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Abstract: To analyze the dynamic characteristics of air quality for enforcing effective measures to
prevent and evade air pollution harm, air quality index (AQI) time series data was selected and
transformed into a symbol sequence consisting of characters (H, M, L) through the coarse graining
process; then each 6-symbols series was treated as one vertex by time sequence to construct the AQI
directed-weighted network; finally the centrality, clusterability, and ranking of the AQI network
were analyzed. The results indicated that vertex strength and cumulative strength distribution,
vertex strength and strength rank presented power law distributions, and the AQI network is a
scale-free network. Only 17 vertices possessed a higher weighted clustering coefficient; meanwhile
weighted clustering coefficient and vertex strength didn’t show a strong correlation. The AQI
network did not have an obvious central tendency towards intermediaries in general, but 20.55%
of vertices accounted for nearly 1/2 of the intermediaries, and the varieties still existed. The mean
distance of 68.4932% of vertices was 6.120–9.973, the AQI network did not have obvious small-world
phenomena, the conversion of AQI patterns presented the characteristics of periodicity and regularity,
and 20.2055% of vertices had high proximity prestige. The vertices fell into six islands, the AQI
pattern indicating heavy or serious air pollution lasting six days always lingered for a long time.
The number of triads 2-012 was the largest, and the AQI network followed the transitivity model.
The study has instructional significance in understanding time change regulation of air quality in
Beijing, opening a new way for time series prediction research. Additionally, the factors causing the
change of topological properties should be analyzed in the future research.
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1. Introduction

Air pollution is hazardous chemicals released into the atmosphere by a number of natural and/or
anthropogenic activities. The change of atmospheric composition is attributed to the combustion of
fossil fuels [1]. Air pollutants, such as carbon monoxide (CO), respirable particulate matter (PM2.5 and
PM10), nitrogen oxides (NOx), ozone (O3), sulphur dioxide (SO2), nitrogen dioxide (NO2), and nitric
oxide (NO), differ in their reaction properties, chemical composition, time of disintegration, emission,
and diffuse ability over short or long distances. Air pollution has both acute and chronic impacts on
human health, and causes or aggravates numerous organic and systemic diseases, such as heart disease,
respiratory irritation, lung cancer, chronic bronchitis, and acute respiratory infections, which will bring
about premature mortality and reduce life expectancy [2–4]. Therefore, air pollution is a fundamental
issue of global concern. Atmospheric pollution in China is very serious. The “Environmental
Performance Index: 2016 Report” released by Yale University showed that as the world’s second
largest economy, the air quality in China was the second-lowest in the world, only slightly better than
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in Bangladesh, and even India was still ahead of China [5]. China has become a disaster area of air
pollution in the world, and air pollution has largely covered the vast majority of the country. Especially
in recent years, foggy and hazy weather has frequently attacked Northern and Eastern China, making
air pollution control the most prominent and urgent environmental problem at present.

The AQI is a simple and generalized scale or indicator to assess air quality status. The AQI in
China is developed based on GB3095-2012, introduced by the ministry of environmental protection
of the People’s Republic of China, which covers six pollutants, including PM10, PM2.5, SO2, CO,
NO2, and O3 [6]. According to air quality standards (GB3095-2012), the AQI could be divided into
six levels: excellent (0~50), good (51~100), mild pollution (101~150), moderate pollution (151~200),
heavy pollution (201~300), and serious pollution (>300). As the AQI increases, the pollution level
increases. For the government, the AQI is a powerful tool for formulating policies related to air quality
management and pollution mitigation measures; meanwhile it is also an important index for the
general public to rapidly estimate the air quality condition. Thus, the reliable and effective forecasting
of the AQI is significantly important, because it can be used to enforce appropriate suggestions and
regulations for preventing and evading air pollution damage.

The empirical methods to forecast various air quality indexes generally fall into four categories:
the autoregressive integrated moving average method (ARIMA), multiple linear method (MLR),
artificial neural networks (ANNs), and hybrid methods [7]. The ARIMA is a traditional forecasting
technique, widely used for analyzing nonlinear time series data [8,9]. However, it is constrained by the
assumptions of stationarity and linearity, and only suitable for the linear form of time series data [10].
The MLR method is a classical statistical techniques compared to other approaches. Due to its accuracy
of interpretation, the MLR also remains useful and widely used in the prediction field [11,12]. However,
the MLR can’t capture the non-linear relationships between input and output variables and is not
suitable for complex systems [13].

The ANNs is characterized by self-learning, self-organization, strong mapping ability, and
generalization, which can implement approximating nonlinear functions with arbitrary accuracy;
thus, the ANNs can perform better than traditional statistical models for forecasting AQI [14–18].
However, an ANN is unable to present a clear formula for the forecasting model [19–21]. Almost as
remarkably, many studies successfully and widely employed the hybrid model in pollution index
forecasting and proved that the hybrid model generally had more precise forecasts than the monomial
forecast model [7,8,10,22–24].

The analysis of the AQI time series is difficult because of the irregularity, randomness,
and non-stationarity. The existing research methods, such as ARIMA, MLR, ANNs, and hybrid model,
are just a forecast of time series data, and cannot capture the pattern information and change law
hidden behind AQI fluctuation. This make it difficult to answer the following questions: What patterns
exist in the AQI change? Which patterns are the most vital and play a leading role? Is there a huge gap
in the influence of AQI patterns? Which patterns are closer to others and easily change? Which patterns
are the hub of AQI pattern transformation and essential to control the air pollution diffusion? Are there
disparate subgroups or clusters in the AQI network? What are the characteristics of each subgroup
or cluster? Is there a hierarchy or ranking in the AQI network? Which vertices have higher ranking?
Are there small-world phenomena or scale-free properties in the AQI network? Obviously, the answers
to these questions are crucial for revealing the AQI fluctuation law and internal mechanisms, and can
also provide evidence for formulating the measures about preventing and controlling air pollution.
Our study will construct an AQI directed-weighted network by transforming time series data into
a symbol sequence, apply complex network theory to analyze the topological properties, and give
answers to the above questions. Meanwhile, our study also provides a methodological perspective
and ideas for time series forecast, contributing to existing studies.

On the other hand, although complex network theory has been used across many science fields in
recent years, only a few studies have conducted complex network theory on the time series forecasting.
For instance, Gao, An, Liu, and Ding (2011) used a complex network to analyze the linkage between
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crude oil future prices and spot price from 25 November 2002 to 24 September 2010 [25]. Wan, Shu,
and Guo (2012) presented a method to model frequent patterns and their interaction relationship in
sequences based on a complex network [26]. Zhou, Gong, Zhi, and Feng (2008) collected data of the
surface temperature from 160 Chinese weather observations and investigated the topology of Chinese
climate networks by using a complex network [27]. Until now, few scholars have established an AQI
network and used complex network theory to study the AQI change law. Therefore, this study is
undertaken to analyze the AQI time series data with complex network theory, to fill the research gap.

This study selected the time serial data of the AQI in Beijing from 1 November 2013 to 31 October
2017; transformed it into a symbol sequence consisting of three characters {H, M, L} through the coarse
graining process; then defined 272 AQI patterns as vertices to create one directed-weighted network
of the AQI via sliding sequence; and finally analyzed the topological properties of vertex strength,
strength distribution, weighted clustering coefficient, betweenness centralization, islands, distance,
proximity prestige, ranking and triadic.

The rest of this article is organized as follows. The data and complex network theory are
introduced, and the AQI complex network is constructed in Section 2. The topological properties of
the AQI complex network are analyzed in Section 3. At last, conclusions are summarized and future
research is suggested in Section 4.

2. Data and Method

2.1. Data Description

The data used in the study is the AQI of Beijing from 1 November 2013 to 31 October
2017 (Figure 1), which was obtained from the China National Environmental Monitoring Centre
(http://www.cnemc.cn/).

Figure 1. The time series of air quality index (AQI) in Beijing.

2.2. Complex Network Theory

The complex network is a system composed of a mass of vertices and edges, which considers
distinct elements or actors represented by vertices (or nodes) and the interaction or relationship
between the elements or actors as edges (or links), usually shown as a graph to describe phenomena in
social or natural sciences. Nowadays, the complex network is widely used in various scientific fields,
such as biological networks, telecommunication networks, social networks, cognitive and semantic
networks, and computer networks. It draws on theories and methods including graph theory from
mathematics, information visualization from computer science, statistical mechanics from physics,
social structure from sociology, and inferential modeling from statistics [28].

Complex networks are very different from traditional statistical methods. For example, in social
sciences, traditional statistical methods carry out research based on attribute data, such as gender, age,
income, attitudes, shared values, etc. However, individuals live in a particular social environment,
and their behavior is affected by others. Statistical methods, like a “meat grinder”, divorce individuals
from the social context in which they live and assume that there are no relations between individuals.

http://www.cnemc.cn/
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In contrast, the complex network conducts research on the basis of relational data, and captures
attitudes and behaviors determined by social structures through relationship analysis [29].

The characteristic analysis of complex network mainly includes centrality analysis, clusterability
analysis, ranking analysis, and network type analysis. The central analysis is to find influential vertices,
the clusterability analysis is for discovering cohesive subgroups from the network, and the ranking
analysis is for extracting discrete ranks from relations. The scale-free network and small-world network
are the most common network types (Table 1).

Table 1. Complex network characteristic analysis.

Type Content Measurement Description

Network Property Network Centrality Analysis

Degree Centrality
(Vertex Strength) Assessing the influences of

network verticesCloseness Centrality
(Weighted Clustering Coefficient)

Between Centrality

Network Structure
Network Clusterability Analysis Island Analysis Discovering cohesive

subgroups from network

Network Ranking Analysis Prestige Analysis Extracting the discrete ranks
of network verticesTriadic Analysis

Network Type
Scale-Free Network Power-Law Distribution

Exposing network types
Small-World Network

Characteristic Path Length
Clustering Coefficient

The measurement indicators of centrality analysis include degree centrality, closeness centrality,
and between centrality. Degree centrality is a simple measure that counts how many neighbors a
vertex has. The more neighbors, the more important the vertex. Closeness centrality measures the
mean distance from a vertex to other vertices. Betweenness centrality measures the extent to which a
vertex lies on paths between other vertices. In a weighted network, the degree centrality and closeness
centrality are usually measured by vertex strength and weighted clustering coefficient.

Network clusterability analysis is an important way to understand the network structure and
function. Within a complex network, different clusters often exist. The internal vertices interact a lot,
while there are few interactions between dissimilar clusters. The island analysis is employed to detect
the network structure and internal clusters in this study.

In a directed network, the relationship direction is not very important to brokerage, but central
to ranking. Ranking is connected to asymmetric relations. If one vertex receives many choices and
reciprocates few choices, it is deemed as enjoying more prestige. Patterns of asymmetric choices may
reveal the hierarchy of layers in a directed network. In network ranking analysis, prestige and triadic
analysis are used to extract discrete ranks from relations.

There is a large class of scale-free (SF) networks, so-called because zooming any part of the degree
distribution doesn’t change its shape. The degree distribution of a scale-free network is heterogeneous
and follows a “power-law”, which means a few called hub vertices have a significant amount of
connections with other vertices and play a leading role in scale-free networks, but most vertices have
a small quantity of connections. A straight line on a log-log plot is strong evidence for power-laws,
with the slope of the straight line corresponding to the power-law exponent.

Small-world networks are also a common network type, in which—although most vertices are
not neighbors of one another—the vertices can be reached from every other vertex by a small number
of hops or steps. A small-world network’s features are a shorter characteristic path length and a larger
clustering coefficient [30].

2.2.1. Vertex Strength

In a directed network, the number of arcs one vertex receives is called in-degree, and the number
of arcs it emits by the vertex is called out-degree. In a directed-weighted network, vertex strength
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measures the importance and impact of one vertex, and strength distribution exhibits dispersion
degree and variation of vertex strength. The vertex strength is defined as follows:

Sj = ∑
i∈Nj

wij (1)

In Formula (1), wij denotes the weight of edge (i, j), the Nj represents all other edges connected to
vertex j.

The strength distribution is measured with the proportion of current vertex accounts for total
vertex strength. The calculation formula is given as follows:

P(j) =
Sj

S
(2)

In Formula (2), Sj is the strength of vertex j, and S is the vertex strength summation.
A special statistical indicator, weighted frequency W of n-same symbols series, is defined in this

study. It means the occurrence probability that one air quality represented by the symbol (H, M, or L)
will last for n days, which is used to measure the duration and level of air pollution. The weighted
frequency W of n-same symbols series is defined as Formula (3).

W = ∑ mi × P(s) (3)

In Formula (3), mi is the occurrence number of the n-same symbols series i appears in the AQI
pattern. P(s) is the strength distribution of the n-same symbols series i.

2.2.2. Weighted Clustering Coefficient

The weighted clustering coefficient of one vertex is used to measure the degree of association with
surrounding vertices in a weighted network. The higher the clustering coefficient, the more constant
the contact between adjacent vertices. Traditional calculation methods do not consider edge weight,
so Onnela et al. and Holme et al. proposed the definition of weighted clustering coefficient for the
weighting network [31,32]. Our study defines the weighted clustering coefficient as follows:

Cw(i) =
1

ki(si − 1)∑j,k
(wij + wjk)

2
aijajkaki (4)

In the Formula (4), ki is the vertex strength of vertex i, si is the degree of vertex i, wij is the edge
weight of (i, j), aijajkaki is used to determine whether there is tie between three vertices. The result 0
indicates a tie does not exist, result 1 indicates a tie exists, three vertices form a triangle in the network.

2.2.3. Betweenness Centralization

A geodesic from u to v is the shortest path between two vertices, and the length of the geodesic
is called the distance from u to v. If one vertex is the intermediary of information communication or
resource flow, it is more important, because removing this vertex will destroy communication ties and
break resource flow in the network. The intermediary of one vertex is measured by the concept of
betweenness centrality.

In general, the proportion of all geodesics between other vertices in the network that include a
vertex is called the betweenness centrality of this vertex, and the betweenness centralization is the
variation in the betweenness centrality of vertices divided by the maximum variation in betweenness
centrality scores possible in a network of the same size.

We assume Ck(i, j) is all geodesics of one vertices pairs (i, j) that include vertex k, C(i, j) is the
total geodesics of all vertices pairs in a network, so the betweenness centrality of vertex k is defined as
Formula (5).

fk = ∑
(i,j)

fk(i, j) = ∑
(i,j)

Ck(i, j)
C(i, j)

(5)
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2.2.4. Island, Proximity Prestige, and Triadic Analysis

1. Island

Most exploration technology of cohesive subgroups is based on the number of neighbors, but the
island analysis is based on multiplicity or value of edges. The island concept was introduced by John
Scott [33], who defined an island as one maximal subnetwork containing edges with a multiplicity
equal to or greater than m and vertices which are incident with these edges. In an island, vertices are
connected by edges of multiplicity m or higher to at least one other vertex.

2. Proximity Prestige

There are three criteria for measuring the importance of a vertex: in-degree, input domain, and
proximity prestige. In-degree only takes account of direct choices and leaves out indirect choices,
so it is a very strict measure of prestige. The input domain of a vertex is the number or percentage
of all other vertices that are connected directly or indirectly by a path to this vertex. However, in a
well-connected network, the input domain of a vertex often contains all or almost all other vertices;
it does not distinguish very well between vertices, so the input domain of a vertex is not a perfect
measure of prestige [29].

In this case, we assume nominations by close neighbors are more important than distant neighbors,
limit the input domain to direct neighbors or to neighbors at maximum distance two, and finally
propose proximity prestige to estimate the importance of a vertex. The proximity prestige considers all
connected vertices, and weights each connected vertex by its path distance to the vertex. The proximity
prestige of a vertex is defined as the proportion of all vertices (except itself) in its input domain, divided
by the mean distance from all vertices in its input domain.

3. Triadic Analysis

A pair of vertices and the lines between them is a dyad. Dyads fall into two categories: symmetric
and asymmetric. A symmetric dyad means equivalence, a vertex is supposed to reciprocate the
choices that it receives, while an asymmetric dyad signifies ranking, one vertex chooses the other
but this choice is not reciprocated. Both mutual choices and mutual absent choices are symmetric.
For analyzing the topological structure of a directed network, we proceed from dyads to triads and list
16 basic types of triads [29].

Triad type is identified by a M-A-N number of three digits, that is proposed by Davis, Holland,
and Leinhardt [34]. The three digits respectively refer to the number of mutual positive dyads (M),
the number of asymmetric dyads number (A), and the number of null dyads number (N). In triads
with the same M-A-N digits, a letter is added to represent the direction of asymmetric choice: C for
cyclic, U for Up, D for down, and T for transitive (Figure 2).

Figure 2. The basic triad types in a directed network.
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2.3. AQI Network Construction

To explore the AQI fluctuation with time, we transform the time series of the AQI into a
directed-weighted network of the AQI.

2.3.1. Data Coarse-Grained Processing

The study object is the daily fluctuating information that rises or falls, so the AQI is coarsely
grained at first to convert the continuous time series data into a wave state symbol sequence.
The coarse-grained treatment is to discard the small details, break the original time series data
into multiple finite sub-intervals, and use a character to represent the interval homogenization of
subintervals. The symbol states are limited, which is more conducive to revealing the nature of
AQI fluctuation. The accuracy of coarse-grained treatment determines the validity of the research
conclusions, so there should not be too many symbol types, to be able to represent the stage
characteristics of the AQI and be independent of each other.

Too much classification is not conducive to the discovery of wave patterns of AQI, therefore,
according to fluctuation range (Formula (6)), the AQI data series is abstracted into three symbols H, M,
and L, transformed into symbol sequence CSi, as shown in Table 2.

CSi =


H AQI > 200

M 100 < AQI ≤ 200

L AQI ≤ 100,

(6)

In Formula (6), the symbols H, M, and L respectively denote heavy or serious air pollution, mild
or moderate air pollution and excellent or good air quality.

Table 2. Coarse-Grained processing of the AQI time series.

No Date City AQI Symbol

1 2013-11-1 Beijing 231 H
2 2013-11-2 Beijing 294 H
3 2013-11-3 Beijing 80 L
4 2013-11-4 Beijing 57 L
5 2013-11-5 Beijing 184 M
6 2013-11-6 Beijing 189 M
7 2013-11-7 Beijing 59 L
8 2013-11-8 Beijing 106 M
9 2013-11-9 Beijing 178 M

10 2013-11-10 Beijing 53 L
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1448 2017-10-22 Beijing 54 L
1449 2017-10-23 Beijing 49 L
1450 2017-10-24 Beijing 90 L
1451 2017-10-25 Beijing 141 M
1452 2017-10-26 Beijing 195 M
1453 2017-10-27 Beijing 217 H
1454 2017-10-28 Beijing 78 L
1455 2017-10-29 Beijing 27 L
1456 2017-10-30 Beijing 40 L
1457 2017-10-31 Beijing 83 L

2.3.2. Definition of AQI Pattern

After the coarse-grained processing of the AQI, the time series data is transformed into the symbol
sequence CSt, which exhibits different rising or falling amplitudes of AQI. The time series and symbol
sequence CSt of AQI are equivalent. The symbol sequence CSt is defined as follow.

CSt = (cs1, cs2, cs3, . . . , csn) (csi ∈ (H, M, L)) (7)
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A series of 1–10 symbols is individually regarded as one series, and the symbol sequence CSt is
transformed into AQI patterns through slide operation. The calculations reveal that a 6-symbols series
as one pattern shows a stronger regularity (Table 3). Finally, 292 patterns are obtained from the symbol
sequence CSt via a 6-symbols series as one pattern. Each pattern evolves on the basis of the previous
pattern, emerging with the characteristics of memorability and diversification.

Table 3. Pattern of different symbol series.

Symbol Series Pattern Quantity Growth Rate Relative Growth Rate

1 symbols 3
2 symbols 9 200.00%
3 symbols 26 188.89% −11.11%
4 symbols 72 176.92% −11.97%
5 symbols 163 126.39% −50.53%
6 symbols 292 79.14% −47.25%
7 symbols 451 54.45% −24.69%
8 symbols 624 38.36% −16.09%
9 symbols 815 30.61% −7.75%

10 symbols 998 22.45% −8.15%

The symbolic sequence CSt should have 36 = 729 wave patterns in theory, such as {LLLLLL,
LLLLLM, MLLLLL, LLLLMM, LLLMMM, MMLLLL, MMMMMM, LMLLLL, LLMLLL, . . . . . . }, but only
292 patterns emerged in fact, and the other 437 patterns didn’t appear.

2.3.3. Construction of the AQI Directed-Weighted Network

Each pattern is regarded as one vertex, the conversion among patterns is treated as one edge,
finally, a directed-weighted network of the AQI is established. Edge (arrow) between vertices indicates
the conversion direction, and edge size identifies the conversion frequency between patterns. In a
directed-weighted network, the in-degree is the times other vertices are converted to current vertex,
and out-degree is the times current vertex points to other vertices. Due to arcs between vertices being
generated in a chronological order, the in-degree and out-degree of a vertex are equal (except the first
and last vertex), so our study sets the number of received arcs as the edge weight of an AQI network.
The entire modeling process is visualized in Figure 3.

Figure 3. The construction process of an AQI directed-weighted network.
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In the AQI network, the vertex representing air pollution (H or M) lasting six days is set to
red, the vertex representing air pollution (H or M) lasting 3–5 days is set to yellow, and the vertex
representing air pollution (H or M) lasting 1–2 days is set to blue. Figure 3 shows that there are more
conversion times and dense connection between vertices such as LLLLLL and LLLLLL, LLLLLL and
LLLLLM, MMMMMM and MMMMMM, LLMMLL and LMMLLL.

3. Results and Analysis

3.1. Statistic Analysis

In the research duration, the statistics go through four years and four seasonal cycles. Among
1457 days in four years, the symbols H, M, and L respectively appear 162 times (11.12%), 513 times
(35.21%), and 782 times (53.67%). Pollution days (H or M) in four years account for 46.33%,
which indicates air pollution is serious in Beijing. From the annual statistics, the symbols H and
M reduce, and the symbol L increases, which demonstrates that the overall air quality improves
gradually in Beijing (Figure 4). From the seasonal statistics, heavy or serious air pollution (H) is most
likely to occur in winter, mild or moderate air pollution (M) often appears in spring or summer, and the
best air quality (L) recurs mostly in autumn (Figure 5).

Figure 4. The annual proportion of AQI symbols in Beijing.

Figure 5. The seasonal proportion of AQI symbols in Beijing.
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3.2. Network Centrality Analysis

3.2.1. Vertex Strength

In AQI networks, the vertex strength represents the importance of the vertex, which indicates
links received from other vertices. The larger the vertex strength is, the higher the vertex occurrence
probability is, the more important the AQI pattern represented by vertex. Meanwhile, if a huge gap of
vertex strength exists, the strength distribution will exhibit a “power-law” distribution, which means
that a few vertices have a dominant effect in the AQI network.

The vertex strength and strength distribution of a directed-weighted network of the AQI in Beijing
are calculated and shown in Table 4.

Table 4. Vertex strength and distribution.

ID Vertex Vertex Strength Strength Distribution

1 LLLLLL 127 8.75%
2 LLLLLM 57 3.93%
3 MLLLLL 51 3.51%
4 LLLLMM 41 2.82%
5 LLLMMM 34 2.34%
6 MMLLLL 34 2.34%
7 MMMMMM 34 2.34%
8 LMLLLL 29 2.00%
9 LLMLLL 28 1.93%

10 LLLMLL 25 1.72%
. . . . . . . . . . . . . . . . . . . . . . . .

283 MMLHHM 1 0.69%
284 MMLHMM 1 0.69%
285 MMLLHH 1 0.69%
286 MMLLLH 1 0.69%
287 MMLMHH 1 0.69%
288 MMMHHL 1 0.69%
289 MMMHHM 1 0.69%
290 MMMHLL 1 0.69%
291 MMMLHH 1 0.69%
292 MMMLLH 1 0.69%

Table 4 illustrates the vertices LLLLLL, LLLLLM, and MLLLLL have maximum strength. The vertex
strength of LLLLLL that means excellent or good air quality (AQI ≤ 100) lasting six days is 129,
the strength distribution is only 8.7466%. However, the vertices that represent air pollution occurred
at least one day in six days account for 91.2534%. The vertex strength and strength distribution of
vertex HHHHHH that signifies heavy or serious air pollution (AQI > 200) lasting six days are seven
and 0.4821%, whose vertex strength is ranked 46th in 292 vertices. The vertex strength and strength
distribution of vertex MMMMM that indicates mild or moderate air pollution (100 < AQI ≤ 200)
lasting six days are 34 and 2.3426%, whose vertex strength is ranked seventh in 292 vertices. These
facts illustrate that the air pollution in Beijing is generally serious, but the best or worst air quality is
rare, annd mild or moderate air pollution often occurs.

Sorted by vertex strength in descending order, among 292 vertices, the strength of the first
40 vertices is above eight, the strength distribution is above 0.5510%, and the cumulative strength
distribution is 61.1570%. The strength of the first 20 vertices is above 16, the strength distribution is
above 1.1019%, and the cumulative strength distribution is 45.5234%, which indicates the conversions
of the AQI patterns frequently occur from the first 20 vertices to other vertices, or from other vertices
to the first 20 vertices, or among 20 vertices. The strength distribution of the last 204 vertices is less
than 0.25%, and the cumulative strength distribution is less than 20.6612%, which implies most AQI
patterns represented by vertices rarely appear.
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All vertices were listed in ascending order of vertex strength, the vertex strength and cumulative
strength distribution (CSD) were treated with logarithmic function to get variables log(s) and log(csd),
then taking log(s) and log(csd) as independent and dependent variables to establish the linear regression
equation, and taking log(s) and log(csd) as X axis and Y axis to draw Figure 6. The obtained equation
was y = −0.2996x + 0.0084 with R2 = 0.8309. The equation and Figure 6 proved the vertex strength
and cumulative strength distribution of the AQI network were in line with “power-law” distribution.
Similarly, it was found that the vertex strength and cumulative strength distribution of the first
40 vertices (Figure 7) and the last 252 vertices (Figure 8) also conformed to the “power-law”. The linear
regression equation of the first 40 vertices was y = −0.741x + 0.5205 with R2 = 0.9592, and the linear
regression equation of the last 252 vertices was y = −0.1682x − 0.01 with R2 = 0.9259.

All vertices were presented in the descending order of vertex strength. The vertex strength and
ranking were treated with logarithmic function to get variables log(s) and log(r), then log(s) and log(r)
were regarded as dependent and independent variables to establish the linear regression equation.
The obtained equation was y = −1.0504x + 2.5181 with R2 = 0.9528. The results demonstrated the
strengths and rankings of vertices in the AQI network also followed the “power-law” distribution
(Figure 9).

The fact that vertex strength and cumulative strength distribution, and vertex strength and
ranking all followed the “power-law” distribution proved that a few vertices played a leading role
in the AQI network. Evidence from Table 4 showed that these hub vertices were LLLLLL, LLLLLM,
MLLLLL, LLLLMM, LLLMMM, MMLLLL, MMMMMM, LMLLLL, LLMLLL, and LLLMLL; in particular,
the AQI pattern MMMMMM has a larger vertex strength, which once again verified that air pollution
in Beijing is mainly due to moderate pollution.

Figure 6. The log–log plots of vertex strength and cumulative strength distribution.

Figure 7. The log–log plots of vertex strength and cumulative strength distribution of the first
40 vertices.
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Figure 8. The log–log plots of vertex strength and cumulative strength distribution of the last
252 vertices.

Figure 9. The log–log plots of vertex strength and ranking.

Long-term observation found that air pollution or excellent weather had persistent features, often
lasting many days, so the weighted frequency W of n-same symbols series was calculated to analyze
the pollution duration and level. The weighted frequency of the n-same symbols (H, M or L) series in
the first 40 vertices had been calculated according to Formula (3), described below in Table 5. In the
n-same symbols series, HHHHH means the probability that symbol H will last five days in six days,
and the rest can be done in the same manner.

Table 5 shows that with the increase of the sequence length, the weighted frequency of the n-same
symbols series decreases gradually. The weighted frequency of the n-same symbols series about L
is the highest, which indicates the air quality in Beijing is dominated by excellent or good weather.
The weighted frequency of the n-same symbols series about L and M is far above that of H, which
demonstrates a mild or moderate level of air pollution (M) is more likely to occur than heavy or serious
air pollution (H). The weighted frequencies of the same symbols series HHHH and HHHHH is 0, which
indicates the probability of heavy or serious air pollution lasting for four or five days is very low,
close to 0. The weighted frequency of same symbols series LLLLL is 0.26, which means there is a low
probability of excellent or good air quality for five days. Overall, excellent or good weather dominates,
but air pollution intermittently recurs in Beijing.

Table 5. The weighted frequency of the n-same symbols series.

Symbol
Sequences

Weighted
Frequency

Symbol
Sequences

Weighted
Frequency

Symbol
Sequences

Weighted
Frequency

H 0.07 M 1.22 L 2.36
HH 0.03 MM 0.60 LL 1.60

HHH 0.01 MMM 0.32 LLL 1.01
HHHH 0.00 MMMM 0.15 LLLL 0.55

HHHHH 0.00 MMMMM 0.07 LLLLL 0.26
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3.2.2. Closeness Centrality

In an AQI network, the weighted clustering coefficient quantifies the closeness degree between the
vertex and its adjacent vertices. The larger the weighted clustering coefficient of one vertex, the more
frequent and easy the conversion from an AQI pattern represented by this vertex to other AQI patterns.

The statistics notes that there are 17 vertices with a weighted clustering coefficient that is not
0, the vertices HHHHHL, HHHHHH, LLLLLL, and MMMMM possess a higher weighted clustering
coefficient. The AQI patterns represented by them are closer than with others patterns; they convert to
other patterns more frequently and easily. Particularly, the vertex MMMMM has both a larger vertex
strength and weighted clustering coefficient, which means the AQI pattern moderate air pollution (M)
lasting 6 days holds an important position in the AQI network (Table 6).

Table 6. Weighted clustering coefficients of vertices.

ID Vertex Strength Edges Clustering Coefficient Cumulative Percentage

1 HHHHHL 5 11 0.1515 12.15%
2 HHHHHH 7 7 0.1429 23.61%
3 LLLLLL 127 13 0.1026 31.84%
4 MMMMMM 34 7 0.0952 39.48%
5 LLLLLM 57 25 0.0800 45.89%
6 LLMLLM 6 11 0.0758 51.97%
7 MHHHHH 3 9 0.0741 57.91%
8 LHHHHH 3 7 0.0714 63.64%
9 MMLMML 3 11 0.0606 68.50%
10 MLLMLL 8 12 0.0556 72.96%
11 LMMLMM 5 12 0.0556 77.41%
12 MLMMLM 1 6 0.0556 81.87%
13 LMMMMM 15 13 0.0513 85.98%
14 MMMMML 12 14 0.0476 89.80%
15 LMLLML 1 7 0.0476 93.62%
16 HLLLLL 9 16 0.0417 96.96%
17 MLLLLL 51 22 0.0379 100.00%

Taking the vertex strength and weighted clustering coefficient as the X coordinate and Y
coordinate, it is found that the correlation between two variables is not strong, and the AQI network
presents complicated polymorphism (Figure 10).

Figure 10. Vertex strength and weighted clustering coefficient.

3.2.3. Betweenness Centrality

In an AQI network, the betweenness centrality of a vertex indicates the influence of the AQI
pattern represented by this vertex as a communication hub, so controlling the intermediary vertex will
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cut off the path of air pollution diffusion. The betweenness centrality also helps to better understand
the conversion process of AQI patterns, and provides a theoretical basis for formulating the treating
measures of air pollution.

The betweenness centrality of each vertex in AQI network of Beijing was calculated and sorted in
descending order, as shown in Table 7.

Table 7. The vertex betweenness centrality in AQI network.

Node Betweenness Centrality Percent Rank Cumulative Betweenness Distribution

LLLMHH 0.1765 2.09% 1 2.09%
MLLLMM 0.1371 1.62% 2 3.71%
LLLLMH 0.1149 1.36% 3 5.06%
MLLLLM 0.1125 1.33% 4 6.39%
HLLLLM 0.1117 1.32% 5 7.71%
LLLLMM 0.1085 1.28% 6 8.99%
LMLLLM 0.1058 1.25% 7 10.25%
LLLMMM 0.1025 1.21% 8 11.46%
MMLLLL 0.1002 1.18% 9 12.64%
LLLMMH 0.0945 1.12% 10 13.76%

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LMLMMH 0.0046 0.05% 283 99.73%
MLMMHH 0.0046 0.05% 284 99.79%
HMMMML 0.0043 0.05% 285 99.84%
HHHHHM 0.0034 0.04% 286 99.88%
LMLLML 0.0032 0.04% 287 99.92%
HMLLML 0.0029 0.03% 288 99.95%
MMLMLM 0.0023 0.03% 289 99.98%
MLMMLM 0.0011 0.01% 290 99.99%
HMMMMH 0.0008 0.01% 291 100.00%
HHHHHH 0.0000 0.00% 292 100.00%

The vertex with highest betweenness centrality is LLLMHH, followed by MLLLMM, LLLLMH,
MLLLLM, HLLLLM, LLLLMM, LMLLLM, LLLMMM, MMLLLL, and LLLMMH. It is observed that the
intermediary of every vertex is not strong. The betweenness centralization of the whole AQI network is
14.80%, indicating the AQI network does not have an obvious central tendency towards intermediaries.
It is difficult to control the spread of air pollution by controlling some intermediary vertices.

The cumulative distribution curve of betweenness centrality appears in Figure 11, which
demonstrates that the slope is not steep, and the overall distribution of betweenness centrality is
uniform. While the slope decreases gradually in the back, the varieties in the intermediation of the
vertices still exist. Statistics also lends evidence that the cumulative distribution of the top 60 vertices
reaches 49.09%, indicating that 20.55% of vertices account for nearly 1/2 of the intermediaries in the
AQI network. Paying attention to these vertices and taking actions to control them will have great
significance in preventing the diffusion of air pollution.

Figure 11. The cumulative betweenness distribution of betweenness centrality.
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3.3. Structural Clusterability Analysis

The clusterability analysis will reveal how many clusters exist in the AQI network, and which
AQI patterns often appear together. The multiple edges are more institutional and less personal, so we
use island analysis technology to explore network clusters. When minimum island size is set to two,
and maximum island size is set to 291, the vertices of the AQI network fall into six islands (Table 8).

Table 8. Frequency distribution of cluster values.

Cluster Freq Freq% CumFreq CumFreq% Representative

0 149 51.0274 149 51.0274 HHHHHM
1 2 0.6849 151 51.7123 LLLHHL
2 132 45.2055 283 96.9178 HHHHHH
3 2 0.6849 285 97.6027 LHHLLL
4 2 0.6849 287 98.2877 HHHHML
5 3 1.0274 290 99.3151 HHLMLM
6 2 0.6849 292 100.0000 LMHLLL

In Table 8, island 0 represented by HHHHHM means the corresponding vertices do not belong to
any category. Islands 1, 3, 4, 6 are respectively represented by LLLHHL, LHHLLL, HHHHML, LMHLLL,
and only contain two vertices. Island 5 contains three vertices. However, island 2 represented by
HHHHHH contains 132 vertices, which reveals AQI pattern HHHHHH—meaning heavy or serious air
pollution lasting six days—is very cohesive; many AQI patterns emerge around it, which once again
proves that the air pollution in Beijing is very serious, and, more significantly, that heavy or serious air
pollution always lingers for a long time.

Figure 12 visually exhibits the six islands of the AQI network. It is found that island 2 is the
largest one; more connections between vertices occur in the same island, but fewer in different islands,
and the more multiple connections, the thicker the line.

Figure 12. The island analysis of the AQI network.

3.4. Structural Ranking Analysis

3.4.1. Prestige

The vertex with a higher ranking receives many choices from other vertices, so the AQI pattern
represented by it tends to be an endpoint or residential location in the air pollution diffusion process.
On the contrary, one vertex with a lower ranking is often a starting point or a transit point in the air
pollution diffusion process.
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As shown in Table 9, the AQI network is a fully connected network, and the input domain of each
vertex contains all other vertices (291), so the proximity prestige is equal to the inverse of the mean
distance. Table 10 reveals the mean distance of 68.4932% vertices is 6.120–9.973, which reveals the AQI
network does not have obvious small-world phenomena, and the conversion of AQI patterns presents
the characteristics of periodicity and regularity. Table 11 illustrates that 64 (21.9178%) vertices have
higher proximity prestige and shorter mean distance with other vertices. AQI patterns represented by
them stay a long time in the AQI fluctuation process, dominating the diffusion of air pollution.

Table 9. The in-degree, input domain, and proximity prestige of vertex.

ID Vertex In-Degree Input Domain Mean Distance Proximity Prestige

105 LLLLMH 3 291 6.1203 0.1634
107 LLLLMM 3 291 6.1237 0.1633
110 LLLMLL 3 291 6.1443 0.1628
104 LLLLLM 3 291 6.1684 0.1621
113 LLLMML 3 291 6.1718 0.1620
103 LLLLLL 3 291 6.1856 0.1617
221 MLLLLL 3 291 6.3127 0.1584
222 MLLLLM 3 291 6.3162 0.1583
112 LLLMMH 2 291 6.4192 0.1558
114 LLLMMM 2 291 6.4227 0.1557

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
143 LMHLMH 1 291 14.8557 0.0673
214 MLHMLL 1 291 14.9656 0.0668
70 HMMLML 1 291 15.0069 0.0666

211 MLHHHL 1 291 15.2749 0.0655
55 HMLHLL 1 291 15.7938 0.0633

200 MHLMHL 1 291 15.7973 0.0633
77 LHHHLL 1 291 16.2268 0.0616

213 MLHLLL 1 291 16.7354 0.0598
45 HLMHLL 1 291 16.7388 0.0597
81 LHLLLM 1 291 17.6770 0.0566

Table 10. The statistics of mean distance from input domain.

Vector Values Frequency Freq% CumFreq CumFreq%

1–6.120 0 0.0000 0 0.0000
6.120–9.973 200 68.4932 200 68.4932
9.973–13.825 74 25.3425 274 93.8356

13.825–17.677 18 6.1644 292 100.0000

Table 11. The Statistics of Proximity Prestige.

Vector Values Frequency Freq% CumFreq CumFreq%

0–0.057 0 0.0000 0 0.0000
0.057–0.092 59 20.2055 59 20.2055
0.092–0.128 169 57.8767 228 78.0822
0.128–0.163 64 21.9178 292 100.0000

3.4.2. Triadic Analysis

The triad census of the AQI network is compared with the chance distribution of triad types;
if several triad types of AQI network occur more frequently than expected by chance, the corresponding
triad type may guide or influence the structure of AQI network. When the number of forbidden triads is
less than expected by chance, balance theory could be used to explain network structure, which divides
the network types into balance, cluster ability, ranked clustering, transitivity, or hierarchical clusters.
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Table 12 indicates that the chi-square statistic is statistically significant at the 0.001 level, and the
AQI network is clearly different from that random network. The frequency of three in five forbidden
triads (7-111D, 8-111U, 11-201) is less than expected by chance. Two triads (2-012, 9-030T) are
expected to occur more often than by chance, thereinto the number of triads 2-012 is 127635, appearing
substantially more often than the chance-expected number 126,531.02, so a transitivity model seems
to be the best choice for the AQI network. However, many other triads (300, 16-300, 1-003, 4-021D,
5-021U, 12-120D, 13-120U, 14-120C, 15-210) appear less than expected by chance. This casts some
doubt on the reliability of the chi-square measure.

Table 12. The triadic census of AQI network in Beijing.

Type Number of Triads(ni) Expected(ei) (ni-ei)/ei Model

3-102 0 335.32 −1.00 Balance
16-300 0 0.00 −1.00 Balance
1-003 3,978,206 3,978,760.46 −0.00 Clusterability

4-021D 182 335.32 −0.46 Ranked Clusters
5-021U 184 335.32 −0.45 Ranked Clusters
9-030T 5 3.55 0.41 Ranked Clusters

12-120D 0 0.01 −1.00 Ranked Clusters
13-120U 0 0.01 −1.00 Ranked Clusters

2-012 127,635 126,531.02 0.01 Transitivity
14-120C 0 0.02 −1.00 Hierarchical Clusters
15-210 0 0.00 −1.00 Hierarchical Clusters
6-021C 766 670.65 0.14 Forbidden
7-111D 0 3.55 −1.00 Forbidden
8-111U 0 3.55 −1.00 Forbidden
10-030C 2 1.18 0.69 Forbidden
11-201 0 0.01 −1.00 Forbidden

Node: Chi-Square: 505.2910 ***, 10 cells (62.50%) have expected frequencies less than 5. The minimum expected cell
frequency is 0.00.

4. Conclusions and Discussion

This study converted time series data into a symbol sequence through the coarse graining process;
established the directed-weighted network of the AQI; then analyzed the centrality, clusterability,
and ranking of the AQI network. The main results and conclusions are summarized as follows.

The statistics show that air pollution in Beijing is serious, but air quality improves gradually.
The AQI in Beijing has seasonal variations; heavy or serious air pollution mostly recurs in winter,
and the excellent or good air quality often appears in autumn. The statistical results are consistent
with the subjective experience, perhaps because the meteorological conditions of autumn in Beijing are
better and favorable for the diffusion of air pollutants.

The vertex strength and cumulative strength distribution, and vertex strength and ranking
follow “power-law” distribution; the AQI network is a scale-free network, which means only a
few AQI patterns—represented by so-called super vertices which play a leading role in the AQI
network—appear frequently. The best or worst air quality in Beijing is rare; mild or moderate air
pollution often occurs. The probability of heavy or serious air pollution lasting for 4 or 5 days is very
low, close to 0.

17 vertices have a weighted clustering coefficient greater than 0. The vertex MMMMM has both
larger vertex strength and weighted clustering coefficient, holding an important position in the AQI
network. The correlation between vertex strength and weighted clustering coefficient is not strong and
the AQI network presented complicated polymorphism.

The AQI network does not have an obvious central tendency towards intermediaries, but the
varieties in the intermediation of the vertices still exist; 20.55% of vertices account for nearly 1

2 of the
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intermediaries in the AQI network. It is difficult to restrain the diffusion of air pollution by controlling
the intermediate vertex, but it is also possible.

The vertices of the AQI network fall into six islands; the largest island represented by HHHHHH
contains 132 vertices, which means the AQI pattern of heavy or serious air pollution lasting six days is
very cohesive, always lingering for a long time.

The AQI network is a fully connected network, which does not have obvious small-world
phenomena; the mean distance of 68.4932% vertices is 6.120–9.973, and the conversion of AQI patterns
presents the characteristics of periodicity and regularity. The 64 vertices had high proximity prestige
and dominated the AQI network. They are often the endpoints or residential locations in the air
pollution diffusion process, dominating the diffusion of air pollution. The number of triads 2-012 is the
largest, and the AQI network seems to follow the transitivity model, however, many other triads appear
less than expected by chance, which casts some doubt on the reliability of the chi-square measure.

Air pollution is one essential environmental problem. Our study firstly applies complex network
theory to analyze the AQI, and reveals the AQI fluctuation law and internal mechanism, which can
provide evidence for formulating the countermeasures about preventing and controlling air pollution.
Meanwhile, our study also presents a new approach for time series prediction, contributing to existing
studies. In different areas and times, air quality is affected by different factors, such as atmospheric
conditions, fossil fuel emissions, landform features, and measures for prevention and control of
pollution. Although revealing the topological properties hidden behind the AQI time series, this study
does not analyze the factors that lead to the change of air quality. Constructing an influence factors
model to reveal the causes of AQI pattern variety in different times is the research direction and content
for the future.
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