An example of estimating neighborhood per capita income

We first assume that the per capita income of a neighborhood is proportional to its average house rent in Beijing:

$$\frac{y_i}{y_j} = \frac{r_i}{r_j}$$
(1)

where y_i and y_j are the per capita income of neighborhood *i* and *j* respectively; and r_i and r_i are the average house rent of neighborhood *i* and *j* respectively. Per capita income of neighborhood *i* can be related to house rent by:

$$y_i = \frac{y_j r_i}{r_i} \tag{2}$$

Total income of a district equals the total income of the neighborhoods which located in the districts:

$$\sum_{i=1}^{i=k} n_i y_i = NY \tag{3}$$

where Y is the per capita income of the district in which neighborhood i is located; n_i is the population of neighborhood i; N is the population of the district in which neighborhood i is located; and k is the number of neighborhoods in the district. Integrating equation (2) yields:

$$\sum_{i=1}^{i=k} n_i y_i = \sum_{i=k}^{i=k} n_i \frac{y_j r_i}{r_j} = \frac{y_j}{r_j} \sum_{i=k}^{i=k} n_i r_i = NY$$
(4)

The per capita income of neighborhood can be obtained from:

$$y_i = \frac{NYr_i}{\sum_{i=1}^k n_i r_i}$$
(5)

An example of estimating per capita income of a neighborhood:

Y=4755.745 USD

Neighborhood_ID	Distrit_ID	n _i	r _i (USD/ m ²)	n,*r,	$\mathbf{y}_{i}(\mathbf{USD}) = \frac{NYr_{i}}{\sum_{i=1}^{k} n_{i}r_{i}}$
110102011000	110102	67888	22.38	1519072.44	6716.84
110102012000	110102	95433	18.82	1795671.34	5648.17
110102014000	110102	46385	18.72	868465.99	5620.24
110102001000	110102	51477	18.30	942188.23	5494.19
110102007000	110102	116543	17.56	2047070.96	5272.61
110102009000	110102	130925	17.43	2282064.45	5232.20
110102003000	110102	95497	17.10	1633357.34	5134.18
110102010000	110102	116768	15.60	1821346.84	4682.18
110102015000	110102	30547	15.13	462138.16	4541.33
110102013000	110102	36997	15.12	559369.03	4538.49
110102016000	110102	43455	14.53	631293.53	4360.85
110102017000	110102	73692	14.35	1057717.77	4308.53
110102019000	110102	95737	13.51	1293323.51	4055.15
110102018000	110102	51877	12.08	626677.81	3626.18
110102020000	110102	179536	11.09	1990894.50	3328.71
		N= $\sum_{i=1}^{k} n_i$ =1232757		$\sum_{i=1}^{k} n_{i} r_{i} = 19530652$	

No	Country	Study area	Analysis unit	Park access calculating methods	Conclusion *	Reference (in the manuscript)
1	Australia	Brisbane	Household	Household survey	1	[1]
2	Australia	Brisbane	Individual	Visitor survey	5	[2]
3	Australia and China	Brisbane (Australia) and Zhongshan (China)	Household	Household survey	1	[3]
4	Iran and Tehran Province	Tehran City	Geometric census block	Euclidean distance	2	[4]
5	Israel	Tel Aviv	Individual	Minimum Euclidean distance, coverage (based on accessible park size and population)	1	[5]
6	Japan	Yokohama	1 km census grid	Container (number and size of parks)	1	[6]
7	South Africa	Cape Town	Socio-economic area	Flow map analyses (based on network analysis distance)	1	[7]
8	UK	Glasgow City, Scotland	Data zone	Container (number of parks)	3	[8]
9	USA	Greensboro, North Carolina	Census tract	Park quality	1	[9]
10	USA	Los Angeles	Census tract	Container based on buffering (park size)	1	[10]
11	USA	Santa Clara County, California	Census tract	Buffering	1	[11]
12	USA	Los Angeles	Individual	Visitor survey	1	[12]
13	USA	Bridgeport	Census tract	Buffering, park quality	3	[13]
14	USA	six cities: Rockford, Bloomington, Decatur, Urbana-Champaign, Peoria, and Springfield	Census block groups	Network analysis distance	3	[14]
15	USA	four cities: Albuquerque, Chapel, Hill/Durham, Columbus and Philadelphia	Individual	Park quality	3	[15]
16	USA	New York	Census tract	Buffering	4	[16]
17	USA	New York City	Census block groups	Container (number and size of parks), park quality	4	[17]
18	USA	Phoenix, Arizona	Census block	Buffering, park quality	4	[18]

Table S1: Studies published during 2005-2016 on the relationship between neighborhood park access and socioeconomic conditions.

No	Country	Study area	Analysis unit	Park access calculating methods	Conclusion *	Reference (in the manuscript)
			groups			
19	USA	Phoenix, Arizona	Census block groups	Buffering, walkability, park quality	4	[19]
20	USA	Baltimore, Maryland	Census block groups, census tract	Buffering (number and size of parks)	4	[20]
21	USA	Entire USA	Census tract	Population weighted distance (based on Euclidean distance)	4	[21]
22	USA	six states: CA, IL, MD, MN, NC, NY	Census tract	Container (number of parks), park quality	4	[22]
23	USA	Maryland	Census block groups	Container (number and size of parks)	4	[23]
24	USA	Nation, US	County	Buffering	6	[24]

* We summarized conclusions into six types, denoted by numbers 1-6.

1: Disadvantaged socioeconomic groups have less access to parks.

2: Disadvantaged socioeconomic groups have more access to parks.

3: There's no significant relationship between park accessibility and socioeconomic characteristics/ there's no significant difference in park accessibility among different socioeconomic groups.

4: Some studies report the relationship in a complex way.

5: The distance decay model for younger people as a proportion of the population was much flatter than it was for older people.

6: Access to exercise opportunities was most notably associated with no leisure-time physical activity (r = -0.47), premature death (r = -0.38), and obesity (r = -0.3)

References

- 1. Wang, D.; Brown, G.; Liu, Y. The physical and non-physical factors that influence perceived access to urban parks. *Landsc. Urban Plan.* **2015a**, *133*, 53–66.
- 2. Rossi, S.D.; Byrne, J.A.; Pickering, C.M. The role of distance in pen-urban national park use: Who visits them and how far do they travel? *Appl. Geogr.* **2015**, *63*, 77–88.
- 3. Wang, D.; Brown, G.; Zhong, G.; Liu, Y.; Mateo-Babiano, I. Factors influencing perceived access to urban parks: A comparative study of brisbane (Australia) and zhongshan (China). *Habitat Int.* **2015b**, *50*, 335–346.
- 4. Lotfi, S.; Koohsari, M.J. Measuring objective accessibility to neighborhood facilities in the city (a case study: Zone 6 in tehran, iran). *Cities* **2009**, *26*, 133–140.
- 5. Omer, I. Evaluating accessibility using house-level data: A spatial equity perspective. *Comput. Environ. Urban Syst.* **2006**, *30*, 254–274.
- 6. Yasumoto, S.; Jones, A.; Shimizu, C. Longitudinal trends in equity of park accessibility in yokohama, japan: An investigation into the role of causal mechanisms. *Environ. Plan. A* **2014**, *46*, 682–699.
- 7. Willemse, L. A flowmap-geographic information systems approach to determine community neighbourhood park proximity in cape town. *S. Afr. Geogr. J.* **2013**, *95*, 149–164.
- 8. Macintyre, S.; Macdonald, L.; Ellaway, A. Do poorer people have poorer access to local resources and facilities? The distribution of local resources by area deprivation in glasgow, scotland. *Soc. Sci. Med.* **2008**, *67*, 900–914.

- Bruton, C.M.; Floyd, M.F. Disparities in built and natural features of urban parks: Comparisons by neighborhood level race/ethnicity and income. J. Urban Health-Bull. N. Y. Acad. Med. 2014, 91, 894– 907.
- 10. Wolch, J.; Wilson, J.P.; Fehrenbach, J. Parks and park funding in los angeles: An equity-mapping analysis. *Urban Geogr.* **2005**, *26*, 4–35.
- 11. Stewart, I.T.; Bacon, C.M.; Burke, W.D. The uneven distribution of environmental burdens and benefits in silicon valley's backyard. *Appl. Geogr.* **2014**, *55*, 266–277.
- 12. Byrne, J.; Wolch, J.; Zhang, J. Planning for environmental justice in an urban national park. *J. Environ. Plan. Manag.* **2009**, *52*, 365–392.
- 13. Greer, A.E.; Marcello, R.; Graveline, R. Community members' assessment of the physical activity environments in their neighborhood parks: Utility of the community stakeholder park audit tool. *Health Promot. Pract.* **2015**, *16*, 202–209.
- 14. Zhou, X.; Kim, J. Social disparities in tree canopy and park accessibility: A case study of six cities in illinois using gis and remote sensing. *Urban For. Urban Green.* **2013**, *12*, 88–97.
- Cohen, D.A.; Lapham, S.; Evenson, K.R.; Williamson, S.; Golinelli, D.; Ward, P.; Hillier, A.; McKenzie, T.L. Use of neighbourhood parks: Does socio-economic status matter? A four-city study. *Public Health* 2013, 127, 325–332.
- Weiss, C.C.; Purciel, M.; Bader, M.; Quinn, J.W.; Lovasi, G.; Neckerman, K.M.; Rundle, A.G. Reconsidering access: Park facilities and neighborhood disamenities in new york city. *J. Urban Health-Bull.*. N. Y. Acad. Med. 2011, 88, 297–310.
- Maroko, A.R.; Maantay, J.A.; Sohler, N.L.; Grady, K.L.; Arno, P.S. The complexities of measuring access to parks and physical activity sites in new york city: A quantitative and qualitative approach. *Int. J. Health Geogr.* 2009, *8*, 34.
- 18. Ibes, D.C. A multi-dimensional classification and equity analysis of an urban park system: A novel methodology and case study application. *Landsc. Urban Plan.* **2015**, *137*, 122–137.
- 19. Cutts, B.B.; Darby, K.J.; Boone, C.G.; Brewis, A. City structure, obesity, and environmental justice: An integrated analysis of physical and social barriers to walkable streets and park access. *Soc. Sci. Med.* **2009**, *69*, 1314–1322.
- 20. Boone, C.G.; Buckley, G.L.; Grove, J.M.; Sister, C. Parks and people: An environmental justice inquiry in baltimore, maryland. *Ann. Assoc. Am. Geogr.* **2009**, *99*, 767–787.
- 21. Wen, M.; Zhang, X.; Harris, C.D.; Holt, J.B.; Croft, J.B. Spatial disparities in the distribution of parks and green spaces in the USA. *Ann. Behav. Med.* **2013**, *45*, S18–S27.
- 22. Jones, S.A.; Moore, L.V.; Moore, K.; Zagorski, M.; Brines, S.J.; Roux, A.V.D.; Evenson, K.R. Disparities in physical activity resource availability in six us regions. *Prev. Med.* **2015**, *78*, 17–22.
- 23. Abercrombie, L.C.; Sallis, J.F.; Conway, T.L.; Frank, L.D.; Saelens, B.E.; Chapman, J.E. Income and racial disparities in access to public parks and private recreation facilities. *Am. J. Prev. Med.* **2008**, *34*, 9–15.
- 24. Roubal, A.M.; Jovaag, A.; Park, H.; Gennuso, K.P. Development of a nationally representative built environment measure of access to exercise opportunities. *Prev. Chronic Dis.* **2015**, *12*, doi:10.5888/pcd12.140378.