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Abstract: Reducing the use of chemical inputs is an urgent and challenging task in the transformation
toward environmentally-friendly agriculture in China, especially when the efficacy of alternative
control measures is not yet fully understood. Based on the data from 601 rice farmer households
regarding their adoption of fertilizer- and pesticide-reducing technologies in Zhejiang and Jiangsu
Provinces, this study investigated whether social learning can promote the diffusion of fertilizer- and
pesticide-reducing technologies, and whether the role of social learning varies when the technologies
differ. Empirical analysis using the spatial error model (SEM) showed that social learning positively
affects the diffusion of ecological technologies, but the role of social learning varies when the
technology characteristics differ. Learning from neighbors promotes the adoption of labor-intensive
and high-skilled technologies, but this strategy does not work well in capital-intensive technologies.
However, learning from demonstration significantly affected the diffusion of capital-intensive and
high-skilled technologies, but did not work well for labor-intensive technologies.

Keywords: environmentally-friendly; rice fertilizer-reducing and pesticide-reducing technologies;
social learning; spatial error model (SEM)

1. Introduction

To address the problems of food and clothing scarcity, public concern has been increasing about
the importance of avoiding environmental problems related to farming activities. This concern is
one of the main forces driving the transformation toward environmentally-friendly agriculture in
developing countries. Agriculture in China is facing this challenge. China’s agriculture provides
food for almost 1.3 billion people, which is about 20% of the world population, creating increasingly
Chemical over-usage a danger to agro-ecosystems and an obstacle to China’s sustainable agricultural
development. According to the results of the first national census of pollution sources in 2010, chemical
oxygen demand and total nitrogen and phosphorus emissions, which were the major sources of
agricultural pollutants, were 13,240,900, 2,704,600, and 284,700 tons, accounting for 43.7%, 57.2%,
and 67.3% of national emissions, respectively. The amount of fertilizers (converted to purified
fertilizers) used in China in 2016 reached 59,841,000 tons, and pesticides reached 1,783,000 tons.
The amount of fertilizer used per hectare was almost three times higher than the world average, and
the average amount of chemical pesticides used was 2.5–5 times higher than that of developed countries.
Previous studies reported that the overuse of fertilizers and pesticides has a causal relationship with
eco-environmental problems, such as non-point pollution [1–6]. The long-term overuse of chemical
fertilizers also decreases the rice yield, yield stability, and sustainability [7]. An ecological footprint
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analysis in China showed that the overuse of fertilizers and pesticides has aggravated the depletion of
resources, which revealed the unsustainable nature of the Chinese agriculture ecological system [8].

Immediately reducing fertilizers and pesticides is essential for maintaining the sustainability of
agriculture. However, given long-term rural population transfer, the majority of the laborers in China’s
agriculture sector are generally older, poorly educated, and risk-averse. Additionally, the increasing
price of labor, together with the decreasing prices of agricultural products, prevents possible labor as a
good substitute for chemical fertilizers and pesticides due to cost constraints. Thus, promoting the
adoption of a series of new technological controls for pests, such as biological, physical, and ecological
pest controls, to these farmers is a big challenge for the sustainable development of Chinese agriculture.

Uncertainty, risk aversion, and limited understanding were considered the main factors
influencing the overuse of fertilizers and pesticides. An experiment in rural India indicated almost
all individuals are moderately risk-averse at high payoff levels [9], and the relationship between risk
(uncertainty) and farm production has attracted many scholars and researchers. A study of farmer
behavior in terms of pesticide use in China found that higher risk-averse cotton farmers tended to use
more pesticides or fertilizers to reduce production uncertainty [10,11].

Social learning based on farmers’ social networks can enhance information exchange and human
communication, thereby helping to reduce the uncertainty involved when applying new agricultural
technologies. As such, the role of social learning in the application and extension of sustainable
agricultural technologies has attracted increased attention. Tarde proposed that all behaviors or
innovations are disseminated through “imitation” among people [12]. In a group of farmer households
with similar social status, economic status, education background, and production characteristics,
face-to-face observation and communication were found to be the most effective at persuading potential
technology adopters [13]. If a household takes the lead in adopting a certain production technology,
farmers nearby can adopt the new technology through imitating and learning from the leading
farmer household, thus forming an agglomeration [14,15]. Data from Honduras about the adoption
of organic agricultural technologies showed a significant phenomenon of spatial agglomeration.
The availability of information from neighboring farmer households and the positive externality
of social conformity and technology significantly affected the technology adoption behavior of
farmers [16]. A study of New Zealand dairy farmers’ adoption of best management practices for
protecting water quality showed that farmers located near each other exhibit similar choice behavior,
namely spatial agglomeration [17].

Since the role of social learning in solving ecological problems has been discussed, the process of
effective social learning requires further study. This study aimed to evaluate the role of social learning
in the diffusion of fertilizer- and pesticide-reducing technologies, and to analyze whether the role
of social learning varies when the technologies differ. The contributions of this study include the
following two points. Firstly, the varieties, amounts, and patterns of fertilizer and pesticide use are
closely related to the soil and climate in a particular area, which means that using these technologies
has underlying geographical and spatial relevance. Therefore, different from conventional social
network analysis, spatial econometric models would be able to determine whether social learning
plays positive role in diffusion by testing the agglomeration effect (learning from neighbors) and
the demonstration effect (learning from demonstration areas). Secondly, to investigate the different
influences of social learning, we selected a set of fertilizer- and pesticide-reducing technologies and
classified these measures into three categories: labor-intensive, capital-intensive, and high-skilled
technologies, according to the technical attributes. Because we used a set of technologies, the adoption
of fertilizer- and pesticide-reducing technologies could not be labeled as either “yes” or “no”. To solve
this problem, we calculated farmer households’ technology adoption scores based on technology
classification and the difficulty level of the introduced technology.
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2. Methodology and Data

2.1. Theory of Spatial Diffusion of Technology

The Spatial Diffusion of Technology theory introduces the concept of space from the field of
economic geography into the theory of technology diffusion to analyze the direction and path of
technology diffusion. The theory holds that the diffusion of technology is realized through the
interactive process of “learning” or “communication” between individuals. Therefore, the effective
transmission of information is a prerequisite for achieving technology diffusion. The key factor
affecting information transmission is spatial distance [18]. Scholars of the expanded diffusion theory,
such as Darwent and Morrill, believe that technology diffusion follows a path radiating from the center
of innovation source to its surroundings. As such, the technology diffusion effect is a function that
decreases as spatial distance increases, showing a clear agglomeration effect and a demonstration
effect at the center [19,20].

2.2. Spatial Econometric Model

Spatial statistics and econometric methods establish the relationship between statistics and
metrology through geographic location and spatial relations. These methods identify and measure the
law of spatial variation and determinants of spatial patterns [21,22]. Considering spatial behavioral
correlations, spatial models align more with objective agricultural production decisions.

According to the basic economic assumption of rational farmers, farmer decision-making about
technology adoption depends on their judgment of utility. The utility of farmer i’s adoption decisions
Y∗i can be expressed as:

Y∗i = Ui1 −Ui0 (1)

where Ui1 and Ui0 represent farmers’ utility when they adopt and do not adopt
technologies, respectively.

The spatial decision-making model for farmer technology adoption assumes that Y∗i depends not
only on a farmer’s own characteristics but also on the spatial dependency between the farmer and
their neighbors. Y∗i can be expressed as:

Y∗i = U(Xi, S∗i ) + e (2)

where S∗i represents the impact of the unobservable spatial dependence on a farmer’s adoption
decisions. S∗i can be expressed as:

S∗i = S
(
Zt, Yj(i)

)
+ e (3)

where Zt is a series of exogenous variables in the area where farmer i is located, and Yj(i) represents
the behavior decisions of farmer i’s neighbors (i is not j).

The basic form of the spatial decision-making model for farmer technology adoption is:

Yi = ρW ·Yi + βXi + u (4)

u = λM · u + ε, ε ∼ N(0, σ2 In) (5)

where u is the error term; W and M are the spatial weight matrices of Y and u, respectively; ρ is the
spatial autoregressive coefficient; and λ is the spatial autoregressive error coefficient. The mainstream
spatial econometric models include the spatial error model (SEM), spatial lag model (SLM), and the
spatial Doberman model (SDM). The basic assumptions of the spatial error model and spatial lag
model correspond to ρ = 0 and λ = 0, respectively. The basic assumption of the spatial Doberman
model is that the coefficient is not zero, ρ 6= 0, and λ 6= 0.
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As previously reported [23–32], independent variables (Xi) include personal and family
characteristics, production and organizational characteristics, technology and information channels,
and production services. Specific variables and their distribution are listed in Table A1.

2.3. Model Setting

The spatial proximity that determines the extent to which changes in farmer j influence the
adoption probability of farmer i is dependent on a special weights matrix Wij. Two main methods
can determine the spatial weight matrix: contiguity based spatial weights (Wij is defined if farmer
i and farmer j are conterminal) and distance based spatial weights (Wij is defined on the inverse
distance between farmer i and farmer j). The paddy fields crisscross, therefore measuring an accurate
distance was difficult. At the same time, the distance between any two villages is much longer than
the radius of villages. Given these facts, we used the “village” definition of “neighbors” as outlined in
Holloway et al. [33] and Ying and Xu [34]. In this matrix, if farmer i and farmer j are farmers in the
same village, then Wij = 1; otherwise, Wij = 0.

First, we depict the autocorrelation of the spatial distribution of the scores for sample farmers’
adoption of fertilizer- and pesticide-reducing technologies with Global Moran’s I. The results (Table 1)
show that the Moran’s I indexes of the adoption scores of the three categories of fertilizer- and
pesticide-reducing technologies were all significantly positive at the 1% level, indicating that the
farmers with higher technology adoption scores tend to be geographically close to farmers of the same
type, which means that using a spatial econometric model for estimation was reasonable.

Table 1. Global Moran’s I index testing results.

Testing Indicators Labor-Intensive
Technologies

Capital-Intensive
Technologies

High-Skilled
Technologies

Moran’s I 0.578 0.375 0.424
Moran’s I-Probability <0.001 <0.001 <0.001

Secondly, with the Lagrange Multiplier (LM) and testing of its robustness (Robust LM, or
R-LM), we selected a suitable spatial econometric model. According to the testing method used
by Anselin et al. [35], if the spatial error-LM is more significant than the spatial lag-LM, and the spatial
error-R-LM is significant, whereas spatial lag-R-LM is not significant, the Spatial Error Model (SEM)
should be used. Otherwise, the Spatial Lag Model (SLM) should be used. When both LM and the
robustness testing are significant, the Spatial Dubin Model (SDM) should be used.

Based on the test results of the three types of fertilizer- and pesticide-reducing technologies
(Table 2), the significance of spatial error-LM was higher than that of spatial lag-LM, and, moreover,
spatial errors-R-LM were all significant at the 1% level. Therefore, it was most appropriate for us to
use the SEM for estimation.

Table 2. Lagrange Multiplier testing results.

Testing Indicators
Labor-Intensive

Technologies
Capital-Intensive

Technologies
High-Skilled
Technologies

Statistic p-Value Statistic p-Value Statistic p-Value

Spatial error

Lagrange Multiplier 994.370 <0.001 76.214 <0.001 213.57 <0.001
Robust Lagrange Multiplier 798.138 <0.001 77.779 <0.001 205.57 <0.001

Spatial lag

Lagrange Multiplier 197.077 <0.001 0.188 0.664 15.01 <0.001
Robust Lagrange Multiplier 0.844 0.358 1.754 0.185 7.01 0.01
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2.4. Research Area and Basic Data

The data in this paper were obtained from an investigation of rice farmers in Zhejiang Province
and Jiangsu Province, China, from July to September 2017. We selected these two provinces due to
the rice production and the amount of chemical overuse. Rice is the main crop in both Zhejiang and
Jiangsu Provinces, accounting for 65% and 42% of grain acreage, respectively. The average excessive
amount of fertilizer for the major rice-producing provinces in the middle and lower reaches of the
Yangtze River was 583.5 kg/hectare and the amounts in Jiangsu and Zhejiang Provinces were 516.75
and 312.9 kg/ha, respectively [36]. Household survey data from Zhejiang and Jiangsu Provinces
reflected the real situation of excessive use of chemical fertilizers and pesticides in the rice industry
in East China, which was helpful to summarize the fertilizer and pesticide reductions and explore a
reasonable path for policy promotion.

The Environmental Kuznets Curve shows that environmental improvement occurs after economic
development. In China, in 2017, Zhejiang and Jiangsu Province were ranked one and two, respectively,
in terms of Per Capita Disposable Income (excluding municipalities) (the data are from China Statistical
Yearbook of 2017). These two provinces also led the green transformation of agriculture, which could
provide references for other regions. Both Zhejiang and Jiangsu have created a good policy environment
for the sustainable production of rice. The government of Zhejiang set a goal of building a strong
culture of green agriculture practices in the province and issued The Action Plan for Fertilizer Reduction
and Efficiency Enhancement in Zhejiang Province and The Action Plan for Pesticide Reduction in Zhejiang
Province, outlining the overall requirements, objectives, tasks, technical routes, and work priorities for
reducing fertilizer and pesticide use and increasing efficiency. Jiangsu Province proposed the concept
of green agricultural development in the section about the development and planning of modern
agriculture in the “13th Five-Year Plan” and launched the special campaign called “two reductions,
six controls, and three improvements” in 2017. The plan requires the implementation of fertilizer and
pesticide reduction projects and the promotion of reduction technologies to ensure zero growth of
pesticide application.

Demonstration areas are usually set up in paddy fields owned by farmers. The government
specifies the types of technologies that need to be demonstrated, guides the operation of the
technologies, and provides necessary financial and material support. Family farms or large grain
producers perform weeding, irrigation, and other daily management. The size of the demonstration
areas varies with the kind of technologies and the size of family farms.

Households were randomly selected based on a multi-stage cluster sampling. In the first stage,
we chose six counties in Zhejiang Province and two counties in Jiangsu Province that had begun
demonstration areas the earliest. In every county, two villages with demonstration areas were randomly
selected from a list of demonstration areas provided by local government, with three villages in the
largest county. Then, two villages around first-selected village but without a demonstration area were
chosen. A total of 17 villages with demonstration areas and 34 villages without demonstration areas
were selected. Then, 10–13 households were randomly selected in each of the villages. The survey was
conducted one-to-one, from July to September 2017. A total of 638 questionnaires were distributed, of
which 601 were considered valid collections, with a response rate of 94.20%.

3. Results and Discussion

3.1. Adoption of Fertilizer-Reducing and Pesticide-Reducing Technologies

Rogers noted that the new technology itself can explain 49–87% of the technology adoption
rate [13]. The differences in the level of technology benefits, the level of risk, and the degree of
dependence on resources account for the differences in decision-making with regard to technology
adoption by farmers [37]. Based on Rogers’ theory, a set of technologies were, using the Delphi method,
screened according to ease and applicability of technical use (Table 1). Different from the usual
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measurement of adoption responses of “yes” or “no”, after referring to previously methods [38–40],
we decided to calculate the adoption score.

Next, the fertilizer- and pesticide-reducing technologies were divided into three types:
capital-intensive, labor-intensive, and high-skilled technologies (Table 3). Capital-intensive
technologies are mainly achieved through the use of new materials such as efficient plant protection
machinery. Labor-intensive technologies require more labor input, but almost no new material or
technology is required. High-skilled technologies are characterized by complexity, which means
lasting, in-depth learning is necessary. In addition to the differences in technical attributes, the level
of difficulty in terms of adopting technologies with the same attributes also varies. Based on the
evaluation of plant protection and soil fertilizer experts, three levels of difficulty (easy, moderate, and
difficult) were defined and assigned the weights of 1, 2, and 3, respectively. In summary, the formula
for calculating rice farmers’ score of technology adoption Yi is:

Yi = ∑
k=1

Tik ×Qik (6)

where i represents the technology category, k is the sub-technologies in each of the three technical
categories, T is whether the kth sub-technology is adopted, and Q is the adoption weight.

Table 3. Fertilizer- and pesticide-reducing technologies for rice.

Technology Category Technology Name Technical Attributes Level of Difficulty of
Technology Adoption

Fertilizer-reducing technologies

Nutrient replacement
technologies

Organic fertilizer (biogas slurry),
fertilizer application technology Capital-intensive/high-skilled Moderate

Straw back to the field technology Capital-intensive/high-skilled Difficult

Fertilizer enhancement
technologies

Slow release fertilizer
application technology high-skilled Moderate

Mechanical side deep
application technology Capital-intensive Moderate

Soil testing and
formulation technology high-skilled Easy

Fertilizer control and harm
reduction technology high-skilled Easy

Pesticide-reducing technologies

Ecological regulation and
control technologies

Planting of flowering
plants technology Labor-intensive Difficult

Planting of insect-inducing
plants technology Labor-intensive Difficult

Biological prevention and
control technologies Trichogramma release technology Labor-intensive/high-skilled Difficult

Physical and chemical
induction technologies Sex attractant trapping technology Capital-intensive Easy

Drug efficacy
enhancement technologies

Efficient plant protection machinery
application technology Capital-intensive Moderate

Farmers’ adoption scores with regard to fertilizer- and pesticide-reducing technologies are
still low (Table 4), and the level of technology adoption needs to be rapidly improved. From a
distribution perspective, the average adoption level of labor-intensive technologies was low, with
over 60% of the households scoring zero. Only 30.28% of the farmers had a score over six points for
capital-intensive technologies. Over half of the farmers have an adoption score of four to six points for
high-skilled technologies.



Sustainability 2018, 10, 1527 7 of 12

Table 4. Score distribution of rice farmers’ adoption of fertilizer- and pesticide-reducing technologies.

Technology Category Score Distribution

Labor-intensive technologies 0 3 6 9
Proportion of farmer households (%) 61.73 19.13 17.30 1.83
Capital-intensive technologies 0–2 3–5 6–8 9–10
Proportion of farmer households (%) 9.15 60.57 24.29 5.99
High-skilled technologies 0–3 4–6 7–9 10–12
Proportion of farmer households (%) 21.96 53.25 18.47 6.32

3.2. Analysis of the Role of Social Learning by SEM

According to the estimation results for labor-intensive technologies (Table 5), λ was positive and
significant at the 1% level, indicating that a significant spatial autocorrelation exists among the adoption
levels of labor-intensive technologies. Social learning (learning from neighbors) played positive role
in the extension of labor-intensive technologies. The main reason is that, at close range, farmers can
exchange pest control information conveniently. The impact of the second kind of learning, learning
from demonstration areas, was negative, showing that farmers closer to the demonstration areas have
higher technology adoption scores. However, the variable was not significant; the demonstration
areas do not have a demonstration effect on the surrounding farmers’ adoption of labor-intensive
technologies. This might be because directly observing the chemical-reduction effect of flowering and
insect-attracting plants through rice growth in the demonstration areas is difficult, and there is no
need to learn the technical specifications through the demonstration areas given the simplicity of the
operation of labor-intensive technologies.

According to the estimation results for capital-intensive technologies (Table 5), λ was positive
but not significant, indicating that there was no significant agglomeration effect. The distance
between farmers and demonstration areas had a negative impact at the 1% level. In other
words, learning from demonstration had a significant effect on surrounding farmers’ adoption of
capital-intensive technologies. The insignificant agglomeration effect may be attributed to the fact that
the implementation of such technologies mostly occurs through the purchase of machinery services.
Therefore, promotion is not only constrained by the development level of local agricultural machinery
services. This is especially notable for agricultural machinery services that meet the requirements
of small-area cultivation, but also related to whether farmers are willing to purchase agricultural
machinery services.

According to the estimation results for high-skilled technologies (Table 5), λ was positive and
significant at the 5% level, indicating that a significant spatial agglomeration effect exists, which verifies
the positive role of the first type of social learning. The distance between farmers and demonstration
areas showed a significant negative impact at the 5% level, meaning the second social learning type
had a significant demonstration effect on surrounding farmers’ adoption of technologies. This confirms
the positive role of the second kind of social learning. The reason high-skilled technologies show both
the agglomeration effect and the demonstration effect is that farmers have to master the operation
essentials through observation as well as study in the demonstration areas to communicate with each
other to reduce technical uncertainty when the production technology requirement is high.
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Table 5. Model estimation results for factors influencing the adoption of fertilizer- and pesticide-
reducing technologies.

Variable
Labor-Intensive

Technologies
Capital-Intensive

Technologies High-Skilled Technologies

Coefficient Z Value Coefficient Z Value Coefficient Z Value

Distance −0.0209
(0.0399) −0.5200 −0.2055 ***

(0.0659) –3.1200 −0.2166 **
(0.0883) −2.4500

Education background −0.1008 ***
(0.0344) −2.9300 0.2355 ***

(0.0752) 3.1300 0.4037 ***
(0.0867) 4.6600

Years of planting rice −0.0022
(0.0019) −1.2000 −0.0057

(0.0038) −1.5000 −0.0010
(0.0041) −0.2400

Number of laborers 0.0474 ***
(0.0177) 2.6800 0.0215

(0.0390) 0.5500 −0.0571
(0.0449) −1.2700

Employment/business level −0.0018 **
(0.0009) −2.1300 0.0031

(0.0019) 1.6100 −0.0029
(0.0023) −1.2600

Willingness to adopt technologies 0.0141
(0.0327) 0.4300 0.1011 **

(0.0440) 2.3000 0.2438 ***
(0.0610) 4.0000

Planting area −0.0249
(0.0183) −1.3600 0.0529

(0.0490) 1.0800 0.0113
(0.0572) 0.2000

Degree of mechanization −0.0340
(0.0331) −1.0300 0.0929

(0.0671) 1.3800 0.0761
(0.0841) 0.9100

Degree of organization/cooperatives 0.0211
(0.0528) 0.4000 0.0278

(0.1107) 0.2500 0.0048
(0.1275) 0.0400

Subsidy 0.0002
(0.0006) 0.4100 0.0030 ***

(0.0011) 2.8100 0.0128 ***
(0.0013) 9.5000

Production area of double-season
rice/crop

0.2909 ***
(0.0618) 4.7000 0.0730

(0.1483) 0.4900 −1.5773 ***
(0.1857) −8.5000

Technical training 0.0082
(0.0175) 0.4700 0.1023 **

(0.0433) 2.3700 0.2316 ***
(0.0514) 4.5100

From the government’s agricultural
technology department (compared
with the channel of neighbors,
relatives and friends)

−0.0652
(0.0651) −1.0000 0.1967

(0.1288) 1.5300 0.5416 ***
(0.1526) 3.5500

From television and the Internet
(compared with the channel of
neighbors, relatives and friends)

0.0689
(0.0969) 0.7100 0.2551

(0.2013) 1.2700 0.1642
(0.2411) 0.6800

Unified prevention and control −0.1915
(0.1971) −0.9700 0.8050 **

(0.4016) 2.0000 −0.9740 **
(0.4283) −2.2700

Plant protection or soil
testing information

0.1148 *
(0.0603) 1.9000 0.1980 *

(0.1168) 1.7000 0.1517
(0.1514) 1.0000

Provision of field crop seeding
(Unified provision of
high-quality fertilizers)

0.7148 ***
(0.2729) 2.6200 0.7081

(0.6458) 1.1000 2.9165 ***
(0.3731) 7.8200

Interactive term 1 −0.0188
(0.0437) −0.4300 0.1806 *

(0.0930) 1.9400 −0.0148
(0.0976) −0.1500

Interactive term 2 0.0354
(0.0589) 0.6000 0.1231

(0.1437) 0.8600 0.0459
(0.0984) 0.4700

constant 1.2578 ***
(0.1467) 8.5700 2.3482 ***

(0.4040) 5.8100 1.4313 **
(0.5928) 2.4100

λ
0.0099 ***
(0.0030) 3.2900 0.0014

(0.0013) 1.1400 0.0035 **
(0.0018) 1.9600

σ
0.3150 ***
(0.0148) 21.3200 1.0902 ***

(0.0323) 33.7100 1.2848 ***
(0.0379) 33.8800

R2-adjusted 0.47 0.61 0.69

Note: *** p < 0.01; ** p < 0.05; * p < 0.1.

4. Conclusions

According to the Spatial Diffusion of Technology theory, based on spatial error model, we
analyzed the role of social learning in the diffusion of rice fertilizer- and pesticide-reducing agricultural
technologies. We found that the roles of two kinds of social learning varied when technologies differed.
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The Moran’s I indexes of the adoption scores of the three categories of technologies indicated that
social learning plays a significant role in the diffusion of ecological technology. The spatial error model
(SEM) results proved that the role of social learning varied when the technological characteristics
differed. First, learning from neighbors will promote the adoption of labor-intensive and high-skilled
technologies, but this type of learning did not work well in capital-intensive technologies. Second,
learning from demonstration areas had a significant effect on the diffusion of capital-intensive and
high-skilled technologies, but did not work well in labor-intensive technologies.

Our evaluation of the role of social learning was based on the result of diffusion, namely the
spatial agglomeration and demonstration effects. However, diffusion of agricultural technology also
requires time. The cross-sectional data used in this study reflected the current results of diffusion in
fertilizer- and pesticide-reducing technologies only. According to Rogers’s diffusion of innovations
theory, technology diffusion has different characteristics at different stages. If we use micro-panel
data, we may obtain more conclusions including diffusion rate, change of diffusion area, and dynamic
diffusion characteristics of fertilizer- and pesticide-reducing technologies at different times. However,
as mentioned in this paper, since the implementation of a package of fertilizer- and pesticide-reducing
technologies only started in 2015, obtaining effective panel data remains difficult. In addition, due to
the limitation of the sample size, this study did not include the social capital of farmer households in
the regression model. Future research can try to use social network analysis to explain the effect of
social learning and explain how social learning shapes the farmer adoption behavior of fertilizer- and
pesticide-reducing technologies.
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Appendix A

Table A1. Variable descriptions and descriptive analysis.

Variable Variable Description and Value Assignment Mean Standard
Deviation

Geospatial factors

Distance The distance between farmers and the nearest
technology demonstration area (meters) 2008.94 1899.26

Personal and family characteristics

Education background 1 = primary school; 2 = middle school;
3 = high school; 4 = beyond high school 2.33 0.79

Years of planting rice Decision-makers’ number of years of planting rice 25.50 16.13

Number of labor Number of family laborers 2.96 1.37

Employment/business level Proportion of non-farm income to total income (%) 37.90 32.16

Willingness to adopt technologies
1 = not willing at all; 2 = not quite willing; 3 = neutral;
4 = quite willing;
5 = very willing

3.90 1.41

Production and organizational characteristics

Planting area Rice planting area (hm2) 4.28 112.25

Degree of mechanization

Machinery use in ploughing, seedling transplanting
and harvesting: 1 = no machinery used in any of the
three areas; 2 = machinery use in one of the three areas;
3 = machinery use in two of the three areas;
4 = machinery use in all three areas

2.51 0.73

Degree of organization/cooperatives 1 = established family farms or joined cooperatives or
businesses; 0 = no 0.53 0.50

Subsidy Annual subsidy for rice planting (Yuan/year) 87.76 48.29

Production area of double-season rice/crop 1 = yes; 0 = no 0.17 0.38
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Table A1. Cont.

Variable Variable Description and Value Assignment Mean Standard
Deviation

Technology and information channels

Technical training Average number of trainings for fertilizer and
pesticide application (times/year) 2.34 1.46

From the government’s agricultural technology
department (compared with the channel of
neighbors, relatives and friends)

1 = yes; 0 = no 0.72 0.45

From television and the Internet (compared
with the channel of neighbors, relatives
and friends)

1 = yes; 0 = no 0.07 0.26

Production services

Unified prevention and control 1 = yes; 0 = no 0.30 0.46

Plant protection or soil testing information 1 = yes; 0 = no 0.76 0.43

Provision of field crop seeding 1 = yes; 0 = no 0.12 0.33

Unified provision of high-quality fertilizers 1 = yes; 0 = no 0.15 0.35

Interactive terms

Interactive term 1 Unified prevention and control × willingness to
adopt technologies - -

Interactive term 2
Provision of field crop seeding (unified provision of
high-quality fertilizers) × willingness to
adopt technologies

- -
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