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Abstract: Supply chains have become more time-sensitive in recent years. Delays in supply chain
operations may cause significant negative externalities, including lost sales and customers. In order
to facilitate the product distribution process within supply chains, reduce the associated delays,
and improve sustainability of the supply chain operations, many distribution companies started
implementing the cross-docking technique. One of the challenging problems in management of
the cross-docking facilities is efficient scheduling of the arriving trucks. This study proposes a
novel Diploid Evolutionary Algorithm for the truck scheduling problem at a cross-docking facility,
which—unlike the Evolutionary Algorithms presented in the cross-docking literature to date—stores
the genetic information from the parent chromosomes after performing a crossover operation.
The objective of the formulated mathematical model is to minimize the total truck service cost.
The conducted numerical experiments demonstrate that the optimality gap of the developed
algorithm does not exceed 0.18% over the considered small size problem instances. The analysis of
the realistic size problem instances indicates that deployment of the developed solution algorithm
reduces the total truck handling time, the total truck waiting time, and the total truck delayed
departure time on average by 6.14%, 32.61%, and 34.01%, respectively, as compared to a typical
Evolutionary Algorithm. Furthermore, application of the diploidy concept decreases the total truck
service cost by 18.17%.

Keywords: supply chains; cross-docking; truck scheduling; evolutionary computation; diploidy
concept; service cost savings

1. Introduction

Nowadays the “just-in-time” concept plays a critical role in supply chains [1–9]. The key
supply chain players, including manufacturers, logistics companies, distribution facility operators,
and retailers, aim to minimize delays in their operations, as those delays may negatively affect the
whole supply chain and ultimately may even result in lost sales and customers. The cross-docking
technique has been heavily used in industry to facilitate the flow of different products within
distribution facilities, support “just-in-time” deliveries within supply chains, and improve sustainability
of the supply chain operations [1]. Cross-docking distribution facilities operate as follows. The inbound
trucks, delivering various products from different manufactures, are assigned to the inbound doors of
a cross-docking facility (CDF), where the products are unloaded from the inbound trucks (typically
by forklift operators) and moved to the dedicated storage areas. Then, the products are decomposed,
sorted, consolidated, and loaded on the outbound trucks. The outbound trucks further deliver the
products to the end customers. The products, delivered by the inbound trucks, generally do not spend
more than 24 h at the CDFs [1]. Due to its efficiency, the cross-docking technique has been adopted by
the largest retailers (e.g., Walmart, Target, COSTCO, Auchan), shipping companies (e.g., FedEx, UPS,
USPS, DHL), and other private and public distribution companies across the world.
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Managing a CDF is a quite challenging task. The CDF operators not only have to manage the
available handling resources (e.g., forklift operators, conveyor belts, storage areas, etc.) efficiently,
but also to ensure the proper scheduling of the arriving inbound and outbound trucks. This study
focuses on the problem of scheduling the inbound and outbound trucks for service at the available
doors of the CDF. Optimizing the truck scheduling will allow the CDF operators to achieve their major
objectives [1], which include the following: reducing the inventory level, minimizing the total product
stay time, minimizing the total truck loading and unloading time, maximizing the door utilization,
and others.

The problem of scheduling trucks at the CDFs received a lot of attention from the community,
especially in recent years due to increasing freight volumes within supply chains. The truck scheduling
problem can be reduced to the unrelated machine scheduling problem, which belongs to the class
of non-deterministic polynomial time hard (NP-hard) problems [1,10]. A large number of various
Evolutionary Algorithms (EAs) were developed in the past to solve the truck scheduling problem at the
CDFs [1]. In EAs, the solutions (i.e., the candidate truck schedules) are encoded into the chromosomes
and changed using the crossover and mutation operators throughout the algorithm evolution until a
certain convergence criterion is met [11,12]. The EAs, presented in the cross-docking literature to date,
rely on the haploidy concept, where two parent chromosomes produce the offspring chromosomes
via the crossover operation without storing the genetic information from the parent chromosomes.
The crossover operator may cause significant genetic changes [11,12] and ultimately worsen fitness of
the offspring chromosomes in some cases. Deployment of the haploidy concept may cause the loss of
parent chromosomes with high fitness values. Due to the latter fact, the population may be dominated
by the low quality offspring chromosomes, which will negatively affect fitness of the solutions at the
EA convergence.

On the other hand, many living organisms (e.g., humans, most animal species, plants, fungi,
algae) are diploid in their nature [13] and contain two copies of each chromosome in a cell. Throughout
the crossover operation in diploid organisms, the offspring chromosomes are produced, and a copy
of each parent chromosome is stored. Based on the latter biological principle, this study proposes
a novel Diploid EA (DEA) for the truck scheduling problem at the CDF. Unlike EAs presented in
the cross-docking literature, the developed DEA stores a copy of each parent chromosome after the
crossover operation, which is expected to prevent the dominance of low quality offspring chromosomes
in the population and will improve the solution quality at convergence of the algorithm.

The remaining sections of this manuscript are ordered in the following manner. The second
section provides an overview of the relevant CDF literature with a primary focus on the EA algorithms,
which were developed for the truck scheduling problem. The third section describes the problem,
addressed in this study, with a focus on the key attributes of the considered CDF. The fourth section
presents a mathematical model for the truck scheduling problem at the CDF. The fifth section focuses on
the main features of the developed DEA algorithm, while the sixth section presents a set of numerical
experiments that were performed in this study to evaluate the proposed solution algorithm and draw
certain managerial insights. The last section of the manuscript provides a summary of findings and
outlines potential extensions for the future research.

2. Literature Review

The CDF truck scheduling problem has received a lot of attention from researchers in recent
years. Due to NP-hard complexity of the problem, a number of heuristic and metaheuristic algorithms
were proposed in the literature, including: (1) Evolutionary Algorithms (EAs); (2) Particle Swarm
Optimization (PSO); (3) Tabu Search (TS); (4) Ant Colony Optimization (ACO); (5) Differential
Evolution (DE); (6) Squeaky Wheel Optimization (SWO); (7) Simulated Annealing (SA); and others.
The literature review, conducted as a part of this study, primarily focuses on the studies that applied
EA-based algorithms to solve the CDF truck scheduling problem. For a more detailed review of
the cross-docking literature, this study refers to Ladier and Alpan [1]. The collected studies were
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classified into the following groups: (a) general CDF truck scheduling; (b) uncertainty modeling in the
CDF truck scheduling; (c) multi-objective CDF truck scheduling; and (d) comparative analysis of the
solution approaches.

2.1. General CDF Truck Scheduling

Li et al. [14] presented a mathematical model for the CDF truck scheduling problem, minimizing
the total penalty due to earliness and lateness in processing the inbound and outbound containers.
Due to the problem complexity, the authors developed an algorithm, which combined features
of the SWO and EA algorithms, to obtain good quality truck schedules. It was found that the
presented solution approach outperformed CPLEX in terms of the computational time. Furthermore,
the developed algorithm returned the truck schedules, which were close to the optimal ones, for the
considered problem instances. McWilliams et al. [15] focused on the truck scheduling problem at
freight consolidation terminals. The objective function minimized the time span of the product
transfer operation. A Simulation-based Algorithm, which relied on the EA, was developed to solve
the problem. Based on the conducted numerical experiments, it was found that the proposed solution
approach outperformed the arbitrary truck scheduling, where the best truck schedule was selected
after generating a large number of random truck schedules. A similar study was conducted by
McWilliams et al. [16]. The authors introduced a list-scheduling heuristic for the inbound trailer
assignment within the Simulation-based Algorithm, which applied the EA. The computational
experiments demonstrated that introduction of the local search heuristic improved the objective
function value on average by 3.5%.

Yu et al. [17] proposed a mathematical model for the CDF truck scheduling problem, aiming to
minimize the total man-hour recruitment. An EA was developed to solve the problem. The numerical
experiments, conducted using the CDF operational data, indicated that the presented EA was able to
reduce the total man-hour recruitment by 20% as compared to the current practice. Chmielewski et al. [18]
studied the problem of scheduling the inbound and outbound trucks at less-than-truckload terminals. The
problem was formulated as a mixed integer programming model, aiming to minimize the total cost
associated with unloading the inbound trucks, internal cargo transport, and loading the outbound
trucks. The authors proposed the decomposition-and-column-generation approach and the EA to solve
the problem. It was found that the computational time of the decomposition-and-column-generation
approach did not exceed 30 min for the considered problem instances. Furthermore, the EA was found to
be efficient for the cases in a dynamic environment.

McWilliams [19] presented a mathematical model for the truck scheduling problem at the parcel
hub, aiming to minimize the sum of maximum parcel workloads. Due to the complexity of the
presented formulation, an EA was developed to solve the problem. The computational experiments
demonstrated that the proposed EA outperformed the Simulation-based Scheduling Algorithm and
Random Scheduling in terms of the solution quality and required an acceptable computational time.
Choy et al. [20] studied the truck scheduling problem at the space-constrained industrial CDFs.
The objective of the proposed mathematical model minimized the total truck waiting time. The authors
developed an EA, which allowed insertion of the inbound orders without causing a significant
disturbance in the outbound order schedule. The numerical experiments showed that the proposed
solution approach was able to reduce the total truck waiting time by 10% and 20% under heavy and
normal conditions, respectively.

Golias et al. [21] proposed a mathematical model for scheduling the inbound and outbound trucks
at the CDF, aiming to minimize the total truck service time and the total cost due to early and late truck
departures. The authors developed a hybrid EA, which relied on a local search heuristic. The heuristic
continuously executed the mutation operation until certain improvement in the fitness of solutions was
achieved or the CPU time limit was met. The computational experiments illustrated the efficiency of
the developed solution approach. Joo and Kim [22] modeled the CDF, where three types of trucks could
be served, including outbound-only trucks, inbound-only trucks, and compound trucks. The objective



Sustainability 2018, 10, 1333 4 of 23

minimized the last truck service completion time (or makespan). The EA and Self-Evolution Algorithm
were developed to solve the problem. The algorithms were executed for the randomly generated
problem instances. The results indicated that the Self-Evolution Algorithm was generally able to
return superior solutions. Mohtashami [23] studied the CDF truck scheduling problem with temporary
storage, aiming to minimize the makespan. It was assumed that preemption was allowed (i.e., the truck
could leave the dock, so the other truck could park at that dock and start the service). An EA algorithm
was designed to solve the problem. The numerical experiments indicated that preemption could
significantly reduce makespan and improve efficiency of the cross-docking operations.

2.2. Uncertainty Modeling in the CDF Truck Scheduling

A number of researchers considered uncertainty in the CDF truck scheduling. Konur and
Golias [24] studied the CDF truck scheduling problem with the truck arrival time uncertainty.
Only truck arrival time windows (i.e., truck arrival time lower and upper bounds) were assumed
to be known. Three approaches for truck scheduling were evaluated using the EA algorithm:
(a) deterministic, assuming the truck arrival at the mid-arrival time window; (b) pessimistic, assuming
that the worst truck arrivals would be realized; and (c) optimistic, assuming that the best truck arrivals
would be realized. The numerical experiments showcased that the hybrid truck scheduling approach,
which relied on the aforementioned truck scheduling approaches, was found to be superior. Konur and
Golias [25] proposed a bi-objective bi-level mathematical formulation for the CDF truck scheduling
problem with the unknown truck arrival times. The first objective aimed to minimize the total average
truck service cost, while the second one minimized the total truck service cost range. The authors
used an EA to solve the problem. The computational experiments demonstrated that the proposed
methodology outperformed the First Come First Served policy in terms of the average total truck
service cost and the total truck service cost range.

Heidari et al. [26] studied the truck scheduling problem at the CDF, considering uncertainty in
truck arrivals. The problem was formulated as a bi-objective bi-level mathematical model. The first
objective minimized the total average truck service cost, while the second one aimed to minimize the
total truck service cost range. The Multi-Objective Differential Evolution (MODE) and Non-Dominated
Sorting Genetic Algorithm-II (NSGA-II) were adopted to solve the problem. MODE was found to be
more efficient. Amini and Tavakkoli-Moghaddam [27] addressed the truck scheduling problem at the
CDF, considering potential breakdowns during the truck service. The truck service breakdowns were
modeled using a Poisson distribution. A bi-objective mathematical model was proposed, where the
first objective aimed to minimize the total tardiness of the outbound trucks, while the second objective
maximized the reliability of cross-docking operations. Three metaheuristics were applied to solve the
problem, including: (1) NSGA-II; (2) Multi-Objective Simulated Annealing (MOSA); and (3) MODE.
The numerical experiments demonstrated efficiency of the developed methodology and the proposed
solution algorithms. Ladier and Alpan [28] conducted a review of studies, which specifically focused
on modeling uncertainty in the cross-docking operations. It was mentioned that EAs had been widely
used to solve the robust optimization problems in the cross-docking literature.

2.3. Multi-Objective CDF Truck Scheduling

A number of studies addressed the multi-objective truck scheduling problem at CDFs. Boloori
Arabani et al. [29] focused on a multi-objective CDF truck scheduling problem, where the first
objective function minimized the truck service makespan, while the second one minimized the total
lateness in truck service completion. A total of three multi-objective algorithms were used to solve
the problem, including: (1) NSGA-II; (2) Strength Pareto Evolutionary Algorithm-II (SPEA-II); and (3)
Sub-Population Genetic Algorithm-II (SPGA-II). The computational experiments demonstrated that the
Pareto Fronts that were suggested by the NSGA-II and SPGA-II algorithms were inferior to the Pareto
Fronts that were returned by the SPEA-II algorithm for the considered problem instances. A similar
study was conducted by Boloori Arabani et al. [30], where the following algorithms were compared:
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(1) SPGA-II; (2) Sub-Population Particle Swarm Optimization-II (SPPSO-II); and (3) Sub-Population
Differential Evolution Algorithm-II (SPDE-II). It was found that the SPPSO-II algorithm was more
efficient as compared to the SPGA-II and SPDE-II algorithms. Golias et al. [31] proposed bi-objective
and bi-level mathematical models for the inbound truck scheduling at the CDF. Two conflicting
objectives were considered: (a) minimizing the total truck service time; and (b) minimizing the total
truck service completion delays. An EA was used to solve the bi-objective problem, while the bi-level
problem was solved using the k-th best algorithm. The numerical experiments demonstrated that both
formulations could be advantageous for the multi-objective truck scheduling problems at CDFs.

2.4. Comparative Analysis of the Solution Approaches

Several studies compared performance of the EA algorithm against other metaheuristic algorithms
for the CDF truck scheduling problem. Miao et al. [32] studied the CDF truck scheduling problem with
operational time constraints, aiming to minimize the total truck service cost. Three solution approaches
were evaluated, including: (1) CPLEX; (2) TS; and (3) EA. It was found that both metaheuristic algorithms
were able to dominate CPLEX for the considered problem size instances. Boloori Arabani et al. [33]
proposed a multi-criteria optimization model for the CDF truck scheduling problem, aiming to minimize
the total earliness and tardiness in service completion of the arriving trucks. A total of three metaheuristic
algorithms were proposed to solve the problem, including EA, PSO, and DE. The numerical experiments
indicated that EA outperformed PSO and DE in terms of the solution quality, while PSO generally required
the least computational time. Boloori Arabani et al. [34] formulated the CDF truck scheduling problem as
a mixed integer programming model. The objective was to minimize the makespan. The EA, TS, PSO,
ACO, and DE algorithms were applied to solve the problem. It was found that that performance of the
developed algorithms was substantially affected by the problem size.

Vahdani et al. [35] presented the EA and Electromagnetism-like Algorithms to solve the truck
scheduling problem at the CDF, assuming that there was no temporary storage. The objective of the
proposed integer programming model minimized the total product flow time within the CDF. The results
from computational experiments indicated that the developed metaheuristic algorithms were superior to
the compound heuristic and the TS algorithm, proposed by Yu [36]. Liao et al. [37] and [38] evaluated
a number of metaheuristic algorithms for the CDF truck scheduling problem, including SA, TS, ACO,
DE, and two versions of the hybrid DE. The studies highlighted the importance of hybridization
and demonstrated that introduction of the local search operators could improve performance of the
metaheuristic algorithms. Shiguemoto et al. [39] proposed a hybrid EA, which relied on features of TS, for
the truck scheduling at the CDF, aiming to minimize the makespan. The developed solution approach
was tested against CPLEX, Firefly metaheuristic, and the algorithm proposed by Yu and Egbelu [40].
The conducted computational experiments indicated that the developed algorithm outperformed the
alternative solution approaches.

2.5. Contribution

A detailed review of the cross-docking literature indicates that the CDF truck scheduling problem
receives increasing attention from the community. Many studies applied EAs for solving the CDF
truck scheduling problem and demonstrated their efficiency against the alternative metaheuristic
algorithms [32–40]. A few studies used only mutation in order to generate the new solutions
(i.e., creating the offspring chromosomes) within the proposed EAs [21,24,25,31], while the majority of
the collected studies applied both crossover and mutation. It was found that the EAs presented in the
CDF truck scheduling literature primarily relied on the haploidy concept, where the parent genetic
information is not stored before deployment of the crossover operator. The crossover operations
may cause significant genetic changes and, ultimately, can even worsen the quality of the produced
offspring chromosomes. The latter will negatively affect the quality of the produced CDF truck
schedules. In order to address such shortcomings, this study proposes the EA algorithm, which relies
on the diploidy concept and stores the parent genetic information before application of the crossover
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operator (i.e., Diploid EA or DEA). Although the diploidy concept has been widely used in various
applications (e.g., evolutionary computation [11], biology [13]), a detailed review of the cross-docking
literature indicates that the studies proposing EAs for the CDF truck scheduling problem did not
consider application of the diploidy concept. The developed DEA is expected to serve as an efficient
decision support tool for the CDF operators, assist with the design of cost-effective CDF truck schedules,
and improve sustainability of the CDF and supply chain operations.

3. Cross-Docking Facility Description

This section of the manuscript describes the main attributes of the CDF modeled in this
study. A geometric layout of the CDF is presented in Figure 1. It is assumed that the CDF has an
I-shape, which is the most common shape of the CDFs used in industry [1]. However, the proposed
mathematical model and the solution algorithm (which will be described in the fourth and the fifth
sections of the manuscript) can be applied to CDFs of other shapes as well. The available CDF doors are
assumed to be in the mixed service mode, that is, each CDF door can serve either inbound or outbound
trucks. A set of the available doors at the considered CDF will be further denoted as D = {1, . . . , m}.

Sustainability 2018, 10, x FOR PEER REVIEW  6 of 23 

the crossover operator (i.e., Diploid EA or DEA). Although the diploidy concept has been widely 
used in various applications (e.g., evolutionary computation [11], biology [13]), a detailed review of 
the cross-docking literature indicates that the studies proposing EAs for the CDF truck scheduling 
problem did not consider application of the diploidy concept. The developed DEA is expected to 
serve as an efficient decision support tool for the CDF operators, assist with the design of 
cost-effective CDF truck schedules, and improve sustainability of the CDF and supply chain 
operations. 

3. Cross-Docking Facility Description 

This section of the manuscript describes the main attributes of the CDF modeled in this study. A 
geometric layout of the CDF is presented in Figure 1. It is assumed that the CDF has an I-shape, 
which is the most common shape of the CDFs used in industry [1]. However, the proposed 
mathematical model and the solution algorithm (which will be described in the fourth and the fifth 
sections of the manuscript) can be applied to CDFs of other shapes as well. The available CDF doors 
are assumed to be in the mixed service mode, that is, each CDF door can serve either inbound or 
outbound trucks. A set of the available doors at the considered CDF will be further denoted as 𝐷 =

{1, … , 𝑚}. 

 
Figure 1. A cross-docking facility (CDF) layout. 

The CDF operator is assumed to have a truck appointment system, where each truck is 
expected to arrive at a specific time, so the CDF operator can design the truck schedule accordingly. 
A set of the arriving trucks (inbound + outbound) will be further denoted as 𝑇 = {1, … , 𝑛}. Delays in 
truck arrivals due to various reasons (e.g., traffic congestion, traffic accidents, weather conditions, 
and others) are not modeled in this study. Once a given truck arrives at the CDF, it will travel to the 
assigned door. If the assigned door is not available upon the arrival of the truck (as another truck is 
being served at that door), it will be waiting for service in the dedicated waiting area until the door 
becomes available. The CDF operator will incur an additional cost for waiting trucks (𝑐 , ∀𝑡 ∈ 𝑇 in 
USD/h). Once a given truck is docked at the assigned door, the forklift operators start unloading the 
products, packaged in boxes, pallets, or other units, from the truck (in case of the inbound truck) or 
moving the products to the truck (in case of the outbound truck). The scope of this study does not 
include modeling the deployment strategies for the forklift operators. 

The considered CDF has designated storage areas (see Figure 1) to temporarily store the 
products, delivered by the inbound trucks, before they will be loaded on the assigned outbound 

Figure 1. A cross-docking facility (CDF) layout.

The CDF operator is assumed to have a truck appointment system, where each truck is expected
to arrive at a specific time, so the CDF operator can design the truck schedule accordingly. A set of
the arriving trucks (inbound + outbound) will be further denoted as T = {1, . . . , n}. Delays in truck
arrivals due to various reasons (e.g., traffic congestion, traffic accidents, weather conditions, and others)
are not modeled in this study. Once a given truck arrives at the CDF, it will travel to the assigned door.
If the assigned door is not available upon the arrival of the truck (as another truck is being served at
that door), it will be waiting for service in the dedicated waiting area until the door becomes available.
The CDF operator will incur an additional cost for waiting trucks (cwt

t , ∀t ∈ T in USD/h). Once a given
truck is docked at the assigned door, the forklift operators start unloading the products, packaged in
boxes, pallets, or other units, from the truck (in case of the inbound truck) or moving the products
to the truck (in case of the outbound truck). The scope of this study does not include modeling the
deployment strategies for the forklift operators.

The considered CDF has designated storage areas (see Figure 1) to temporarily store the products,
delivered by the inbound trucks, before they will be loaded on the assigned outbound trucks.
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The capacity of the storage areas is assumed to be sufficient to accommodate the products, delivered
by the inbound trucks throughout a given planning horizon (typically 1 shift, ranging from 8 h to 12 h).
The CDF operator performs a preliminary planning of the cross-docking operations based on the truck
appointment times and the amount of products delivered by each inbound truck, schedules a sufficient
number of the forklift operators to serve the trucks, and performs a preliminary assignment of the
inbound and outbound trucks to the CDF doors (i.e., “desired doors”). Based on the preliminary truck
to door assignment, the CDF operator also allocates the storage space for the products to be delivered
in the storage areas (generally, as close as possible to the “desired doors” to minimize the travel distance
by the forklift operators). If a given truck is diverted for service from the “desired door” to another
door of the CDF due to changes in the schedule, the total handling time for that truck is assumed to
increase. The CDF operator incurs the handling cost of trucks (cht

t , ∀t ∈ T in USD/h), which includes
the equipment costs, insurance costs, compensation of the personnel, facility maintenance costs, etc.

Throughout scheduling of trucks, the CDF operator has to ensure that the service of a given
outbound truck cannot start before the service start of the inbound trucks, which carry the products for
that outbound truck. Note that a given inbound truck may carry the products for different outbound
trucks. The products, transferred within the CDF, are not interchangeable (one product cannot replace
another product in a given truck load). Furthermore, the operator of the considered CDF does not
allow preemption, i.e. the loading or unloading process cannot be interrupted, once a given truck
is docked.

To insure the “just-in-time” delivery of products to the customers, the service of each truck should
be completed before a specific scheduled departure time (St, t ∈ T in h), known to the CDF operator
in advance. The CDF will incur a delayed departure cost (cdt

t , ∀t ∈ T in USD/h), if service of a given
truck is completed after its scheduled departure time. The objective of the CDF operator is to design an
efficient schedule for the inbound and outbound trucks by minimizing the associated costs, including
the following components: (i) the total truck handling cost; (ii) the total truck waiting cost; and (iii) the
total truck delayed departure cost.

4. Mathematical Model

This section of the manuscript formulates a mixed integer mathematical model for the problem of
scheduling the inbound and outbound trucks at the CDF (which will be referred to as TSPCDF from
now on).

4.1. Nomenclature

4.1.1. Sets

T = {1, . . . , n} set of trucks arriving at the facility (inbound + outbound)
D = {1, . . . , m} set of doors available at the facility
O = {1, . . . , k} set of truck service orders

4.1.2. Decision Variables

xtdo ∈ {0, 1} ∀t ∈ T,
d ∈ D, o ∈ O

=1 if truck t is assigned in the oth order to door d (=0 otherwise)

4.1.3. Auxiliary Variables

ytdo ∈ R+ ∀t ∈ T, d ∈ D,
o ∈ O

idle time of door d between service of truck t and its immediate
predecessor served as (o− 1)th truck (h)

τst
t ∈ R+ ∀t ∈ T service start time for truck t (h)

τ
f t

t ∈ R+ ∀t ∈ T service finish time for truck t (h)
τwt

t ∈ R+ ∀t ∈ T waiting time of truck t (h)
τdt

t ∈ R+ ∀t ∈ T delayed departure time for truck t (h)
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4.1.4. Parameters

At ∈ R+ ∀t ∈ T arrival time of truck t (h)
Htd ∈ R+ ∀t ∈ T, d ∈ D handling time for truck t at door d (h)
St ∈ R+ ∀t ∈ T scheduled departure time of truck t (h)
Ctt ∈ {0, 1} ∀t, t ∈ T, t 6= t =1 if inbound truck t carries the products for outbound truck t (=0 otherwise)
cht

t ∈ R+ ∀t ∈ T unit handling cost for truck t (USD/h)
cwt

t ∈ R+ ∀t ∈ T unit waiting cost for truck t (USD/h)
cdt

t ∈ R+ ∀t ∈ T unit delayed departure cost of truck t (USD/h)
M large positive number

TSPCDF: Truck Scheduling Problem at the CDF

min[∑
t∈T

∑
d∈D

∑
o∈O

(Htdxtdocht
t ) + ∑

t∈T
(τwt

t cwt
t ) + ∑

t∈T
(τdt

t cdt
t )] (1)

Subject to:

∑
d∈D

∑
o∈O

xtdo = 1 ∀t ∈ T (2)

∑
t∈T

xtdo ≤ 1 ∀d ∈ D, o ∈ O (3)

∑
t̃∈T:t̃ 6=t

∑
õ∈O:õ<o

(Ht̃dxt̃dõ + yt̃dõ) + ytdo ≥ Atxtdo ∀t ∈ T, d ∈ D, o ∈ O (4)

τst
t ≥ ∑

t̃∈T:t̃ 6=t
∑

õ∈O:õ<o
(Ht̃dxt̃dõ + yt̃dõ) + ytdo −M(1− xtdo) ∀t ∈ T, d ∈ D, o ∈ O (5)

τ
f t

t ≥ τst
t + ∑

d∈D
∑

o∈O
(Htdxtdo) ∀t ∈ T (6)

τst
t ≥ τst

t −M(1− Ctt) ∀t, t ∈ T, t 6= t (7)

τwt
t ≥ τst

t − At ∀t ∈ T (8)

τdt
t ≥ τ

f t
t − St ∀t ∈ T (9)

The objective function (1) of the TSPCDF mathematical model minimizes the total cost, associated
with service of the inbound and outbound trucks at the CDF. The following cost components are
considered in the model: (i) the total truck handling cost; (ii) the total truck waiting cost; and (iii)
the total truck delayed departure cost. Constraint set (2) ensures that each truck (either inbound or
outbound), arriving at the CDF, will be assigned for service at one of the available doors in any service
order. Constraint set (3) indicates that only one truck can be assigned for service at each door of the
CDF in a given order. Constraint set (4) guarantees that a service of each truck should start only after
its arrival at the CDF. Constraint sets (5) and (6) calculate the service start time and the service finish
time for each truck, respectively. Constraint set (7) ensures that the service of a given outbound truck
cannot start before the service start of the inbound trucks, which carry the products for that outbound
truck. Constraint sets (8) and (9) estimate the waiting time and the delayed departure time for each
truck, served at the CDF.

5. Solution Algorithm Description

Many of the mathematical formulations, which were presented in the CDF truck scheduling
literature, can be reduced to one of the machine scheduling problems [14,16,19,21,24,25]. The machine
scheduling problems are known to have NP-hard complexity [10]. Therefore, the approximate
solution algorithms (i.e., heuristic and metaheuristic algorithms) have to be developed in order
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to solve the realistic size problem instances of the machine scheduling problems within an acceptable
computational time. The problem of scheduling trucks at the CDF, represented by the TSPCDF
mathematical model, can be reduced to the unrelated machine scheduling problem, where the available
jobs have to be assigned to one of the machines, and the machines have different properties. The small
size instances of the TSPCDF mathematical model can be solved optimally within a reasonable
computational time. On the other hand, since TSPCDF can be reduced to one of the machine scheduling
problems (and, therefore, TSPCDF is NP-hard), the realistic size problem instances will require
development of the heuristic or metaheuristic algorithms [10]. As discussed in the introduction
section of the manuscript, a lot of researchers applied EAs in the past to solve the truck scheduling
problem at the CDFs. However, the EAs proposed in the cross-docking literature to date typically rely
on the haploidy concept, where the parent chromosomes are probabilistically altered via crossover
without storing the parent genetic information. The crossover operation may cause significant genetic
changes and ultimately worsen fitness of the offspring chromosomes in some cases. A potential loss of
the genetic information from the parent chromosomes may further increase the number of the low
quality offspring chromosomes in the population and negatively affect fitness of the solutions at the
algorithm convergence.

In order to avoid the latter drawback, this study proposes a novel DEA, which—unlike those
presented in the literature EAs—applies the concept of diploidy, where a copy of each parent
chromosome is stored after performing the crossover operation. Such an approach would allow
the genetic information from the parent chromosomes to be kept and prevent dominance of the low
quality offspring chromosomes in the population. The main DEA steps are presented in Figure 2.
The required data structures for variables of the algorithm are initialized in step 0. Then, the algorithm
generates the chromosomes of the initial population in step 1, while the fitness of those chromosomes
is estimated in step 2. After that, the DEA algorithm starts an iterative procedure, where the parent
chromosomes are identified in step 3. Then, the DEA operations are conducted in step 4. The fitness of
the offspring chromosomes is estimated in step 5. After that, the offspring selection is performed in
step 6. The iterative procedure is terminated within the DEA algorithm, once the convergence criterion
is satisfied, and the algorithm returns the truck schedule with the best possible service cost. The next
sections of the manuscript describe in detail each component of the DEA algorithm.

5.1. Chromosome Representation

Chromosomes are used to represent the candidate solutions to the TSPCDF mathematical model
in the proposed DEA algorithm. Specifically, the chromosomes have an integer encoding and contain
the information regarding the truck to door assignment and the truck service order at each door
of a given CDF. An example chromosome is illustrated in Figure 3, where a total of 9 inbound and
outbound trucks are served at 3 doors of the CDF. Trucks “1”, “4”, and “5” are served at door “1”
(in that service order), trucks “2”, “7”, and “9” are served at door “2” (in that service order), while “3”,
“6”, and “8” are served at door “3” (in that service order). Note that the components of a chromosome
will be referred to as genes [11,12]. Furthermore, the terms “chromosome”, “solution”, and “individual”
will be used interchangeably throughout this manuscript as they have the same meaning.
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5.2. Initialization of Chromosomes and Population

A First Come First Served (FCFS) policy has been widely used for the machine scheduling
problems in order to initialize the chromosomes within EAs [41–43]. Deployment of the FCFS
policy or other heuristic procedures generally allows the production of higher quality individuals at
the chromosome initialization stage as compared to the purely random chromosome initialization
mechanism. This study applies the FCFS heuristic with Inbound Truck Priority (FCFS-ITP), which is
an extension of the canonical FCFS policy. Unlike the canonical FCFS policy, the FCFS-ITP heuristic
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takes into account the service order requirements for the inbound and outbound trucks, arriving at
the CDF (specifically, the service of a given outbound truck cannot start before the service start of
the inbound trucks, which carry the products for that outbound truck). The main FCFS-ITP steps are
presented in Pseudocode 1 (PS-1).

The required data structures for variables of the FCFS-ITP heuristic are initialized in step 0.
Then, the inbound trucks are sorted based on their arrival times in the ascending order in step 1,
while the outbound trucks are sorted based on their arrival times in the ascending order in step 2.
After that, the set of trucks sorted based on their arrival times is constructed in step 3, where the
service priority is given to the inbound trucks (i.e., the service of all outbound trucks will start after the
service start of all inbound trucks). Then, the FCFS-ITP heuristic starts an iterative procedure, where
the first available door is identified in step 6 (notation τa

d , d ∈ D is used to define availability of door
d). The earliest truck service order at the first available door is determined in step 7. After that, a given
truck is scheduled for service in the earliest order at the first available door in step 8. The service
start and finish times are calculated for a given truck in steps 9 and 10, respectively, while the door
availability (i.e., the time when a given door becomes available for service) is updated in step 11.
The FCFS-ITP heuristic stops the iterative procedure, once all inbound and outbound trucks are
scheduled for service at the available doors of the CDF.

PS-1: First Come First Served Policy with Inbound Truck Priority (FCFS-ITP)

FCFS-ITP
(
T, T I , TO, D, O, At, Htd

)
in: T = {1, . . . , n}—set of trucks; T I = {1, . . . , q}—set of inbound trucks; TO = {1, . . . , p}—set of outbound
trucks; D = {1, . . . , m}—set of doors; O = {1, . . . , k}—set of truck service orders; At—arrival time of truck t;
Htd—handling time for truck t at door d
out: x—truck to door to service order assignment

0:
∣∣T IS

∣∣← q ;
∣∣TOS

∣∣← p ;
∣∣TS
∣∣← n ; |τa| ← m ; |x| ← n·m·k ;

∣∣τst
∣∣← n ;

∣∣∣τ f t
∣∣∣← n

1: T IS ← Sort
(
T I , At

)
� Sort the inbound trucks based on their arrival times

2: TOS ← Sort
(
TO, At

)
� Sort the outbound trucks based on their arrival times

3: TS ← T IS ∪ TOS � Initialize the set of trucks sorted based on their arrival times
4: t← 1
5: for all t ∈ TS do
6: d← argmind

(
τa

d
)

� Identify the first available door
7: o ← argmino(xtdo) � Identify the earliest truck service order at that door
8: xtdo ← 1 �Assign a truck for service at the first available door in the earliest order
9: τst

t ← max
(

At, τa
d
)

� Calculate the start service time of a truck

10: τ
f t

t ← τst
t + Htd � Calculate the finish service time of a truck

11: τa
d ← τ

f t
t � Update availability of the door, to which the truck was assigned

12: t← t + 1
13: end for
14: return x

Note that the FCFS-ITP heuristic is deterministic, and, therefore, it will produce identical
individuals in the initial DEA population. The latter will negatively affect diversity of the population,
and will limit the explorative DEA capabilities in the beginning of the search process. To avoid such
drawbacks, the developed DEA generates half of the initial population using the FCFS-ITP heuristic,
while the other half is initialized randomly. The size of the initial population (Psize) will be set based
on the parameter tuning analysis (described in Section 6.2) and will not change from one generation
to another.

5.3. Selection Procedures

Two selection procedures are applied within the developed DEA algorithm: (a) parent selection;
and (b) offspring selection. The parent selection procedure aims to identify a group of individuals that
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will participate in the DEA operations and produce the new offspring, while the offspring selection
procedure aims to determine a group of individuals that will survive in a given generation and
become potential parents in the next generation. The study adopts the fitness proportionate selection
mechanism (which is also referred to as “roulette wheel selection” in the literature) for the parent selection,
while the binary tournament selection mechanism is applied for the offspring selection.

The fitness proportionate selection mechanism is based on a stochastic iterative procedure, where
individuals with higher fitness values have higher chances to become parents. However, the fitness
proportionate selection mechanism does not fully eliminate chances of individuals with lower fitness
values to become parents as well. As for the binary tournament selection mechanism, it is based on
multiple tournaments, where two individuals are randomly selected from the population. Then, fitness
values of the selected individuals are compared, and the individual with a higher fitness value will
become a parent. The tournaments are continuously executed until the desired population size is
reached. Both fitness proportionate selection and binary tournament selection mechanisms are widely
used in EAs, and more details regarding both selection mechanisms can be found in the relevant EA
and cross-docking literature [11,12,35].

5.4. DEA Operations

Once the parent chromosomes are selected, the DEA algorithm applies the crossover and mutation
operations in order to produce the offspring chromosomes. Both crossover and mutation operations
are described in Sections 5.4.1 and 5.4.2 of the manuscript.

5.4.1. Crossover Operation

Many different crossover operators were applied in EAs, including N-point crossover, arithmetic
crossover, uniform crossover, partially mapped crossover, order crossover, and others [11,12,41–43].
However, some of those crossover operators may cause infeasibility for the integer chromosome
representation, as the one adopted in this study. The infeasibility consists of the fact that some trucks
may be scheduled for service multiple times, while some trucks may not be scheduled for service at all.
The order crossover operator will be used in the proposed DEA to produce the offspring chromosomes
and ensure their feasibility. An example of a crossover operation is illustrated in Figure 4. Two parent
chromosomes are randomly selected from the list of candidate parent chromosomes. The probability of
a crossover operation for a given chromosome is determined by parameter Cprob. The value of Cprob
will be set based on the parameter tuning analysis (described in Section 6.2). After that, a segment of
the first parent chromosome is copied to the first offspring chromosome. Note that the segment length
of the first parent chromosome to be copied to the first offspring chromosome is set randomly. In the
presented example, genes with trucks “3”, “5”, “6”, and “8” are copied to the first offspring from the
first parent (see Figure 4). Then, the genes with trucks that were not scheduled for service are copied
to the first offspring chromosome from the second parent chromosome. In the presented example,
genes with trucks “2”, “1”, “9”, “4”, and “7” are copied to the first offspring from the second parent
(see Figure 4). The second offspring is created in a similar fashion: genes with trucks “1”, “3”, “6”,
and “9” are copied to the second offspring from the second parent, while missing trucks “2”, “5”, “8”,
“4”, and “7” are copied to the second offspring from the first parent (see Figure 4).

Unlike typical EAs that rely on the haploidy concept (see Figure 5), where the parent genetic
information is not stored after the crossover operation, the proposed DEA applies the diploidy concept.
Specifically, a copy of each parent chromosome is stored in a separate data structure after the crossover
operation, and then the parent chromosomes are added to the DEA population before the mutation
operation. The latter will cause an increase in the population size throughout the DEA operations and
the offspring fitness evaluation (i.e., steps 4 and 5 in Figure 2), but after application of the offspring
selection mechanism the population size will become equal to the initial population size (Psize) again.
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5.4.2. Mutation Operation

The proposed DEA algorithm executes the mutation operator for each individual in the population
after performing the crossover operation. The swap mutation operator will be used in this study to
mutate the offspring chromosomes (note that copies of the parent chromosomes, generated as a result
of the diploid crossover operation will be mutated as well). Selection of the swap mutation operator can
be justified by its efficiency for the integer chromosomes [41–43]. An example of a mutation operation
is illustrated in Figure 6. It can be noticed that in the mutated chromosome trucks “2” and “5”, initially
scheduled for service at door “1”, are diverted for service to door “3”. In the meantime, trucks “4” and
“9”, initially scheduled for service at door “3”, are diverted for service to door “1”. The mutation rate
(Mrate) defines the number of genes swapped in each chromosome of the DEA population. In the
presented example, the mutation rate is equal to Mrate = 4 genes. The value of Mrate will be set based
on the parameter tuning analysis (described in Section 6.2).
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The fitness function (F) values of chromosomes within the proposed DEA are estimated using the
following relationship:
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Along with the components of the TSPCDF objective function, the fitness function includes a penalty
term (Ψ), which was introduced to penalize the infeasible chromosomes, produced via the DEA operations.
Specifically, the stochastic DEA operators (i.e., crossover and mutation) may produce the chromosomes,
where service of the inbound trucks, carrying the products for a given outbound truck, is scheduled after
the service start of that outbound truck. Since the latter scenario contradicts the realistic cross-docking
operations, the proposed DEA considers such chromosomes as infeasible. Introduction of the penalty term
allows significant reduction of the chances of the infeasible individuals to survive from one generation
to another. The value of Ψ will be set based on the parameter tuning analysis (described in Section 6.2).
Note that for the feasible individuals the penalty term will be set to Ψ = 1.0.

5.6. Elitism

The proposed DEA algorithm applies the elitist strategy, where the individual with the
highest fitness value will be present in the population for more than one generation. The elitist
strategy is implemented before the parent selection procedure at each generation to ensure that the
fittest individual will survive in the given generation and will become a potential parent in the
next generation.

5.7. Convergence Criterion

The maximum number of generations (genmax) will be adopted as the convergence criterion for
the developed DEA algorithm. The value of genmax will be set based on the parameter tuning analysis
(described in Section 6.2).

6. Numerical Experiments

This section of the manuscript focuses on description of the numerical experiments, which were
conducted to assess efficiency of the proposed DEA algorithm. The developed DEA will be compared
to a typical EA, which relies on the haploidy concept (i.e., in case of a crossover operation the genetic
information from the parent chromosomes is not stored) and has been widely used in the CDF truck
scheduling literature. The EA and DEA algorithms were coded in MATLAB 2016a and executed on a
Dell Intel(R) Core™ i7 Processor with 32 GB of RAM. The numerical experiments focus on three major
steps, which include the following: (1) algorithmic parameter tuning; (2) optimality gap estimation;
and (3) analysis of the realistic size problem instances. The first step of the numerical experiments aims
to determine the appropriate values for parameters of the EA and DEA algorithms. The second step
of the numerical experiments focuses on evaluation of the truck schedules, produced by the EA and
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DEA algorithms, against the global optimal truck schedules for the small size problem instances.
In this study, the global optimal truck schedules were obtained using the CPLEX optimization
algorithm. The third step of the numerical experiments focuses on a comparative analysis of the
EA and DEA algorithms for the realistic size problem instances in terms of the objective function and
computational time values. Moreover, the truck schedules, proposed by the developed algorithms,
are compared in terms of the truck handling time, waiting time, and delayed departure time, which are
considered as critical CDF performance indicators from a practical standpoint. The next sections of
the manuscript elaborate on the input data generation and describe all the aforementioned steps,
which were undertaken throughout the numerical experiments.

6.1. Input Data Selection

The input data for the TSPCDF mathematical model were generated based on the available
cross-docking and freight operations literature [1–9,14–51]. The parameter values, selected for the
numerical experiments, are presented in Table 1. A total of six door availability scenarios were modeled
for the considered CDF, including the following: (i) 2 doors; (ii) 3 doors; (iii) 4 doors; (iv) 6 doors;
(v) 8 doors; and (vi) 10 doors. This study assumed that the inter-arrival pattern of the inbound and
outbound trucks followed the exponential distribution with an average of 5 min. or 0.0833 h. Notation
“EXP” will be adopted further in this study for the exponentially distributed pseudorandom numbers.

Table 1. Selected input parameter values.

Parameter Selected Value

CDF door availability (doors) [2; 3; 4; 6; 8; 10]
Average truck inter-arrival time (h) EXP[0.0833]

Truck handling time at the “desired door”: H0
t , t ∈ T (h) U[1.5; 2.0]

Requested truck departure time: St, t ∈ T (h) St = At + H0
t ·U[1.2; 1.4]

Unit handling cost: cht
t , t ∈ T (USD/h) U[200; 400]

Unit waiting cost: cwt
t , t ∈ T (USD/h) U[100; 200]

Unit delayed departure cost: cdt
t , t ∈ T (USD/h) U[300; 500]

The handling time of trucks at the “desired doors” (H0
t , t ∈ T) was assigned as follows:

H0
t = U[1.5; 2.0] ∀t ∈ T (h), where notation “U” will be adopted further in this study for the uniformly

distributed pseudorandom numbers. The “desired door” for each truck was set randomly. It was
assumed that the handling time of a given truck could increase from 5% to 10%, if that truck was not
assigned to for service at its “desired door”. The requested departure time of truck t was assigned based
on its arrival time and handling time at the “desired door” as follows: St = At + H0

t ·U[1.2; 1.4] ∀t ∈ T
(h). It was assumed that each inbound truck, arriving at the considered CDF, could carry the products
for up to 3 outbound trucks. The unit truck handling cost was set as follows: cht

t = U[200; 400] ∀t ∈ T
(USD/h). The unit truck waiting cost was assigned as follows: cwt

t = U[100; 200] ∀t ∈ T (USD/h).
The unit truck delayed departure cost was set as follows: cdt

t = U[300; 500] ∀t ∈ T (USD/h).
A total of 60 problem instances were developed using the generated numerical data by changing

the number of doors at the CDF and the number of arriving trucks. All the developed problem instances
can be categorized into two groups: (i) small size problem instances (I-10 through I-30), where the
number of trucks was varied from 6 to 15 with an increment of 1 truck, while the number of doors was
varied from 2 to 4 with an increment of 1 door; and (ii) realistic size problem instances (I-31 through
I-60), where the number of trucks was varied from 84 to 120 with an increment of 4 trucks, while the
number of doors was varied from 6 to 10 with an increment of 2 doors.

6.2. Algorithmic Parameter Tuning

Before estimating the optimality gap values of the EA and DEA algorithms and analyzing the
managerial insights for the realistic size problem instances, it is necessary to select the appropriate
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parameter values for the algorithms based on the parameter tuning analysis [41,42]. A full factorial
design methodology was adopted to conduct the parameter tuning analysis for the developed
algorithms. According to the full factorial design, the parameter values were selected based on
the numerical experiments, where each parameter combination was evaluated for a given algorithm.
Both EA and DEA algorithms have only 3 major parameters (i.e., population size—Psize, crossover
probability—Cprob, and mutation rate—Mrate). A total of 4 candidate values were considered for each
parameter of a given algorithm. The candidate values of the algorithmic parameters were set based
on the preliminary algorithmic runs and the corresponding parameter ranges, which are reported in
the cross-docking studies that relied on EAs [15,16,22,26,27,33,34]. A total of 5 problem instances were
chosen randomly from the generated realistic size problem instances to conduct the parameter tuning.
Since both EA and DEA algorithms are stochastic, a total of 5 replications were performed to estimate
the average values of the objective function for each parameter combination and each problem instance.
Therefore, a total of (4 candidate values)(3 parameters) · (5 problem instances) · (5 replications) = 1600 runs
were performed throughout the parameter tuning analysis for each algorithm. The final parameter
values were adopted based on the tradeoff between the computational time and the obtained objective
function values (to ensure that the developed algorithms will be able to produce the solutions of a
good quality within an acceptable computational time). The results are reported in Table 2, including
the following data: (i) algorithm; (ii) parameter; (iii) description of the parameter; (iv) candidate values
considered for a given parameter; and (v) adopted value.

Table 2. The results of the parameter tuning analysis.

Algorithm Parameter Description of the Parameter Candidate Values Adopted Value

EA Psize Population size [30; 40; 50; 60] 60
EA Cprob Crossover probability [0.40; 0.50; 0.60; 0.70] 0.60
EA Mrate Mutation rate [2; 4; 6; 8] 2

DEA Psize Population size [30; 40; 50; 60] 30
DEA Cprob Crossover probability [0.40; 0.50; 0.60; 0.70] 0.70
DEA Mrate Mutation rate [2; 4; 6; 8] 2

Note that, based on the parameter tuning analysis results, the population size for the EA algorithm
was set to Psize = 60 individuals, while the population size for the DEA algorithm was set to Psize = 30
individuals. Therefore, even after application of the crossover operation the DEA algorithm will not
have advantages over the EA algorithm in terms of the population size (i.e., the population size
will temporarily become Psize = 60 individuals for the DEA algorithm, as a copy of each parent
chromosome will be present in the population until the offspring selection procedure). Furthermore,
throughout the parameter tuning analysis, it was found that the penalty value of Ψ = 2.0 for the
infeasible individuals was adequate, since none of the individuals suggested by the EA and DEA
algorithms at convergence were infeasible for all the considered problem instances. Furthermore, no
significant improvements in the fitness function values of the EA and DEA algorithms were recorded
after 3000 generations. Thus, the maximum number of generations will be set to genmax = 3000
generations for both EA and DEA algorithms.

6.3. Optimality Gap Estimation

As indicated in Section 5 of the manuscript, due to NP-hard complexity of the TSPCDF
mathematical model only small size problem instances can be solved using the exact optimization
algorithms within a reasonable computational time. The first set of numerical experiments in this
study aimed to estimate the optimality gaps of the EA and DEA algorithms and compare the objective
function values of the solutions, produced by the developed algorithms, against the optimal ones
for the small size problem instances (I-1 through I-30). Such analysis will enable assessment of the
quality of solutions (i.e., truck schedules), proposed by the EA and DEA algorithms. The latter aspect
is critical from a practical standpoint, as the CDF operators aim to design the truck schedule with the
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least possible cost (as close as possible to the minimum cost), associated with service of the inbound
and outbound trucks. The TSPCDF mathematical model was coded in General Algebraic Modeling
System (GAMS) and solved using CPLEX for each one of the generated small size problem instances.
Throughout the analysis, the relative optimality gap for CPLEX was restricted to 1.00%, while the
allowable computational time was set to 3600 s (i.e., 1 h). The developed EA and DEA algorithms
were launched for the considered small size problem instances as well. A total of 5 replications were
performed for each problem instance.

The results of the optimality gap analysis are summarized in Table 3, where the following data
are presented: (i) instance number; (ii) number of doors at the CDF; (iii) number of trucks arriving at
the CDF; (iv) the optimal objective function value, obtained by CPLEX; (v) average over 5 replications
CPLEX computational time; (vi) average objective function values, obtained by the EA and DEA
algorithms; (vii) average optimality gap values for the EA and DEA algorithms; and (viii) average
computational time for the EA and DEA algorithms. Note that in Table 3 Z is a notation used for the
objective function values, while G is a notation used for the optimality gap values. The optimality
gap for algorithm a (Ga) was estimated as follows: Ga =

Za−ZCPLEX
ZCPLEX

, where Za is the average objective
function value, obtained by algorithm a; ZCPLEX is the optimal objective function value, obtained
by CPLEX.

Table 3. The results of the optimality gap analysis.

Instance # Doors # Trucks
CPLEX EA DEA

Z, 103

USD
CPU, s Z, 103

USD
G, % CPU, s Z, 103

USD
G, % CPU, s

I-1 2 6 10.024 43.24 10.024 0.00 19.60 10.024 0.00 20.00
I-2 2 7 13.406 82.42 13.406 0.00 20.18 13.406 0.00 20.59
I-3 2 8 17.115 169.05 17.115 0.00 21.09 17.115 0.00 21.53
I-4 2 9 21.061 280.81 21.061 0.00 22.82 21.061 0.00 23.30
I-5 2 10 26.442 536.58 26.442 0.00 23.42 26.442 0.00 23.93
I-6 2 11 31.752 898.52 31.752 0.00 24.45 31.752 0.00 24.99
I-7 2 12 37.268 1543.44 37.268 0.00 25.34 37.268 0.00 25.91
I-8 2 13 42.927 2329.38 42.950 0.05 26.22 42.927 0.00 26.83
I-9 2 14 48.995 3300.40 49.151 0.32 27.03 49.030 0.07 27.70

I-10 2 15 N/A >3600.00 55.542 N/A 28.29 55.159 N/A 29.00
I-11 3 6 6.970 68.96 6.970 0.00 20.67 6.970 0.00 21.19
I-12 3 7 9.172 131.45 9.172 0.00 21.47 9.172 0.00 22.03
I-13 3 8 11.535 269.64 11.535 0.00 22.39 11.535 0.00 22.97
I-14 3 9 14.048 447.90 14.048 0.00 23.18 14.048 0.00 23.83
I-15 3 10 17.481 855.84 17.481 0.00 24.22 17.481 0.00 24.94
I-16 3 11 20.716 1433.14 20.716 0.00 25.17 20.716 0.00 25.94
I-17 3 12 24.196 2261.78 24.196 0.00 25.77 24.196 0.00 26.58
I-18 3 13 27.764 2915.35 28.020 0.92 26.81 27.764 0.00 27.66
I-19 3 14 31.636 3593.63 31.938 0.96 27.56 31.666 0.09 28.45
I-20 3 15 N/A >3600.00 36.105 N/A 28.84 35.450 N/A 29.82
I-21 4 6 5.480 120.99 5.480 0.00 21.14 5.480 0.00 21.88
I-22 4 7 6.956 230.62 6.956 0.00 21.77 6.956 0.00 22.53
I-23 4 8 8.675 473.06 8.675 0.00 22.66 8.675 0.00 23.48
I-24 4 9 10.643 785.81 10.643 0.00 23.52 10.643 0.00 24.37
I-25 4 10 12.993 1501.53 12.993 0.00 24.33 12.993 0.00 25.23
I-26 4 11 15.320 2314.36 15.320 0.00 25.50 15.320 0.00 26.47
I-27 4 12 17.563 3068.17 17.890 1.86 26.25 17.563 0.00 27.25
I-28 4 13 20.059 3594.81 20.519 2.29 27.30 20.096 0.18 28.38
I-29 4 14 N/A >3600.00 23.741 N/A 27.87 22.804 N/A 28.97
I-30 4 15 N/A >3600.00 26.502 N/A 29.19 25.577 N/A 30.35

It can be noticed that the CPLEX computational time is significantly affected with the problem
size. CPLEX was not able to solve the TSPCDF mathematical model within the specified time limit
for problem instances I-10, I-20, I-29, and I-30. On the other hand, both EA and DEA algorithms
provided solutions to the TSPCDF mathematical model within a reasonable computational time.
Specifically, the average computational time comprised 24.47 s and 25.20 s for the EA and DEA
algorithms, respectively, over the considered small size problem instances. Moreover, the results
from the optimality gap analysis demonstrate that the developed solution algorithms were able to
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provide solutions, which were close to the optimal ones. The maximum optimality gap of the EA
algorithm comprised 2.29%, while the maximum DEA optimality gap comprised 0.18%. Throughout
the numerical experiments, it was also found that the DEA optimality gaps were generally smaller
than the EA optimality gaps, which underlines a higher accuracy of the DEA algorithm as compared
to the EA algorithm for the small size problem instances.

6.4. Analysis of the Realistic Size Problem Instances

The second set of numerical experiments in this study aimed to compare the solutions, provided
by the EA and DEA algorithms for the realistic size problem instances (I-31 through I-60), and draw
important managerial insights. The developed EA and DEA algorithms were launched for the
considered realistic size problem instances. A total of 5 replications were performed for each problem
instance. The results are reported in Table 4, where the following data are presented: (i) instance
number; (ii) number of doors at the CDF; (iii) number of trucks arriving at the CDF; (iv) average
objective function values, obtained by the EA and DEA algorithms; (v) average computational time for
the EA and DEA algorithms; (vi) average total truck handling time (THT) for the solutions, provided
by the EA and DEA algorithms; (vii) average total truck waiting time (TWT) for the solutions, provided
by the EA and DEA algorithms; and (viii) average total truck delayed departure time (TDT) for the
solutions, provided by the EA and DEA algorithms.

Table 4. The results of the analysis for realistic size problem instances.

Instance # Doors # Trucks
EA DEA

Z, 103

USD
CPU,

s
THT,

h
TWT,

h
TDT,

h
Z, 103

USD
CPU,

s
THT,

h
TWT,

h
TDT,

h

I-31 6 84 501.845 106.67 168.06 927.64 936.90 432.237 110.23 161.47 750.12 752.90
I-32 6 88 547.382 109.37 175.29 972.37 981.03 479.831 113.11 170.15 834.67 838.44
I-33 6 92 602.021 111.28 183.14 1181.90 1191.27 518.227 115.20 177.04 908.19 911.85
I-34 6 96 659.985 115.97 191.49 1231.61 1242.34 570.792 120.22 184.97 998.96 1003.12
I-35 6 100 711.989 119.86 199.41 1261.94 1272.32 620.088 124.29 192.36 1094.26 1098.12
I-36 6 104 772.629 123.94 207.90 1473.63 1485.14 668.512 128.61 200.65 1184.89 1189.41
I-37 6 108 829.513 127.56 214.49 1636.57 1647.30 720.325 132.63 208.26 1286.91 1291.49
I-38 6 112 891.122 133.23 222.60 1745.40 1757.01 782.828 138.60 215.96 1402.01 1407.30
I-39 6 116 955.486 138.41 230.29 1864.28 1876.20 838.507 144.03 224.00 1503.26 1508.86
I-40 6 120 1016.981 142.62 239.03 2011.47 2023.99 903.379 148.87 232.34 1621.41 1627.63
I-41 8 84 357.316 101.84 166.93 683.07 691.30 293.271 106.38 156.64 485.44 483.68
I-42 8 88 393.770 105.75 176.19 683.89 693.49 321.700 110.49 164.27 532.34 530.56
I-43 8 92 427.472 109.99 182.19 837.07 845.43 344.579 115.18 170.35 576.23 573.68
I-44 8 96 468.842 114.38 191.65 890.53 900.84 383.101 119.81 178.95 645.82 644.00
I-45 8 100 504.641 118.70 197.62 958.65 967.76 412.542 124.35 185.97 699.19 697.54
I-46 8 104 540.792 123.48 204.26 1062.66 1070.91 454.287 129.60 194.06 768.50 766.81
I-47 8 108 589.544 127.68 214.50 1098.72 1113.27 482.431 134.04 200.53 830.58 827.83
I-48 8 112 627.948 133.42 225.57 1127.98 1138.72 518.353 140.20 208.76 897.35 895.65
I-49 8 116 668.407 138.04 228.23 1358.38 1368.33 565.641 145.39 217.27 983.73 982.78
I-50 8 120 721.946 142.81 239.65 1371.62 1384.77 605.739 150.96 224.10 1049.93 1048.17
I-51 10 84 274.704 101.43 167.46 533.30 545.29 215.514 107.26 152.98 333.91 328.58
I-52 10 88 301.144 104.93 178.59 555.70 564.26 238.171 111.18 162.02 371.92 367.72
I-53 10 92 323.463 110.54 184.02 643.86 654.21 256.099 117.34 168.72 408.89 405.02
I-54 10 96 350.691 115.07 191.95 695.29 707.18 293.451 122.16 178.69 469.84 468.36
I-55 10 100 378.528 119.27 200.51 750.08 762.74 310.387 126.64 183.91 502.53 498.10
I-56 10 104 410.092 123.86 208.98 764.52 775.39 338.309 131.62 192.65 552.22 549.13
I-57 10 108 445.081 127.57 216.00 930.28 942.54 379.254 135.60 204.23 629.51 630.16
I-58 10 112 476.928 133.19 225.18 978.19 992.39 385.152 142.20 205.94 637.44 633.25
I-59 10 116 500.795 138.31 232.02 992.85 1006.57 419.952 147.77 212.45 699.80 694.19
I-60 10 120 539.011 142.10 240.87 1157.33 1171.76 456.054 151.92 221.33 759.03 754.43

Note that the truck schedules produced by the EA and DEA algorithms were compared in terms of
the truck handling time, waiting time, and delayed departure time, as the latter performance indicators
critically affect the CDF performance. Specifically, a significant increase in the handling time, waiting
time, and delayed departure time of the inbound and outbound trucks may delay delivery of the
products to the end customers. Delayed product deliveries will violate the “just-in-time” concept,
which plays an important role for the CDF operators and other supply chain stakeholders [1–9].
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Moreover, delayed product deliveries can also negatively affect the economic sustainability of the
supply chain operations, as logistics companies may be imposed monetary penalties for violation of
the agreed product delivery time. Based on analysis of the results, it can be observed that the DEA
algorithm consistently outperforms the EA algorithm in terms of the objective function values for all
the considered realistic size problem instances, and, therefore, provides more cost-efficient schedules
for the inbound and outbound trucks at the CDF. The total cost of the DEA truck schedules was on
average 18.17% lower as compared to the EA truck schedules. Furthermore, application of the diploidy
concept within the developed DEA algorithm resulted in a significant reduction of the truck handling
time, waiting time, and delayed departure time (see Figure 7).
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Specifically, the total handling time for the DEA truck schedules was on average 6.14% lower as
compared to the EA truck schedules over the considered realistic size problem instances. The latter
finding can be explained by the fact that the DEA algorithm assigned the arriving trucks either directly
to the “desired doors” or to the other doors, which were located close to the “desired doors” of the
CDF. The numerical experiments also demonstrate that application of the diploidy concept within the
proposed DEA allowed reducing the total truck waiting time and the total truck delayed departure
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time on average by 32.61% and 34.01%, respectively. Therefore, the developed DEA algorithm can
assist the CDF operators with the design of efficient schedules for the inbound and outbound trucks,
facilitate movements of goods within CDFs, ensure timely product delivery, and ultimately improve
economic sustainability within supply chains.

The numerical experiments also show that the storage of genetic information from the parent
chromosomes increased the computational time of the DEA algorithm on average by 5.04% as
compared to the EA algorithm. The maximum DEA computational time did not exceed 151.92 s
over the realistic size problem instances, which can be considered as acceptable from a practical
standpoint (i.e., the CDF operator will be able to develop the truck schedules relatively quickly).

6.5. Discussion

Efficient scheduling of the inbound and outbound trucks at CDFs plays a critical role for the
product distribution process within supply chains. Since the CDF truck scheduling problem is of a high
complexity, a large number of various heuristic and metaheuristic algorithms were proposed in the
cross-docking literature to obtain truck schedules of a good quality within an acceptable computational
time (including EAs, TS, PSO, ACO, DE, and other algorithms, as discussed in the literature review
section of the manuscript). A lot of studies demonstrated superiority of EAs against the alternative
metaheuristic algorithms, which were developed for the CDF truck scheduling problem. This study
proposes an EA algorithm, which relies on the diploidy concept (i.e., the DEA algorithm), where the
parent genetic information is stored before application of the crossover operator. A set of numerical
experiments were conducted to evaluate performance of the proposed DEA algorithm against a typical
EA algorithm, which relied on the haploidy concept, where the parent genetic information was not
stored before deployment of the crossover operator.

Throughout the numerical experiments, it was found that both EA and DEA algorithms were
able to obtain the truck schedules, which were close to the optimal truck schedules, for the small size
problem instances. The EA and DEA optimality gaps did not exceed 2.29% and 0.18%, respectively.
Analysis of the realistic size problem instances indicates that application of the diploidy concept
reduced the total truck handling time, the total truck waiting time, and the total truck delayed
departure time on average by 6.14%, 32.61%, and 34.01%, respectively, for the DEA truck schedules
as compared to the EA truck schedules. Moreover, the DEA algorithm yielded the truck schedules
which had 18.17% lower truck service costs, as opposed to the truck service costs associated with the
EA truck schedules.

7. Conclusions and Future Research

Nowadays the majority of the existing supply chains are driven with the “just-in-time” concept.
The key supply chain players put more emphasis on timely completion of processes to ensure
customer satisfaction and avoid potential losses in sales. In order to facilitate the transportation and
handling processes within supply chains, many manufacturing companies, large retailers, shipping
companies, and other distribution companies started implementation of the cross-docking technique.
The cross-docking facilities provide the fast flow of products from the inbound trucks to the assigned
outbound trucks, which further deliver the products to the final customers. One of the most challenging
planning problems for the cross-docking facility operators is the truck scheduling problem.

Due to complexity of the truck scheduling problems, many cross-docking studies applied different
Evolutionary Algorithms that relied on the haploidy concept, where the parent genetic information
could be lost throughout the algorithm evolution. To address the latter drawback, this study proposed
a novel biologically-inspired Diploid Evolutionary Algorithm that applied the diploidy concept,
where a copy of each parent chromosome was stored after the crossover operation. The numerical
experiments demonstrated efficiency of the developed algorithm and promising results. Specifically,
the maximum optimality gap of the Diploid Evolutionary Algorithm comprised 0.18%. Based on
a comparative analysis against a typical Evolutionary Algorithm, it was found that the proposed
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algorithm could reduce the total truck waiting time and the total truck delayed departure time on
average by 32.61% and 34.01%, respectively. Furthermore, application of the developed algorithm
allowed the cross-docking operator decreasing the total truck service cost on average by 18.17%.
Therefore, the proposed Diploid Evolutionary Algorithm can assist the cross-docking operators
with the design of cost-efficient truck schedules, facilitate the flow of different products within
the cross-docking facilities, support “just-in-time” deliveries within supply chains, and improve
sustainability of the supply chain operations.

The scope of future research may focus on the following aspects: (i) model uncertainty in arrival
times of the inbound and outbound trucks; (ii) accounting for the potential congestion issues inside
the cross-docking facility; (iii) considering the limited capacity of storage areas; (iv) assessing the effect
of preemption on the truck schedules; (v) proposing a multi-objective framework for the conflicting
objectives; (vi) deploying additional local search heuristics at various steps of the algorithm; and
(vii) comparing the proposed Diploid Evolutionary Algorithm against the alternative state-of-the-art
metaheuristic algorithms (e.g., Particle Swarm Optimization, Tabu Search, Ant Colony Optimization,
Simulated Annealing).
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evaluation of the algorithm via the numerical experiments.
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