2. In-Sample Fit Analysis

We first use the FAR(p, d) model (2) to fit yt given in (15). Based on the AIC values, we have p = 4.
Then d ≤ p = 4. For a given threshold lag d, the FAR(4, d) model is estimated by the B-splines method.
To construct the B-spline basis, the degree of the B-spline basis, the number and locations of the knots
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need to be determined. We consider different choices of the degree K and the number of interior knots
M, i.e., K = 2, 3 and M = 1, 2, 3, 4, 5. For different values of (d, K, M), the locations of the knots ξi,
i = 1, . . . , M are set to be the i/(M + 1) sample quantiles (i = 1, . . . , M) of xt−d. The B-spline basis can
be calculated according to (5) and (6), and is then used to estimate the FAR(4, d) model by (9). We use
the AIC criterion to determine the value of (d, K, M).

Table 4 reports the AIC values for different combinations of (d, K, M), showing that
(d, K, M) = (2, 2, 1) leads to the smallest value of AIC. Therefore, we use yt−2 as the threshold variable.
K = 2 and M = 1 implies that the computational complexity is not large. The only internal knot
is the median of {yt−2}T

t=3, while the boundary knots are max3≤t≤T{yt−2} and min3≤t≤T{yt−2},
respectively. Thus, the resulting augmented vector of knots is (−0.02608,−0.02608,−0.02608,−0.02608,
−0.0009, 0.0194).

Table 4. AIC values of FAR models with different (d, K, M).

AIC d = 1 d = 2 d = 3 d = 4

K = 2

M = 1 −2002.20 −2008.77 −2006.09 −2001.36
M = 2 −2002.38 −2002.27 −2003.53 −1994.18
M = 3 −2005.80 −1996.11 −1997.89 −1989.72
M = 4 −2002.97 −1989.58 −1991.41 −1993.06
M = 5 −2007.87 −1985.52 −1983.82 −1996.12

K = 3

M = 1 −2006.04 −2003.56 −2003.16 −1994.44
M = 2 −2006.58 −1996.92 −1996.13 −1995.36
M = 3 −2002.43 −1990.42 −1989.67 −1990.75
M = 4 −2006.26 −1987.78 −1985.55 −1985.35
M = 5 −2002.85 −1982.75 −1983.23 −1987.87

The estimated FAR(4,2) model is

ŷt = −0.0003 + θ̂?1 (yt−2)yt−1 + θ̂?2 (yt−2)yt−2 + θ̂?3 (yt−2)yt−3 + θ̂?4 (yt−2)yt−4 , (16)

where the estimated coefficients are θ̂?i (yt−2) = ∑3
j=0 β̂ijBj,2(yt−2), where β̂ij are given in Table 5.

Based on the B-spline estimation results in Table 5, we plot the estimated functional coefficients
of the FAR(4,2) model (16) in Figure 4. The fitted first order differenced monthly log-CPI ŷt can
be recursively obtained by (16). The Ljung-Box test shows that the residuals {ε̂t = yt − ŷt}T

t=5 is
a white noise sequence, indicating that the FAR(4,2) model provides a satisfactory model fitting.
By substituting ŷt into (15), we obtain the fitted CPI x̂t.

We also fit yt by an ARMA(p, q) model, where p, q ≤ 6. The order p and q are determined by the
AIC criterion, which gives p = q = 5. The estimated model is

ŷt =− 0.0008 + 0.6556yt−1 + 0.9923yt−2 − 0.7343yt−3 − 0.6319yt−4 + 0.5494yt−5

− 0.5173εt−1 − 0.1533εt−2 + 0.6032εt−3 + 0.9862εt−4 − 0.5607εt−5 . (17)

where εt−1, . . . , εt−4 are residuals. Also, the residuals of model (17) are white noise, implying a
satisfactory model fitting.

Table 5. B-spline estimation results of the FAR(4,2) model.

β̂ij j = 0 j = 1 j = 2 j = 3

i = 1 1.3807 −0.2424 0.3918 −1.4556
i = 2 0.9471 −0.2776 0.5190 −0.7262
i = 3 0.7882 0.2199 −0.2503 1.4473
i = 4 −1.6952 0.9303 −0.5024 1.1203
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Figure 4. Estimation results of the coefficient functions.

Figures 5 and 6 display ŷt and x̂t given by the estimated FAR(4,2) and ARMA(5,5) models,
respectively. From Figure 6, both the FAR(4,2) and the ARMA(5,5) describe the main characteristic
of data quite well. In particular, they capture the three falling and rising processes of the inflation
since 1995. Intuitively, the fitted ARMA(5,5) is more fluctuated, meaning that the model overestimates
the peak and underestimates the trough, while the fitted FAR(4,2) model is more smoothing,
i.e., the FAR(4,2) model underestimates the peak and overestimates the trough. Thus, it is expected
that the ARMA(5,5) model fit the CPI data better during the fluctuating period, while the FAR(4,2)
model performs better during the stable period. From Figure 6, the inflation rate during 1995 to 2011
fluctuates heavily, and the fitted CPI by using the ARMA(5,5) model is closer to the real CPI than that
given by the FAR(4,2) model. However, for the period from 2012 to 2017, the inflation rate is quite
stable around the level of 2%, and the FAR(4,2) model performs better.
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Figure 5. Estimated first order difference of the log-CPI given by the FAR(4,2) model and the
ARMA(5,5) model.
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Figure 6. Estimated CPI given by the FAR(4,2) model and the ARMA(5,5) model.

We compare the fitting performance of the FAR(4,2) model and the ARMA(5,5) model for xt by
using mean absolute errors (MAE) and RMSE defined as

MAE =
1
T

T

∑
i=1
|xt − x̂t|, (18)

and

RMSE =

√
∑T

i=1(xt − x̂t)2

T
. (19)

The definitions of MAE and RMSE for yt are similar and thus are omitted. Furthermore,
to compare predictive accuracy, we employ the Diebold and Mariano test (denoted as DM test hereafter)
proposed in Diebold and Mariano (1995) [29], based on the corresponding MAE and RMSE. We only
introduce the DM test based on the MAE for simplicity. Define the forecasting error of xt as et = xt− x̂t

and the loss function L(et) = |et|. Based on L(et), the forecasting loss difference between ARMA and
FAR is dt = L(eA

t )− L(eF
t ). Here, the null hypothesis is that the ARMA model has equal predictive

accuracy as the FAR model, which is equivalent to E(dt) = 0. Let d̄ = 1
T ∑T

t=1 dt, then the DM statistic
is given by

DM =
d̄
σ̂d̄

,

where σ̂d̄ is a consistent estimate of the standard deviation of d̄. The alternative can be set as the forecast
of FAR is more accurate than that of ARMA. The procedure proceeds as follows. First, we calculate DM
test statistic and the two-sided p-value based on the limiting standard normal distribution. Then if the
value of the test statistic is positive (negative), the one-sided p-value is just one half of the two-sided
p-value (one minus one half of the two-sided p-value). Similarly, if the alternative is that the forecast
of ARMA is more accurate than that of FAR, and the value of the test statistic is positive (negative),
the one-sided p-value is one minus a half of the two-sided p-value (one half of the two-sided p-value).

In addition, we divide the in-sample forecasts into two halves: the first half ranges from January
1995 to September 2006 and the second half ranges from October 2006 to December 2017. The two-sided
testing results are given in Table 6. We first discuss the forecast of yt. With the full sample, the MAE and
RMSE of ARMA(5,5) model are almost the same as those of FAR(4,2) model for fitting yt. The scenario
is similar for the first period data and the second period data. This fact is in line with the DM test
results, which shows that in most cases, the fitting accuracies of the two models are similar under the
5% significance level.
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Then we consider the results for xt. For the full sample, the MAE of ARMA(5,5) is 15.8% smaller
than those of FAR(4,2) model for fitting xt. This improvement increases to 58.19% with the first period
data, which can be also verified by the larger absolute values of the DM statistic. The DM test result
implies that the ARMA(5,5) model provides better fitting accuracies than the FAR(4,2) model. However,
for the more stable second period data, the MAE of ARMA(5,5) is three times of that of FAR(4,2) model.
This superiority can be also verified by the DM test. Therefore, the FAR(4,2) model has better fitting
accuracy for more stable data. Similar conclusions can be obtained based on RMSE.

Combining the previous analysis, it is expected that the FAR model will provide more accurate
prediction for xt when China are stepping into the “New Normal” stage.

Table 6. Comparion of MAE and RMSE in ARMA(5,5) and FAR(4,2) model.

ŷt x̂t

FAR ARMA DM Test p-Value FAR ARMA DM Test p-Value

Full sample MAE 0.0039 0.0041 −1.2065 0.2287 3.0783 2.5918 −2.6366 0.0083
RMSE 0.0052 0.0055 −1.9427 0.0531 3.9805 2.9115 −6.0828 0.0000

First half MAE 0.0041 0.0041 −0.3154 0.7527 5.1302 2.1452 −38.4356 0.0000
RMSE 0.0055 0.0052 −1.4703 0.1427 5.4395 2.5039 −27.1525 0.0000

Second half MAE 0.0042 0.0039 −1.4839 0.1402 1.0337 3.0451 11.3261 0.0000
RMSE 0.0056 0.0051 −1.6909 0.0932 1.4738 3.2722 10.6661 0.0000

“Full sample” means the loss function and the DM test are calculated based on the full sample period ranging
from June 1995 to December 2017. “First half” and “Second half” means the results are calculated by using
the first half samples and the second half samples, respectively. The calculated DM statistic (in bold) and the
corresponding two-sided p-value are reported.

4.3. Out of Sample Forecast

From the in-sample analysis, the predictive performance of each model is not the same for periods
before and in the stage of “New Normal”. Compared to the in-sample fitting, the out-of-sample
forecasting of a model is more important, since precise forecasts of the inflation rate are crucial
for economic agents (e.g., investors, consumers) as well as for economic policy decision makers.
In particular, we are interested in the inflation rate for the period of “New Normal”. Thus, we divide
the whole sample into two parts: the first part covers data from January 1995 to October 2013, and the
second part covers data from November 2013 to December 2017. We use the rolling window method to
obtain the future CPI value. That is, when the forecast proceeds, the estimation window rolls forward
by adding one new data and dropping the most distant data. In this way, the size of the estimation
window remains the same. The one-step-ahead forecast is implemented based on the estimated
FAR(4,2) model (16) and the ARMA(5,5) model (17). To get an h-step-ahead forecast (h > 1), we can
iteratively implement one-step-ahead forecast h times as given in (12). In the following, we consider
different values of forecast horizons h ∈ {1, 3, 6, 9, 12, 15, 18, 21, 24}. The forecasting results are shown
in Figure 7.

The figure shows that the forecasts based on the FAR(4,2) model are more smoothing, while the
forecasts based on the ARMA(5,5) model are more fluctuated. Since the true CPI data in the forecasting
period are stable, the FAR(4,2) model provide more accurate forecasts. It is also shown that as h
increases, the forecasts for both models become more fluctuated and less accurate.

To evaluate the forecasting accuracy, we use the forecasting MAE and RMSE defined as

MAEh =
1
N

N

∑
t=1
|xt − x̂h

t | , (20)
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and

RMSEh =

√
∑N

t=1(xt − x̂h
t )

2

N
, (21)

respectively, where xt is the true CPI, and x̂h
t is the h-step-ahead forecast of CPI, N is the total

number of forecasts. We also conduct the DM test for comparison. In Table 7, we report the MAE,
the RMSE, the DM statistic and the p-value with alternative hypothesis that the two models have
different predictive accuracies. The forecast horizon is fixed at h ∈ {1, 3, 6, 9, 12, 15, 18, 21}. It can
be observed that at short horizon levels (i.e., h ∈ {1, 3}), the MAE and RMSE of the two models
are comparable. When the horizon level becomes large (i.e., h ∈ {6, 9, 12, 15, 18, 21}), the MAE and
RMSE of FAR(4,2) model are lower than those of ARMA(5,5) model. Moreover, as the horizon level
h increases, the improvement of FAR(4,2) model becomes larger. This phenomenon is also detected
by the DM test. Specifically, at 5% significance level, the FAR(4,2) model outperforms the ARMA(5,5)
model for h ∈ {6, 9, 12, 15, 18, 21}, while the predictive accuracies of the two models are similar for
h ∈ {1, 3}. This fact implies that the FAR model is better for moderate and long-term inflation rate
forecasting and is comparable to ARMA model for short-term inflation rate forecasting.
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Figure 7. Multi-step-ahead forecasts of the monthly CPI data given by the FAR model and the ARMA
model (black line: true CPI; blue line: ARMA; red line: FAR).

Table 7. MAE and RMSE of multi-step-ahead forecasts.

h 1 3 6 9 12 15 18 21

MAE

ARMA(5,5) 0.3057 0.6052 1.1990 1.4782 2.1926 2.5480 3.3967 4.2165
FAR(4,2) 0.2969 0.5278 0.6196 0.7560 0.9500 1.1295 1.3590 1.5832
DM test 0.3244 1.3658 4.9881 2.9283 4.9559 4.8971 3.8484 2.7157
p-value 0.7470 0.1782 0.0000 0.0052 0.0000 0.0000 0.0003 0.0091

MSE

ARMA(5,5) 0.4246 0.7447 1.4027 1.7951 2.5945 3.2504 4.2081 5.2963
FAR(4,2) 0.4102 0.6656 0.8286 0.8883 1.2054 1.3406 1.6212 1.8738
DM test 0.6118 1.2482 3.4193 3.4778 5.3781 5.4008 2.7253 2.2040
p-value 0.5435 0.2179 0.0013 0.0011 0.0000 0.0000 0.0089 0.0323

The calculated DM statistic (in bold) and the corresponding two-sided p-value are reported.
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5. Conclusions

The inflation rate is a critical quantity for both policy-makers and economic researchers. Hence,
forecasting the inflation rate has long attracted the interests from various fields. In this paper, we apply
the FAR model to forecast the inflation rate after the economy of China stepping into a new stage of
“New Normal”. The FAR model belongs to the semi-parametric non-linear time series model, which has
three main advantages. First, compared to the traditional linear time series model, this model can
describe the non-linear dynamics of the underlying process, which is common for many real time
series data. Second, compared to the fully parametric non-linear time series model for example the
threshold autoregressive model, the FAR model is more flexible and avoids the problem of model
mis-specification. Third, the FAR model attains a satisfactory forecasting power, particularly for data
without much fluctuations. The last advantage matches the characteristic of the inflation rate of China
during the “New Normal” period. To estimate the functional coefficients of the FAR model, we adopt
the B-spline method, which is numerically stable and can be obtained recursively. Thus, this estimation
method largely reduces the computational burden and can be applied to handle huge amount of data.

Code for this illustration was written in R (R Development Core Team, 2010) and is available
upon request from the authors.
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