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Abstract: Global warming and its relevant effects have aroused increasing human concerns in
recent decades. These anomalies are likely influencing vegetation dynamics and ecosystem stability.
This paper aims to dissect extreme temperature variations in both space and time, and related
regional responses to global warming in the Huai River Basin. Using the daily maximum and
minimum air temperature at 153 stations across the Huai River Basin, China, covering the period of
1961–2014, trends and relations amongst extreme air temperature indices were analyzed, and regional
responses of the Huai River Basin to global warming process were also investigated. The results
indicated that: (1) widespread increasing trends can be observed in maximum and minimum air
temperature, with the largest increasing magnitude of 0.4 ◦C per decade and 1.3 ◦C per decade,
respectively. The minimum air temperature regimes have a larger increasing magnitude than
the maximum air temperatures. (2) There is an increasing trend in the extreme maximum temperature
indices, and the increasing rates of TN90p and TR20 are greater than those of the other extreme
maximum temperature indices. However, the extreme minimum temperature indices, except for
consecutive icy days (CID), show significant decreasing trends. The growing season length (GSL)
would increase due to the joint action of (i) an increase in maximum temperature indices, and (ii)
a decrease in minimum temperatures indices. Although increases in the GSL would be beneficial
for increasing the growing time of crops, a decreased extreme minimum temperature and increased
extreme maximum temperature may reduce the winter wheat yield. (3) Extreme low temperature
indices show a larger changing magnitude than the extreme high temperature indices. Temporally,
a larger changing magnitude can be identified for temperature indices during night-time than during
daytime. Moreover, a larger changing magnitude and higher significance of trends of extreme
temperature indices can be observed in the eastern Huai River Basin than in the western Huai
River Basin. Particularly, we detect an even higher changing rate of extreme temperature indices
in the southeastern Huai River Basin. These findings can be well explained by urban heat island
effects resulting from urban aggregation across the Yangtze Delta. (4) The correlation between
the extreme low temperature indices is slightly higher than that of the extreme high temperature
indices. The changing trends of the most extreme temperature indices are closely related to latitude
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and altitude. Trends in the main extreme temperature indices of the Huai River Basin are essentially
similar to those in other regions around the world, implying consistent spatial patterns of extreme
temperature indices across the globe.

Keywords: extreme temperature indices; Sen’s slope; Mann–Kendall trends; warming processes;
Huai River Basin

1. Introduction

Recent years have witnessed a warming climate that is characterized by increasing temperature
at global and regional scales. Hence, extensive discussion has taken place due to the considerable
impact of increased temperature on the eco-environment and society [1–4]. Previous experiments
indicated that temperature extremes increase faster than the mean temperature [5,6]. Meanwhile,
intensifying temperature extremes in recent decades have resulted in more and more serious fatalities
and socioeconomic losses [7–10]. For instance, heat waves and extremely high temperatures can cause
fatalities and losses directly by heat-related illness, or indirectly by affecting agricultural production or
water availability [4,11]. Therefore, numerous studies have addressed the spatiotemporal features of
temperature regimes [12]. These studies have observed an increasing of approximate 0.2 ◦C per decade
(0.2 ◦C/10a) in the global surface temperature over the past 30 years [11,13]. Nevertheless, temperature
changes are diverse and shifting in both space and time, and there are significant variations in some
regions [12,14]. Therefore, it is of paramount importance to investigate the changing properties of
extreme temperature regimes at both regional and global scales.

As for temperature changes in China, a significant increase in temperature can be observed
in the last 100 years, with an increasing magnitude of 0.9 ◦C/10a, and an increasing magnitude of
0.23 ◦C/10a in the temperature over the last 50–60 years. The increasing magnitude of temperature
across China over the last 100 years has been larger than the average across the globe. In addition, in
eastern China, the increasing magnitude of temperature during 1909–2010 reached 1.52 ◦C/100a [15].
Increasing temperature triggers an instability of atmospheric conditions, and hence an enhancement of
extreme weather events. Thus, investigations of extreme temperature have been drawing increasing
humans concern from the international academic community [2,9,11]. As stated previously, numerous
research studies have been conducted on the changing properties of extreme temperature regimes
across both space and time. Christidis et al. (2005) and Stott (2016) indicated that the maximum
and minimum temperature have been increasing at the global scale, with an elevating frequency and
intensity of weather extremes [16,17]. Dashkhuu et al. (2015) analyzed various indices to investigate
recent changes in the annual frequencies of extreme temperature events in Mongolia, showing an
apparent increase in summer days, as well as an appreciable decrease in frost days [18]. Ruml et al.
(2017) analyzed spatiotemporal changes of temperature extremes in Serbia based on 18 Expert Team
on Climate Change Detection and Indices (ETCCDI) indices using daily minimum and maximum
temperature observations from 26 meteorological stations over the period 1961–2010. They found that
that hot indices exhibited a general cooling tendency until 1980, and a warming tendency afterwards,
with the most pronounced trends in the number of summer and tropical days. Meanwhile, cold indices
displayed a mostly warming tendency over the entire period, with the most remarkable increase
in the lowest annual maximum temperature and the number of ice days [19]. Lin-Ye et al. (2018)
proposed a non-stationary multivariate statistical model considering significant wave heights and
peak wave periods at the peak of wave storms, as well as total storm energy and storm duration. They
found that multivariate models can be a suitable alternative for assessing the correlation of several
indices at the same time [20]. As for temperature changes in China, Zhang et al. (2017) indicated that
changes in temperature extremes considerably exceeded variations in the respective climatological
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means during the past five decades, with a greater amplitude of increases in cold extremes than in
warm extremes [21]. Besides, urban heat island effects have also been quantified across China [22,23].

China is the largest agricultural country with the largest population in the world [24–26]. Eastern
China accounts for more than 70% of the total population of the country [27]. What’s more, the study
region considered in this study, the Huai River Basin, is located in eastern China (Figure 1). The Huai
River Basin is densely populated, and has great socioeconomic potential. The basin provides 10%
of the total crop land of China and 20% of its total agricultural products, feeding 20.4% of the total
countryside population [28,29]. Hence, agricultural development in the Huai River Basin is critical
for the food security of China. Nevertheless, the Huai River Basin lies in the transitional zone
between semi-arid and semi-humid climates, being dominated by frequent droughts and floods.
Since the beginning of the 21st century, the annual average drought-affected crop area reached
2.698 hm2 × 106 hm2 and the drought-destroyed cropland area has reached 1.408 hm2 × 106 hm2,
accounting for 21% and 11% of the total cropland of the basin, respectively [25]. However, temperature
changes have remarkable impacts on droughts [30]. Besides, variations of temperature have affected
the lengths of growing season in both space and time, which have substantial implications for
agricultural activities [31]. However, few reports were found pertaining to investigations of extreme
temperature regimes across the Huai River Basin [32–34].
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The objective of this study is to dissect the changes in extreme temperatures with a complete
picture of temperature indices, and to quantify the correlations between growing season length and
temperature changes. Meanwhile, according to global comparisons of temperature variations, we have
also shown regional temperature responses and variations to global temperature changes. In this case,
based on daily maximum and minimum air temperature from 153 meteorological stations covering
the period of 1961–2014, spatiotemporal patterns of extreme temperature regimes were thoroughly
analyzed using 26 extreme temperature indices. In addition, regional responses of temperature changes
in the Huai River Basin were analyzed by comparing changes of extreme temperature within the Huai
River Basin with those in other regions of the globe. This study will be of paramount significance
in shedding new light on extreme temperature changes in both space and time, and their regional
responses to global warming climate.

This paper is organized as follows. Section 2 describes the study region and data sources. Extreme
indices and statistical methods are presented in Section 3. The temporal and spatial characteristics of
extreme temperature changes in the study area are analyzed in Section 4. Section 5 presents the regional
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responses of warming processes in the Huai River Basin to global changes, and conclusions are given
in Section 6.

2. Data

In situ observed precipitation data from 153 meteorological stations across the Huai River Basin
were collected from the China Meteorological Information Center [35]. Locations of the meteorological
stations were shown in Figure 1. The missing values of precipitation data for 1–2 days were filled
by the average precipitation of the neighboring days. Consecutive days with missing data were
interpolated by the long-term average of other years. For the objectives of this study, this gap-fill
method did not significantly affect the final results. A similar method had been used by Zhang et al. to
fill daily missing precipitation values [36].

3. Methods

3.1. Extreme Temperature Indices and Sen’s Trends

In this study, 26 extreme temperature indices were defined (Table 1) [19]. A description of the 26
indices based on the daily maximum temperature and daily minimum temperature are presented,
as defined by an Expert Team on Climate Change Detection and Indices (ETCCDI) experts. These
indices have been used in several studies regarding changes in temperature extremes (http://etccdi.
pacificclimate.org/list_27_indices.shtml), which are calculated by the RclimDex software package
(http://etccdi.pacificclimate.org/software.shtml). The indices can be divided into four groups: (1)
extreme indices, (2) extreme maximum temperature indices, (3) extreme minimum temperature indices,
and (4) other indices.

Table 1. Definitions of extreme temperature indices.

Categories Abbreviation Indices Definitions Unit

Extreme indices

TXx
The highest temperature of
the maximum temperature
series

The highest temperature of the daily and
monthly maximum temperature

◦C

TXn
The lowest temperature of
the maximum temperature
series

The lowest temperature of the daily and
monthly maximum temperature

◦C

TNx
The highest temperature of
the minimum temperature
series

The highest temperature of the daily and
monthly minimum temperature

◦C

TNn
The lowest temperature of
the minimum temperature
series

The lowest temperature of the daily and
monthly minimum temperature

◦C

Extreme maximum
temperature indices

TX90p Number of warm days Number of days with annual maximum
temperature >90th percentile d

TN90p Number of days with warm
nights

Number of days with annual minimum
temperature >90th percentile d

SU25 Number of summer days Days with annual maximum temperature
>25 ◦C d

SU35 Number of heat days Days with annual maximum temperature
>35 ◦C d

TR20 Number of days with heat
nights

Days with annual minimum temperature
>20 ◦C d

WSDI Consecutive warm days At least six consecutive days with daily
maximum temperatures >90th percentile d

HWDI Heat wave days
At least six consecutive days with daily
maximum temperatures 5 ◦C higher than
average maximum temperature

d

CSU25 Consecutive summer days Consecutive days with temperature >25 ◦C d

CSU35 Consecutive heat days Consecutive days with temperature >35 ◦C d

http://etccdi.pacificclimate.org/list_27_indices.shtml
http://etccdi.pacificclimate.org/list_27_indices.shtml
http://etccdi.pacificclimate.org/software.shtml
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Table 1. Cont.

Categories Abbreviation Indices Definitions Unit

Extreme minimum
temperature indices

TX10p Number of cold days Number of days with maximum
temperature <10th percentile d

TN10p Number of days with cold
nights

Number of days with minimum
temperature <10th percentile d

FD0 Freezing days Number of days with minimum
temperature <0 ◦C d

ID0 Icy days Number of days with maximum
temperature <0 ◦C d

CSDI Consecutive cold days
At least six consecutive days with
daily minimum temperature <10th
percentile

d

CWDI Consecutive cool days

At least six consecutive days with
daily minimum temperature 5 ◦C
lower than average minimum
temperature

d

CFD Consecutive freezing days The largest consecutive days with
minimum temperature <0 ◦C d

CID Consecutive icy days The largest consecutive days with
maximum temperature <0 ◦C d

Other indices

DTR Day temperature range Difference between daily maximum
and minimum temperature

◦C

GSL Growing season length Length of consecutive days with
daily temperature >5 ◦C d

GTavg Average temperature during
growing season

Average temperature during
growing season

◦C

GTmax
Average maximum
temperature during growing
season

Average maximum temperature
during growing season

◦C

GTmin
Average minimum
temperature during growing
season

Average minimum temperature
during growing season

◦C

An estimation of the magnitude of trends was done using Sen’s slope [37], which is a
non-parametric procedure for estimating the slope of trend in the sample of N pairs of data:

Qi =
xj − xk

j− k
for i = 1, 2, . . . N , (1)

where xj and xk are the data values at times j and k (j > k), respectively, and Qi is Sen’s slope.
If there is only one datum in each time interval, then N = n(n − 1)/2, where n is the number of

time intervals. If there are multiple observations in one or more time periods, then N < n(n − 1)/2,
where n is the total number of observations [38]. The N values of Qi are ranked from smallest to largest,
and the median of slope or Sen’s slope estimator is obtained by [38]:

Qmed =


Q[ N+1

2 ] i f N is odd
Q N

2
+Q N+2

2
2 i f N is even

(2)

The Qmed denotes the magnitude of trends in a hydrometeorological time series [39]. Qmed > 0
indicates increasing trends, and vice versa.

3.2. Mann–Kendall (MK) Trend Test Method

In this study, abrupt changes were tested using the algorithm by Gerstengarbe and Werner [40].
We assume a sample, x1, x2, . . . , xn, of the random variable, X, based on the rank series r of
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the progressive and retrograde rows of this sample. First, a Mann–Kendall (MK) test statistic, dk,
is calculated:

dk =
k

∑
i=1

ri (2 ≤ k ≤ n) (3)

and:

ri =

{
+1 if xi > xj
0 otherwise

(j = 1, 2, . . . , i) (4)

The statistic dk is distributed as a normal distribution with the expected value of E(dk), and
the variance Var(dk) as follows:

E[dk] =
n(n− 1)

4
(5)

Var[dk] =
n(n− 1)(2n + 5)

72
(6)

The definition of the statistic index Zk is calculated as:

Zk =
dk − E[dk]√

var[dk]
(k = 1, 2, 3, . . . , n) (7)

Zk follows the standard normal distribution. In a two-sided test for trend, the null hypothesis
is rejected at the significance level of α if |Zk| > Z(1−α/2), where Z(1−α/2) is the critical value of
the standard normal distribution with a probability exceeding α/2. A positive Zk value denotes a
positive trend, and a negative Zk value denotes a negative trend. In this paper, the significant level of
α = 5% is used. In contrast to the traditional MK test, which calculates above statistic variables only
once for the whole sample, the corresponding rank series for the so-called retrograde rows are similarly
obtained for the retrograde sample (xn, xn−1, . . . , x1). Following the same procedure as shown in
Equations (1)–(5), the statistic variables, dk, E(dk), Var(dk), and Zk will be calculated for the retrograde
sample. The Z values calculated with the progressive and retrograde series are named UF and UB
in this paper, respectively. The intersection point of the two lines, UF and UB (k = 1, 2, . . . , n), gives
the point in time of the abrupt changes within the time series. The null hypothesis (the sample is not
affected by a trend) must be rejected if the intersection point is significant at 5% significance level
(i.e., outside the 95% confidence interval) [41]. Besides, spatial interpolation in this study was done
by the Kriging method, and correlations between extreme temperature indices were quantified using
Pearson correlation coefficients. No further detailed information of these methods is provided here,
as these methods have been widely used in the study of hydrometeorology.

4. Results and Discussion

4.1. Trends in Extreme Temperature Indices

Table 1 enumerates the extreme temperature indices considered in this study, and Table 2 shows
the trends in 26 extreme temperature indices during 1961–2014 at 153 stations across the Huai River
Basin. For extended descriptions regarding the parameters for the following acronyms, please refer to
Table 1. The lowest temperature of the maximum temperature series (TXn), the highest temperature
of the minimum temperature series (TNx), and the lowest temperature of the minimum temperature
series (TNn) had positive trends at most stations across the Huai River Basin. In particular, TNx
and TNn had significant increasing trends at 97 out of 122 stations. Besides, the number of warm
days (TN90p), the number of summer days (SU25), the number of days with heat nights (TR20), and
the number of heat wave days (HWDI) had increasing trends, and the number of days with warm
nights (TN90p and TR20) had significant increasing trends at 98.04% and 83.01% of the total stations,
respectively. Therefore, low temperature components were subject to increasing trends. Meanwhile,
the number of cold days (TX10p), the number of days with cold nights (TN10p), the number of freezing
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days (FD0), the number of consecutive cold days (CSDI), the number of consecutive cool days (CWDI),
and the number of consecutive freezing days (CFD) all had decreasing trends. Wherein, FD0, TN10p,
CSDI, CWDI, and CFD had significant increasing trends at 96.73%, 93.46, 91.50%, 90.20% and 84.31% of
the total meteorological stations, respectively. These figures implied a larger increasing magnitude and
significant warming processes in the Huai River Basin, as reflected by the cold temperature components.
Minimum temperature trends increased more than maximum temperature trends. Karl et al. (1993)
analyzed monthly mean maximum and minimum temperatures for over 50% (10%) of the Northern
(Southern) Hemisphere landmass, indicating that the increment in the minimum temperature during
1951–1990 was 0.84 ◦C (0.56 ◦C), compared to a 0.28 ◦C (0.33 ◦C) rise in maximum temperatures [42].
Zhang et al. (2008) analyzed the statistical properties of temperature extremes in the Yellow River
Basin. They observed significant warming trends in the upper Yellow River Basin. Besides, they also
indicated that the warming tendency of the Yellow River Basin was mainly reflected by its significantly
increasing minimum temperature [43].

Table 2. Trends in extreme temperature indices during 1961–2014 across the Huai River basin.

TI Percentage NSU NU NSD ND NT TI Percentage NSU NU NSD ND NT

TXx 9.80% 14 69 1 66 18 TX10p 43.14% 0 1 66 152 0
TXn 29.41% 45 153 0 0 0 TN10p 93.46% 0 0 143 153 0
TNx 63.40% 97 142 0 1 10 FD0 96.73% 0 0 148 152 1
TNn 79.74% 122 151 0 2 0 ID0 30.07% 0 0 46 89 65

TX90p 20.26% 31 101 0 51 1 CSDI 91.50% 0 0 140 152 1
TN90p 98.04% 150 153 0 0 0 CWDI 90.20% 0 0 138 152 1
SU25 44.44% 68 153 0 0 2 CFD 84.31% 0 0 129 151 2
SU35 11.76% 13 39 5 67 47 CID 3.92% 0 0 6 10 143
TR20 83.01% 127 147 0 2 4 DTR 81.70% 2 8 123 144 1
WSDI 3.92% 2 14 4 66 73 GSL 83.01% 127 153 0 0 0
HWDI 9.15% 14 139 0 0 14 GTavg 81.70% 0 0 125 153 0
CSU25 3.92% 3 34 3 101 18 Gtmax 81.70% 0 0 125 153 0
CSU35 7.84% 8 14 4 23 116 Gtmin 83.66% 0 0 128 153 0

Note: TI: extreme temperature indices; Percentage: percentage of stations with significant trends in extreme
temperature indices; NSU: number of stations with significant increasing trends in extreme temperature indices;
NU: number of stations with increasing tendencies in extreme temperature indices; NSD: number of stations with
significant decreasing trends in extreme temperature indices; ND: number of stations with decreasing tendencies in
extreme temperature indices; NT: no trends can be detected in extreme temperature indices.

A larger increasing magnitude of minimum temperature than the maximum temperature can
definitely reduce the DTR, i.e., the difference between the daily maximum and daily minimum
temperature. In the Huai River Basin, a decreasing DTR can be observed at 144 stations, while the DTR
at 123 stations showed significant decreasing trends. Moreover, more than 80% of the stations were
characterized by significant trends regarding the growing season length (GSL), the average temperature
during the growing season (GTave), the maximum temperature during the growing season (GTmax),
and the minimum temperature during the growing season (GTmin). Wherein GSL showed increasing
trends, and decreasing trends could be found in the GTavg, GTmax, and GTmin. The above-mentioned
results implied a remarkable increase in the minimum temperature and a decrease of cold days, and
hence a lengthening growing season, which may imply shifting agricultural activities in terms of
plant timing and types of crops. In addition, the consecutive heat days (CSU35) and consecutive icy
days (CID) at most of the stations across the Huai River Basin did not significantly change, indicating
moderate climate conditions due to transitional regions of the Huai River Basin between northern
and southern China. In space, increasing extreme temperature indices could be observed across
the majority of the regions for the Huai River Basin (Figure 2). However, more significant changes
in the highest temperature of the maximum temperature series (TXx) and TXn could be detected in
the eastern Huai River Basin than in the western Huai River Basin. Meanwhile, significant changes in
the TXx could be observed in the southeastern Huai River Basin (Figure 2a). TXn displayed significant
increasing trends in the eastern Huai River Basin (Figure 2b). Parts of stations in the northwestern Huai
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River Basin were dominated by decreasing TXx, and significant increasing trends could be observed
for TNx and TNn (Figure 2c,d). Meanwhile, a larger changing magnitude of TNn was detected when
compared with that of TNx. Furthermore, more significant increasing trends could be found for TNx,
TNn, TXx, and TXn, implying a remarkable decrease in low temperature regimes with decreasing
temperature ranges. The regions with significant trends were those that were dominated by a larger
standard deviation. Meanwhile, the smallest standard deviation could be found in the southeastern
Huai River Basin (Figure 3).Sustainability 2018, 10, x FOR PEER REVIEW  8 of 20 
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4.2. Trends of Extreme Maximum Temperature Indices

Increasing/decreasing trends of TX90p could be detected in the eastern/western Huai River
Basin (Figure 4), wherein TX90p showed a significant trend in the southeastern Huai River Basin.
Meanwhile, a significant increasing TX90p could also be observed in parts of southern Huai River
Basin (Figure 4a). Furthermore, in the majority of the regions of the Huai River Basin, increasing
trends could be detected in TN90p, SU25, TR20, and the number of heat wave days (HWDI) with
different increasing magnitudes. In particular, TN90p showed the most significant increasing trend
(Figure 4b). Meanwhile, TR20 was subject to the largest increasing magnitude of 7.1 d/10 years
(Figure 4e). However, different changing properties could be found for SU25 and the number of
consecutive summer days (CSU25), respectively. Comparatively, SU25 showed an increasing trend in
most of the regions of the Huai River Basin (Figure 4c), while CSU25 showed a decreasing trend in
most of the regions of the Huai River Basin (Figure 4h). Even when observing warming tendencies,
it was difficult to identify consecutive warm periods, indicating complicated and intermittent warm
and cold climate types across the Huai River Basin. No significant trends could be detected for
the number of heat days (SU35), consecutive warm days (WSDI), or CSU35 at 47, 73, and 116 stations,
respectively. Meanwhile, these temperature indices were mostly increasing in the southeastern Huai
River Basin, but were mostly decreasing in the northwestern Huai River Basin (Figure 4d,f,i). These
changing properties were related closely to the latitudes and topographical features of the study
region. With the exception of CSU25, other extreme maximum temperature indices also showed
significant increasing trends in the majority of regions in the southeastern Huai River Basin, which
should be attributed to the booming socioeconomic development of the southeastern Huai River Basin.
Besides, fast urbanization and related urban heat island effects also have demonstrated remarkable
contributions to increases in extreme maximum temperature indices components; these results are
in line with those by Shi et al. (2009). No spatial persistency could be found for extreme maximum
temperature indices and standard deviations. The dispersion degree of TX90p, WSDI, and CSU35
in the southeastern Huai River Basin was larger than that of the other regions of the study region
(Figure 5a,f,i), implying a larger variability of extreme temperature indices in the southeastern Huai
River Basin. Adverse changing patterns could be found for SU35 and CSU25 across space (Figure 5d,h).
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4.3. Trends of Extreme Minimum Temperature Indices

In contrast to the generally increasing tendency/trends in extreme maximum temperature indices
components, the extreme minimum temperature indices components across the Huai River Basin
were generally decreasing (Figure 6), and specifically, the minimum temperature and cold days were
increasing. TN10p, FD0, CSDI, CWDI, and CFD generally showed decreasing trends, and significant
decreasing trends in the above-mentioned minimum temperature indices were detected at 84% of
the total meteorological stations. Meanwhile, the decreasing magnitudes of FD0, CSDI, and CWDI were
larger than those of the other extreme minimum temperature indices (Figure 6c,e,f), with decreasing
magnitudes of 10.0 days, 9.2 days, and 7.1 days per decade, respectively. Forty-six of the stations were
dominated by significant decreasing trends of icy days (ID0), and these stations were located mainly
in the eastern Huai River Basin (Figure 6d). Correspondingly, CID showed no evident changes at
most of the meteorological stations; the stations that were distributed sporadically across the eastern
Huai River Basin were dominated by significant decreasing CID, with smaller decreasing magnitudes
(Figure 6h). The standard deviation in the extreme minimum temperature was far smaller than that
of the extreme maximum temperature indices. With the exception of CFD, the dispersion degree of
the other extreme minimum temperatures in the eastern Huai River Basin was far more higher than
that of the western Huai River Basin. (Figure 7g).

In general, a larger decreasing magnitude of minimum temperature components was observed in
the northern Huai River Basin than in the southern Huai River Basin, i.e., the warming tendency was
more remarkable in the northern Huai River Basin than in the southern Huai River Basin. Hence, there
was a lower occurrence frequency of extreme cold temperature events, which was particularly true for
CFD. When compared to the changing magnitude of the maximum temperature components, a smaller
changing magnitude of the minimum temperature components was observed. These findings are in
good agreement with those by Zhang et al. (2011a), which indicated that warming processes across
China are dominated by a significant increasing minimum air temperature, as well as a relatively
smaller increasing magnitude of maximum air temperature [12]. However, these changing properties
are not homogenous across the entire Huai River Basin. In general, a larger warming magnitude can
be observed in the eastern Huai River Basin when compared to the warming magnitude in the western
Huai River Basin. These results can be attributed to the different intensities of the human activities
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in different parts of the Huai River Basin. Meanwhile, generally similar decreasing tendencies in
the minimum air temperature could be observed across almost the entire Huai River Basin. Therefore,
at this point, the warming processes were similar to those across the globe. The study found that
the number of spikes and kernels per spike of winter wheat respectively decreased, as 20.5 spikes/m2

and 2.4 kernels/spike, respectively, when the minimum temperature increased by 1 ◦C in winter [44].
A decreasing extreme minimum temperature and increasing extreme high temperature may reduce
the winter wheat yield.
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4.4. Trends in Other Indices

Stations that were dominated by a significant decreasing DTR could be observed at 80.4%
of the total meteorological stations with smaller changing magnitudes. With the exception of
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the Dabieshan Mountains, which did not show a significant decreasing trend in the DTR, significant
decreasing trends of DTR were detected in most of the regions of the Huai River Basin. Meanwhile,
the DTR in the southeastern corner of the Huai River Basin showed significant increasing trends,
and these results were adverse to those in the other regions of the Huai River Basin. It can be seen
from Figure 2c that the TNx in the southeastern corner of the Huai River Basin is decreasing, while
increasing trends can be detected in TXx and TXn (Figure 2a,b). Therefore, an increasing maximum air
temperature, but decreasing minimum air temperature, triggers an increasing DTR.

The GSL is subject to a larger changing magnitude. The highest increasing rate of GSL was
7.6 d/10a, and a significant increasing or lengthening GSL could be identified at 83.01% of the total
meteorological stations (Figure 8b); these stations were found mainly in the central and eastern Huai
River Basin. However, fewer stations at the western edge of the Huai River Basin were dominated by a
significant lengthening GSL (Figure 8b). In addition, GTavg, GTmax, and GTmin were subject to similar
spatial patterns of GSL changes (Figure 8c–e). Thus, the lengthening of the GSL can cause the starting
and ending timing of the GSL to extend to two ends of the year; hence, it will definitely involve
more cold days, and can cause a relatively lower average temperature during the GSL. Moreover,
activities of cold air mass during early spring are active, and there can sometimes be a sharp decrease
of temperature during early spring. Therefore, air temperature during the GSL in general can be
greatly modified due to the active activities of cold air mass. GSL is subject to a larger variability due
to the largest standard deviation. Besides, the decreasing standard deviation of GSL, GTavg, GTmax,
and GTmin can be found from the southeastern to the northwestern Huai River Basin (Figure 9b–e).
Meanwhile, a decreasing tendency of DTR could be found landwards (Figure 9a).
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4.5. Abrupt Changes and Correlations of Extreme Temperature Indices

Abrupt changes of extreme temperature indices are shown in Figure 10. In general, the 1990s was
the major change point for extreme temperature indices, such as the extreme maximum temperature
indices (e.g., TN90p, SU25, TR20, TN10p), extreme minimum temperature indices (i.e., CWDI), and
other indices (e.g., GSL, GTavg, GTmax and GTmin). Meanwhile, the 1980s was another change
point for extreme temperature indices such as the extreme maximum temperature indices (TNn),
extreme minimum temperature indices (FD0, ID0, CSDI, CFD), and other indices (DTR). As indicated
above, change points of the extreme minimum temperature indices were mainly occured in the 1980s,
which were earlier than the change points of the extreme maximum temperature indices. Enhanced
fluctuations of El Niño/La Nina events were detected after the 1980s; this was particularly true after
the 1990s. Climate changes further intensified due to enhanced ENSO (El Niño-Southern Oscillation)
regimes and warming processes at the global scale [21,45,46]. Therefore, the timing of the change
points for the extreme temperature indices, i.e., 1980s and 1990s, can be attributed to ENSO-induced
impacts. However, some extreme temperature series were subject to more than one change point,
such as HWDI, CSU25, TX10p, and CID. These four extreme temperature index series have four, or
even more, change points. These results indicated more than one driving factor behind the extreme
temperature indices, such as HWDI, CSU25, TX10p, and CID.

To explore the potential impacts of some extreme temperature indices on others, correlations
amongst extreme temperature indices were quantified in this study across the Huai River Basin
(Figure 11). It can be seen from Figure 11 that there were no significant correlations between the extreme
maximum temperature indices and the extreme minimum temperature indices. Meanwhile, TXx had a
significant correlation with TNx, with a correlation coefficient of 0.60. TXn had a significant correlation
with TNn, with a correlation coefficient of 0.79. Meanwhile, SU35 and CSU35 had a higher correlation,
with a correlation coefficient of 0.92. Besides, better correlation relations could also be found between
SU35 and WSDI, SU25 and HWDI, WSDI and CSU35, and TXx and CSU35, with correlation coefficients
0.89, 0.88, 0.87, 0.80, respectively; these were significant at 0.01 significance level. As for correlations
between minimum temperature components, a better correlation could be observed between FD0
and the other cold temperature indices, which were significant at 0.01 significance level. In addition,
a significant correlation coefficient could also be obtained between ID0 and CID, which was significant
at 0.95 confidence level.

Comparisons between correlation relations amongst temperature indices did not show good
correlation between TXn and maximum temperature indices. Meanwhile, better correlation could
be found between TXn and the other minimum temperature indices; this was particularly the case
for correlation between TXn and CID, ID0, and TNn with correlation coefficients of −0.82, −0.80,
and 0.79, respectively. The correlation coefficient between TXx and SU35 was 0.86, implying that
the highest temperature components of the extreme maximum temperature indices series can drive
the lengthening of heat waves. In general, a negative correlation could be found between the extreme
maximum temperature indices and the extreme minimum temperature indices. A positive correlation
could be found among the extreme minimum temperature components. Correlations were better
among the extreme minimum temperature components when compared with those among the extreme
maximum temperature components, indicating a significant increasing tendency of extreme minimum
temperature compared to the moderate changes of the extreme maximum temperature. In particular,
the highest correlation coefficient could be found between the GSL (other indices) and FD0 (extreme
minimum temperature temperature), showing that a significant decreasing number of freezing days
can help lengthen the GSL.
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5. Discussion

5.1. Relations between Extreme Temperature Indices and Locations (Latitude and Longitude), Altitude

Correlations between extreme temperature indices, the locations of meteorological stations, and
altitude can be found in Table 3. It can be observed from Table 3 that the most extreme temperature
indices were in significant correlation with the altitude, latitude, and longitude. A higher correlation
could be found between the extreme minimum temperature indices (FD0, CFD) and latitude, with
correlation coefficients of 0.92 and 0.91, respectively, which were significant at 0.01 significance
level. Moreover, correlations tended to be enhanced with increasing higher latitude, i.e., there
were more freezing days in the northern Huai River Basin than in the southern Huai River Basin.
The extreme maximum temperature indices had negative relations with latitude, such as the extreme
maximum temperature indices (TR20 and WSDI), which had correlation coefficients of −0.74 and
−0.72. Meanwhile, the other indices (GSL) had a negative correlation with latitude, i.e., the lengthening
GSL could be detected in the southern Huai River Basin, and vice versa for the northern Huai River
Basin. Altitude had certain impacts on the extreme temperature indices, since ID0 and CID can inflict
damages on crops, and hence cause a potential reduction in agricultural production. The higher
the altitude, the higher the probability of extreme minimum temperature indices (ID0 and CID), which
has a negative impact on agricultural activities and planting policies. Therefore, latitude and altitude
have remarkable impacts on extreme temperature indices.
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Table 3. Correlations between extreme temperature indices and latitude, longitude, and altitude across
the Huai River Basin.

Categories
Extreme

Temperature
Indices

Lat. Lon. Alt. Categories
Extreme

Temperature
Indices

Lat. Lon. Alt.

Extreme
indices

TXx 0.27 ** −0.64 ** −0.13

Extreme
minimum

temperature
indices

TX10p −0.37 ** −0.51 ** 0.18 *
TXn −0.13 0.31 ** −0.64 ** TN10p −0.09 0.15 0.04
TNx −0.41 ** 0.18 * −0.42 ** FD0 0.92 ** −0.12 0.29 **
TNn −0.21 * 0.01 0.03 ID0 0.44 ** −0.18 * 0.87 **

Extreme
maximum

temperature
indices

TX90p −0.48 ** −0.35 ** −0.06 CSDI 0.07 −0.10 0.10
TN90p 0.11 −0.12 −0.01 CWDI 0.62 ** −0.07 −0.38 **
SU25 −0.09 −0.34 ** −0.64 ** CFD 0.91 ** −0.24 ** 0.31 **
SU35 −0.28 ** −0.73 ** −0.14 CID 0.50 ** −0.29 ** 0.83 **

TR20 −0.74 ** 0.20 * −0.58 **

Other indices

DTR 0.58 ** −0.49 ** −0.09
WSDI −0.72 ** 0.50 ** −0.35 ** GSL −0.92 ** −0.02 −0.32 **
HWDI 0.88 ** 0.02 −0.05 GTavg 0.10 −0.36 ** −0.61 **
CSU25 −0.01 0.15 −0.80 ** Gtmax 0.28 ** −0.47 ** −0.43 **
CSU35 −0.53 ** −0.46 ** −0.30 ** Gtmin −0.33 ** 0.12 −0.45 **

Note: *, ** denote significance levels of 0.05 and 0.01, respectively.

5.2. Regional Responses of Warming Processes in Huai River Basin to Global Changes

Comparisons of changes in extreme temperature indices between China and other places in
the world find similar changing patterns of extreme temperature indices across both space and time.
In general, the highest temperature, the lowest temperature, and the frequency of hot days are
increasing. Meanwhile, a decreasing tendency can be found for extreme minimum temperature events.
The results of this current study indicated a widespread increase in extreme minimum temperature
indices, as well as extreme maximum temperature indices. Extreme minimum temperature events
showed significant decreasing trends. No significant trends could be obtained for extreme temperature
indices in the Pearl River Basin and in the Xinjiang, which are both in northwestern China, implying
that no evident trends of extreme temperature indices could be observed in some specific regions
across China. In addition, no evident trends could be detected for TXx (extreme indices) and WSDI
(extreme minimum temperature indices), and different trends could be observed for TXx in the eastern
and western Huai River Basin. The results of extreme temperature regimes that Alexander (2016)
showed indicated similar changing properties of extreme temperature events over the globe and across
China [9].

As extreme temperature indices occurred more frequently, their causes have been widely
discussed. Global warming has been accepted as the major background behind the higher frequency
of extreme maximum temperature events. A comparison of extreme temperature changes between
regions across China and around the globe indicated increasing tendencies of extreme temperature
events. In particular, elevating trends in extreme maximum temperature indices regimes and
decreasing trends in extreme minimum temperature indices regimes were found, implying a decreasing
frequency of cold/freezing events and an increasing frequency of warm/heat wave events across
the globe (Table 4). Su et al. (2016) reviewed the literature concerning global warming, which
indicated a hiatus in global warming [47]. Meanwhile, the frequent occurrence of extreme temperature
events is increasing. It can be assumed that long-term (40–60 years) and shorter periods (annual and
inter-annual fluctuations) of temperature fluctuations had experienced a warming trend. In general,
two causes can be considered for a warming climate, i.e., natural fluctuations and manmade emissions
of greenhouse gas [48]. Yan et al. (2017) thoroughly investigated vegetation growth responses towards
precipitation patterns in the Huang–Huai–Hai River Basin. Regions with sparse vegetation were mainly
distributed in arid and semi-arid areas or densely populated areas [49]. What’s more, Chen et al.
(2016) found that the highest vulnerability grade at the scale of the Province-Class II WRR (Water
Resources Region) was in the lower reaches of the Huai River Basin, in the Jiangsu province [50].
In this study, extreme minimum temperature indices showed a significant increasing trend. Therefore,
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the increasing trend of extreme temperature indices caused a generally increasing trend in reference
evapotranspiration in the lower Huai River Basin [34]. Besides, warming effects of urbanization can
also be identified in the southeastern Huai River Basin. Moreover, the fifth IPCC (Intergovernmental
Panel of Climate Change) reports, which were based on modeling results by the CMIP5 (Coupled
Model Intercomparison Project Phase 5), corroborated human contributions through greenhouse gas
emissions to the higher frequency of hot days and heat nights, and the lower frequency of cold days
and freezing night as well, and hence the widespread increase of heat waves across the continent of
the globe.

Table 4. Comparisons of extreme temperature indices across the Huai River Basin and other regions of
the globe.

Categories
Extreme

Temperature
Indices

China Other Countries

HR YR QL PR YLR XJ MC MG SB IT KY US GL

Extreme indices

TXx # ↗ ↗ ↗ ↗ # ↗ ↗ ↗ — — ↗ ↗
TXn ↗ ↗ ↗ # ↗ # ↗ ↘ ↗ — — ↗ ↗
TNx ↗ ↗ ↗ ↗ ↗ # ↗ ↗ ↗ — — ↗ ↗
TNn ↗ ↗ ↗ ↗ ↗ # ↗ ↗ ↗ — ↗ ↗ ↗

Extreme maximum
temperature indices

TX90p ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗
TN90p ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗
SU25 ↗ ↗ ↗ ↗ — ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗
TR20 ↗ ↗ ↗ ↗ — ↗ ↗ ↗ ↗ ↗ — ↗ ↗
WSDI # ↗ ↗ ↗ ↗ ↗ ↗ — ↗ ↗ ↗ — ↗

Extreme minimum
temperature indices

TX10p ↘ ↘ ↘ # ↘ ↘ ↘ ↘ ↘ ↘ ↗ ↘ ↘
TN10p ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↗ ↘ ↘

FD0 ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ — ↘ ↘
ID0 ↘ ↘ ↘ # ↘ ↘ ↘ ↘ ↘ ↘ — ↘ ↘

CSDI ↘ ↘ ↘ ↘ — ↘ ↘ — ↘ ↘ — — ↘

Other indices
DTR ↘ ↘ ↘ ↘ ↘ # — ↘ ↗ — ↘ — ↘
GSL ↗ ↗ ↗ # ↗ ↗ — ↗ ↗ ↗ — — ↗

Note: HR: Huai River Basin; YR: Yangtze River Basin; QL: Qinling Mountains; PR: Pearl River Basin; YLR: Yellow
River Basin; XJ: Xinjiang; MC: Mainland China; MG: Mongolia; SB: Serbia; IT: Italy; KY: Kenya; US: United States;
GL: globe. ↗ denotes increasing temperature indices;↘ denotes decreasing temperature indices; # denotes no
significant trends in temperature indices; and — denotes no data.

6. Conclusions

Global warming and its negative impacts on the ecological environment and human society have
drawing increasing human concerns. However, current standing reports that focus on the changing
properties of temperature extremes have used a limited number of temperature indices at the regional
and even global scales. Besides, most of the researches have mainly pertained to specific temperature
indices, such as heat waves. Against the above-mentioned research studies, this current study
aims to thoroughly investigate the spatiotemporal patterns of extreme temperature indices based on
widely accepted temperature indices. Moreover, this study also considered the relationships between
temperature indices, as well as those between temperatures indices and the length of the growing
season. At the same time, the regional responses of extreme temperature indices to global warming
across the Huai River Basin have also been dissected.

The aforementioned points differentiate this current research from standing research studies.
The above-mentioned analyses that were done in this study can help to obtain the following important
and interesting conclusions:

(1) Extreme indices (TXx, TNx, TXn, and TNn) have shown generally increasing tendencies, while
a widespread increase could also be detected in TNx and TNn, with the largest increasing
magnitudes of 0.4 ◦C per decade and 1.3 ◦C per decade, respectively. The minimum air
temperature regimes have had a larger increasing magnitude than the maximum air temperature.

(2) The extreme maximum temperature indices showed increasing trends, and the significantly
increasing trends in TN90p and TR20 were greater in magnitude than those related to the other
extreme maximum temperature indices. Meanwhile, the extreme minimum temperature indices
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showed significant decreasing trends. The increasing trends of the extreme maximum temperature
indices, and the decreasing trend of the extreme minimum temperature indices caused the GSL
to increase. Although an increasing GSL is beneficial for increasing the growth time of crops,
the decreasing extreme minimum temperature and increasing extreme maximum temperature
may reduce the winter wheat yield. The remarkable increase in the minimum temperature and
decrease of cold days, and hence the lengthening of the growing season, may imply shifting
agricultural activities in terms of plant timing and crop types.

(3) The magnitude of trends regarding extreme minimum temperatures was larger than that
regarding extreme maximum temperatures. The changing magnitude of the night-time
temperature indices was larger than that of the daytime periods. The changing magnitude
and significance of the extreme temperature indices in the eastern Huai River Basin were larger
than those of the western Huai River Basin. Meanwhile, the extreme maximum temperature in
the southeastern Huai River Basin was larger than that of the other regions of the Huai River
Basin. This difference could be attributed to urban heating effects across the Yangtze Delta
region, where urban aggregation is dominant. With the exception of CSU25, other extreme
maximum temperature indices showed significant increasing trends in most of regions in
the southeastern Huai River Basin, which should be attributed to the booming socioeconomic
development in the southeastern Huai River Basin. Besides, fast urbanization and related urban
heat island effects have also increased the extreme maximum temperature indices components.
In addition, correlations amongst the extreme minimum temperatures were relatively higher
than those amongst the extreme maximum temperature indices. Most of the extreme temperature
indices showed close relationships to altitude and latitude. Latitude had the largest impacts on
the extreme temperature, followed by altitude. Specifically, the GSL showed negative relations
with altitude, and negative correlations could also be detected between longitude and the extreme
minimum temperature. There were less days with extreme minimum temperatures in the eastern
Huai River Basin than in the western Huai River Basin, which could be attributed to the higher
temperature in the seaward regions than in the landward regions. A decrease in the extreme
minimum temperature indices could also be detected in the western Huai River Basin; however,
this decrease was not significant. This decrease did not significantly lengthen the GSL, since ID0
and CID both cause damage or death for crops, and thus great damage to agricultural production.
The higher the altitude, the higher the probability of extreme minimum temperature indices (ID0
and CID), which have a great impact on agricultural activities and planting policies. Similar
changing properties of the extreme temperature indices can be identified over the globe when
compared with those across the Huai River Basin, China; these similarities indicate that warming
processes in the Huai River Basin are indicative of greater global warming trends.
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