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Abstract: In this paper, we study the risk aversion on valuing the single-name credit derivatives with
the fast-scale stochastic volatility correction. Two specific utility forms, including the exponential utility
and the power utility, are tested as examples in our work. We apply the asymptotic approximation
to obtain the solution of the non-linear PDE, and make a comparison of the utility before and after
the stochastic volatility modification, and we find that incorporation of fast-scale volatility will lower
down the utility. By using the indifference price, we also give the yield spread impacted by the risk
adverse valuation. We find that by considering the default risk, yield spread is sloping in a short
period and converge in a long run.

Keywords: utility; credit derivatives; stochastic volatility; asymptotic approximation; risk aversion

1. Introduction

Credit risk, which is also known as the default risk, is the uncertainty of a firm’s ability in
servicing its debts and obligations. To pursue a better investment in financial contracts, it is essential
but challenging to predict whether the contract linked company will default or not, which primarily
explains the necessity of a risk premium. Consequently, the last few decades have witnessed the rapid
development of the defaultable instruments. In recent years, due to the more and more frequent credit
crisis worldwide, financial models become more complicated than ever. In particularly, the Asian
financial crisis in 1997 and subprime lending crisis in 2007 have significantly raised the awareness of
both regulators and academics on the evaluation of credit risk. As such, to achieve more rapid and
effective management of the credit risk, more sophisticated approaches and quantitative technology
are desperately required. Needless to say, conducting assessment on the credit risk is also vital for the
Chinese banking system. The excellent work of Tan and Floros [1] confirmed this point of view using
three various efficiency indexes and four risk indicators The reported result suggested that the credit
risk played a crucial role in the entire Chinese banking industry and therefore various factors affecting
the credit risk should be well identified . The efficiency and risk features of the Chinese Bank industry
is also studied from an econometric point of view by them [2].

The default risk has been under investigation for a few decades. Dilip B. and M.Unal decomposed
default risk into two components, i.e., timing risk and recovery risk. Subsequently, they priced the
two components in future’s market, and developed an estimation strategies to evaluate the recovery
risks and timing risk [3]. Intensity based term structure model of the credit risk was proposed
and studied by Jarrow, Lando and Turnbull. In their work both the default-free term structure
and risky debt term structure were specified for a comprehensive study of the corporate debt [4].
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David Lando et al. developed a model to incorporate stochastic transition intensities, and had proved
that their framework could address the technical issues of modelling credit risk [5]. Hao and Zhang
also contributed to the recent advance in credit risk modelling [6], in which they established a new
model including the Black-sholes Merton framework, individual reduced form level, and the portfolio
reduced model. Generally, the traditional Black-Scholes-Merton model (1973) [7] was based on a
complete financial market, in which the payoff of the derivatives could be replicated by a certain trading
strategy. However, markets in real world are never complete, and thereby market friction always exists.
If unpredictable default occurred, almost all classical approaches failed, and accordingly new dynamic
pricing rules were urgently needed. The work of Sircar and Zariphopoulou (2007) [8] provided insight
into the risk aversion on the valuation of credit derivatives applying the utility-indifference valuation
in intensity-based models where the single-name defaultable bonds and a simple representative
two-name credit derivative were analysed. Later, Papageorgiou and Sircar (2008) [9] extended the
work to the multiname CDOs.

In this work, we looked at the credit risk pricing problem in the framework of the structural
model and utility-based portfolio selection, as the payoff of financial derivatives might be replicated
by varying trading strategies of the underlying assets in a complete financial market. The issue of the
portfolio optimization had a long history that dated back to 1971 [10], in which the author provided
an explicit scheme to allocate investment capital between risky stocks and riskless bond. Within this
framework, the underlying asset was driven by a stochastic process, which was later known as the
Black-scholes model. Nonetheless, the chief disadvantage of the Black-sholes and Merton’s model was
the over-restrictive assumptions, especially the ones of constant interest rate and constant volatility.
A great number of extensions had been made in the future research. Heston (1993) [11] took into
account the stochastic volatility and derived a semi-analytic solution for the European call option by
introducing a characteristic function, allowing the arbitrary correlation between the volatility and asset
price. Longstaff and Schwartz (1995) incorporated stochastic short-term interest rate, which they found
was negatively correlated to the asset value process [12]. Fouque et al. (2003) [13] developed an effective
approximation of the option pricing problem through the incorporation of the multiscale volatility.
However, the corresponding partial differential equation for option pricing was always linear, while the
equation related to the optimal control problem was non-linear. For this reason, the asympotic theory
was extended to estimate the non-linear pricing problem by Fouque et al. (2015) [14].

The valuation mechanism used in our work is called indifference prices. The so called indifference
price is the amount of capital that the investor pays today, so that difference between holding or
not holding the derivatives was trivial. The indifference approach was first introduced by Hodges
and Neuberger (1989) [15] and extended by Davis and Yoshikawa (2012) [16]. Its mechanism was
based on the utility function that was a twice continuously-differentiable one strictly increasing and
concave. Herein we considered the risk attitude of individuals by applying the utility based models,
and specifically assessed the single-name credit default swap (CDS) that , could be treated as an
insurance against the default of a reference entity. CDS is written on a single-bond issued by a reference
entity. The buyer pays the seller a risk premium regularly and they in turn will get compensation if
default happens. More details can be found in the work of Papageorgiou and Sircar (2008) [9].

In comparison with the aforementioned work, our work mainly features the following aspects.
Firstly, we studied the credit-derivatives pricing considering the impact of both the default risk and
fastscale stochastic volatility. Moreover, the problem is solved within the framework of utility-based
portfolio selection, which might lead to a high dimensional non-linear partial differential equation
(PDE). As the closed-form solution of high dimensional non-linear PDE was hard to be solved via
existing methods, we accordingly applied asymptotic approximation to decrease the high dimensional
non-linear PDE into low dimensional PDEs. Last but not least, we exhibited our results in two specific
cases and numerically analyse them.

The rest of the paper is organised as follows. We established the model in Section 2. In Section 3,
we applied the perturbation asymptotic method to approximate the explicit solution of our non-linear
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PDE. In Section 4, we derived the full solution for the case with constant intensity process. In Section 5,
we presented two special utilities and study it numerically, and also investigated the value function,
maximizer and the yield spread. We concluded this work and suggested a few future works in the
last section.

2. Model Setup

Generally, there are two approaches for pricing credit derivatives, including the structural
model and the intensity-based model. Our work here is mainly based on the intensity-based model
(or reduced form model), in which defaults happen at the jump process of poisson intensity. We start
our model with simple singlename defaultable bonds with fast stochastic volatilities and then extend
it to multi-name and multi-scale cases.

Unlike the traditional structural model, our model is based on the assumption that default
happens at an unpredictable stopping time τ with stochastic intensity process λ, which incorporates
information from the firm’s stock price S and is called a hybrid model. The stock price S follows a
geometric Brownian motion with the intensity process λ(Zt) ,where λ(·) is a non-negative, locally
Lipschitz, smooth and bounded function. Our model takes the following form:

dSt

St
= µ(Yt)dt + σ(Yt)dWt, (1)

dYt =
1
ξ

b(Yt)dt +
1√
ξ

a(Yt)dW(1)
t , (2)

dZt = g(Zt)dt + c(Zt)dW(2)
t , (3)

where the Browning motion Wt, W(1)
t , W(2)

t are correlated as follows:

Cov(Wt, W(1)
t ) = ρ1, Cov(Wt, W(2)

t ) = ρ2, Cov(W(1)
t , W(2)

t ) = ρ12. (4)

ρ1 measures the correlation between the Brownian motion for volatility Y and the Brownian motion for
stock prices, ρ2 measures the instantaneous correlation between the Brownian motion for the stock price
S and the Brownian motion for the intensity process Z, and they satisfy |ρ1| < 1, |ρ2| < 1, |ρ12| < 1,
and 1 + 2ρ1ρ2ρ12 − ρ2

1 − ρ2
2 − ρ2

12 > 0. When the parameter ξ is small, the stochastic processes Yt and
Zt represent the fast volatility process and the intensity process, respectively. Here we assume that
Y(1)

t
ξ

is an ergodic diffusion process and has the same unique invariant distribution as Yt , and for

more details we refer the reader to Section 4 of the reference due to Fouque et al. (2011) [17]. The drift
part of dYt is always assumed to be mean-reverted with the long term drift θ, while the volatility of
volatility could be a constant σ so that the underlying distribution of dYt is a normal distribution.
However, other specific forms can also be fit in volatility, like CIR process, 3

2 stochastic volatility
process and 4

2 stochastic volatility process. In our work, we assume the constant volatility of volatility
in terms of simplicity. The default time τ of the firm is defined by the first time when the cumullated
intensity reaches the random threshold ε.

τt = in f {s ≥ t :
∫ s

t
λ(Zs)ds = ε}. (5)

2.1. Maximal Expected Utility Problem

Let Xt be the wealth process and πt denote the money we invest in the stock at time t, where t ∈
[0, T], t < τ ∧ T , then the wealth process is as follows:

dXt = πt
dSt

St
+ r(Xt − πt)dt

= (rXt + πt(µ(Yt)− r))dt + πtσ(Yt)dWt,
(6)
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where πt is Ft-measurable and satisfies the integrability constraint E
∫ T

0 π2
s ds < ∞. Under the utility

form Ũ(X), the maximum expected utility payoff takes the general form of

supπt∈AE{Ũ(e−rTXT)1{τ>T} + Ũ(e−rτXτ)1{τ≤T}}, (7)

where A is the set of π.
To simplify the formulation, we denote e−rTXt by Xt and µ− r by µ, then the wealth process can

be described by
dXt = πtµ(Yt, Zt)dt + πtσ(Yt, Zt)dW(1)

t . (8)

If default happens, stock of the firm cannot be traded, and investors have to liquidate holdings in
the stock and deposit them in the bank account. For simplicity, we assume that the investors get full
amount of the liquidated pre-default stocks and invest all of them into the bank account. Therefore,
we obtain

XT = Xτer(T−τ). (9)

The problem here is to maximize the expected utility payoff at time zero, which takes the form
as follows:

V(t, x, y, z) = supπ∈AE{Ũ(XT)1{τt > T}+ Ũ(Xτt)1{τt ≤ T} | Xt = x, Yt = y, Zt = z} (10)

Proposition 1. The HJB equation of the value function is

Vt +
1
ξ
L†V + V +

1√
ξ

ρ12a(y)c(z)Vyz + max{πµ(y)Vx +
1
2

π2σ2(y)Vxx

+
1√
ξ

πρ1σ(y)a(y)Vxy + ρ2Vxzπσ(y)c(z)}+ λ(z)(Ũ(x)−V) = 0
(11)

with V(T, x, y, z) = Ũ(x) and the operators L† and L‡ are defined by

L† = b(y)
∂

∂y
+

1
2

a2(y)
∂2

∂y2 (12)

L‡ = g(z)
∂

∂z
+

1
2

c2(y)
∂2

∂z2 . (13)

where x represents the wealth process, y is a stochastic volatility process, and z is an intensity process.

Proof. The proof follows by the extension of the arguments used in Theorem 4.1 of Duffie and
Zariphopoulou (1993) [18] and thus is omitted here. For more details and applications, we refer the
reader to Sircar and Zariphopoulou (2007) [8] , Sircar and Zariphopoulou (2010) [19], and Brémand
(1981) [20].

2.2. Bond Holder’s Problem and Indifference Price

In this section we assume that the investor owns a bond of the firm, which is defaultable and pays
1 dollar at maturity. We then construct a similar problem, i.e.,

U(t, x, y, z) = supπ∈AE{Ũ(XT + c)1{τt > T}+ Ũ(Xτt)1{τt ≤ T} | Xt = x, Yt = y, Zt = z} (14)

where c denotes e−rT .
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Proposition 2. The HJB equation of Bond Holder’s value function is

Ut +
1
ξ
L†U + L‡U +

1√
ξ

ρ12a(y)c(z)Uyz + max{πµ(y)Ux +
1
2

π2σ2(y)Uxx

+
1√
ξ

πρ1σ(y)a(y)Uxy + ρ2Uxzπσ(y)c(z)}+ λ(z)(Ũ(x)−U) = 0,
(15)

with U(T, x, y, z) = Ũ(x + c).

We can then have the following definition

Definition 1. The indifference price to an investor is defined at time zero by

V(0, x, y, z) = U(0, x− p0, y, z), (16)

which aims to keep the utility indifference between holding or not holding the bond. The bond holder should
lower his initial wealth level. And the yield spread is defined as

y0(T) = −
1
T

log(p0(T))− γ, (17)

which is non-negative for all T > 0 and p0(T) represents the indifference price at time T.

3. Asymptotic Approximation

For simplicity, we start our analysis under exponential utility, for the reason that the analytic
form of solution is easy to obtain for an exponential affine structure. But the idea behind is
the same, and the analysis of the constant-relative risk aversion (CRRA) utility is shown in the
subsequent section. By necessary conditions for extreme values, we obtain the maximizer π∗ for the
optimization problem (11),

π∗ = −
1√
ξ

ρ1σ(y)a(y)Vxy + µ(y)Vx + ρ2σ(y)c(z)Vxz

σ2(y)Vxx
. (18)

Substituting (18) into (11), we obtain the following nonlinear PDE,

Vt +
1
ξ
L†V + L‡V +

1√
ξ

ρ12a(y)c(z)Vyz

−
[θ(y)Vx +

1√
ξ

ρ1a(y)Vxy + ρ2c(z)Vxz]2

2Vxx
+ λ(z)(−e−γx −V) = 0,

(19)

where

θ(y) =
µ(y)
σ(y)

. (20)

It is hard to get the explicit solution of the nonlinear PDE. Thus, we use the perturbation method
to solve the problem.

Firstly, we expand the V as follows

Vξ = V(0) + ξ1/2V(1) + ξV(2) + ξ3/2V(3) + · · · (21)

According to the term ξ−1 derived from (19) and (21), we can prove that V(0) is independent of
y, because L†V(0) = 0, and L† is an operator based on y. Similarly, by the terms ξ−

1
2 , we can prove
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that V(1) is independent of y, which means V(0) and V(1) are functions of t and x. The variable y is
involved only in the expansion of the term V(2). By extracting the coefficient of the term ξ0, we obtain

V(0)
t + L†V(2) + L‡V(0) + NL(1) + λ(z)(−e−rx −V(0)) = 0. (22)

By extracting the coefficient of the term ξ
1
2 , we obtain

V(1)
t + L†V(3) + L‡V(1) + NL(2)− λ(z)V(1) = 0. (23)

Now we consider the expansion about NL(i)(i = 1, 2). By using the Taylor expansion and the
fact that V(0) and V(1) are independent of y, we get

NL(i) = −
[θ(y)Vx +

1√
ξ

ρ1a(y)Vxy + ρ2c(z)Vxz]2

2Vxx

= −[θ(y)(V(0)
x +

√
ξV(1)

x ) +
1√
ξ

ρ1a(y)(V(0)
xy +

√
ξV(1)

xy ) + ξV(2)
xy

+ ρ2c(z)(V(0)
xz +

√
ξV(1)

xy )]2
1

2V(0)
xx

(1−
√

ξ
V(1)

xx

V(0)
xx

− ξ
V(1)

xx

V(0)
xx

) (24)

= − 1

2V(0)
xx

[θ(y)V(0)
x + ρ2c(z)V(0)

xz ]2 −
√

ξ{− V(1)
xx

2(V(0)
xx )2

[θ(y)V(0)
x + ρ2c(z)V(0)

xz ]2

+
1

V(0)
xx

[θ(y)V(0)
x + ρ2c(z)V(0)

xz ][θ(y)V(1)
x + ρ1a(y)V(2)

xy ]}

Then we have
NL(1) = − 1

2V(0)
xx

[θ(y)V(0)
x + ρ2c(z)V(0)

xz ]2, (25)

and

NL(2) =
V(1)

xx

2(V(0)
xx )2

[θ(y)V(0)
x + ρ2c(z)V(0)

xz ]2

− 1

V(0)
xx

[θ(y)V(0)
x + ρ2c(z)V(0)

xz ][θ(y)V(1)
x + ρ1a(y)V(2)

xy + ρ2c(z)V(1)
xz ].

(26)

3.1. Analysis of the Zero-Strategy Leading Term

According to Fredholm’s Alternative solvability condition specified in Equation (22) in
Fouque et al. (2011) [17], we obtained

V(0)
t + L‡V(0) − (θ̂V(0) + ρ2c(z)V(0)

xz )2

2V(0)
xx

+ λ(−e−γx −V(0)) = 0, (27)

where
V(t, x, y, z) = −e−γx (28)

The Equation (27) can be simplified by a distortion scaling

V(0)(t, x, z) = −e−γx M(t, z)
1

1−ρ2
2 , (29)

to become

Mt + L̃‡M− (1− ρ2
2)(

θ2

2
+ λ)M− λ(1− ρ2

2)Mα = 0, (30)
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where

α =
ρ2

2
ρ2

2 − 1
, L̃‡ = L‡− ρ2θ̂c(z)

∂

∂z
. (31)

The only difference between holding or not holding the bond is the initial condition of the leading
term. The differential equation follows:

U(0)
t + L‡U(0) − (θ̂U(0) + ρ2c(z)U(0)

xz )2

2U(0)
xx

+ λ(−e−γx −U(0)) = 0, (32)

where
U(t, x, y, z) = −e−γ(x+c) (33)

The above equation can be simplified by a distortion scaling

U(0)(t, x, z) = −e−γ(x+c)N(t, z)
1

1−ρ2
2 , (34)

and becomes

Nt + L̃‡N − (1− ρ2
2)(

θ̂2

2
+ λ)N − λ(1− ρ2

2)e
λcNα = 0, (35)

where

α =
ρ2

2
ρ2

2 − 1
, L̃‡ = L‡− ρ2θ̂c(z)

∂

∂z
. (36)

3.2. Analysis of the Fast Modification Term

Firstly, we give the following notations

φ1 = − θ(y)V(0)
x + ρ2c(z)V(0)

xz

V(0)
xx

∂

∂x
, (37)

φ2 = [
θ(y)V(0)

x + ρ2c(z)V(0)
xz

V(0)
xx

]2
∂2

∂x2 . (38)

Substituting (37) and (38) into the non-linear term of (23) , we get

L†V(3) + V(1)
t + L‡V(1) +

1
2

φ2V(1) + θφ1V(1) + ρ1aφ1V(2)
y − λ(z)V(1) + ρ2cφ1V(0)

z = 0. (39)

Similarly, using φ1 and φ2, Equation (22) can be written as

L†V(2) + V(0)
t + L‡V(0) − λ(z)V(0) + φ2V(0) + θφ1V(1) + ρ2cφ1V(0)

z = λ(z)e−γx. (40)

By using the Fredholm Alternative theorem as before, we obtain

V(1)
t + L‡V(1) +

1
2

φ̂2V(1) + ˆθφ1V(1) − λ(z)V(1) + ρ2cφ̂1V(0)
z = −ρ1 ˆaφ1V(2)

y . (41)

V(0)
t + L‡V(0) +

1
2

φ̂2V(0) + ˆθφ1V(0) − λ(z)V(1) + ρ2cφ̂1V(0)
z = λe−γx. (42)

By comparing the above two equations, it is easy to guess the solution as

V(1) = −(T − t)ρ1 ˆaφ1V(2)
y + c(t, x), (43)
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where V(2) is a function of V(0) and c(t, x) can be determined by substituting (43) into (41) .

4. Analysis of Fast-Scale Correction under the Exponential Utility Assumption

For simplification of the problem, we assume λ to be a constant. Firstly, we consider our problem
under the fast mean-reverting stochastic volatility, namely the volatility of the stock process is only
related to Y. We then have the following model:

dSt

St
= µ(Yt)dt + σ(Yt)dWt, (44)

dYt =
1
ξ

b(Yt)dt +
1√
ξ

a(Yt)dW(1)
t . (45)

4.1. Fast-Scale Expansion for Single Name Derivatives

The HJB equation is transformed into the following form

Vξ
t +

1
ξ
L†0Vξ + λ(−e−γx −V) +FV = 0, (46)

where
FV = supπt∈A[πtµ(y)Vx +

1
2
(πt)

2σ(y)2Vxx + πt
1√
ξ

ρ1a(y)σ(y)Vxy] (47)

By solving the optimization problem in (47) , we obtain π∗t as follows

π∗t = − µ(y)
σ2(y)

Vx

Vxx
− 1√

ξ
ρ1

a(y)
σ(y)

Vxy

Vxx
. (48)

Substituting (48) into (46), the non-linear equation becomes

Vξ
t +

1
ξ
L†0Vξ −

(θ(y)Vξ
x + ρ1a(y)√

ξ
Vξ

xy)
2

2Vξ
xx

+ λ(−e−rx −V) = 0, (49)

where

θ(y) =
µ(y)
σ(y)

. (50)

Then we can look for an expansion of the value function:

Vξ = V(0) +
√

ξV(1) + ξV(2) + ξ3/2V(3) + · · · . (51)

By Substituting (51) into (49) and collecting the coefficients of the terms ξ−1 and ξ−
1
2 , we can get

the conclusion that V(0) and V(1) are independent of Y. From the the coefficients of the constant term
and the term ξ−1, we get the following two equations:

V(0)
t + L†0V(2) − 1

2
θ2(y)

(V(0)
x )2

V(0)
xx

− λV(0) = λe−rx, (52)

V(1)
t + L†0V(3) − NL(1)− λV(1) = 0, (53)

where

NL(1) = − θ(y)

V(0)
xx

V(0)
x [λ(y)V(1)

x + ρ1a(y)V(2)
xy ] +

V(1)
xx

2(V(0)
x )2

θ2(y)(V(0)
x )2. (54)
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From Fredholm’s alternative solvability condition, we get

V(0)
t − 1

2
θ̂2 (V

(0)
x )2

V(0)
xx

− λV(0) = λe−rx, (55)

V(1)
t − < NL(1) > −λV(1) = 0. (56)

where < · > denotes the average of y. From Equation (55), we get the leading term V(0), and from (42),
we can get the relationship between V(0) and V(1), and then we can get the approximation of Vξ .

Proposition 3. The explicit solution of Equation (55) is

V(0)(t, x) = − λ
1
2 θ̂2 + λ

e−γx + (1− λ
1
2 θ̂2 + λ

)e−(
1
2 θ̂2+λ)(T−t)e−γx, (57)

where θ̂ is the average value of θ(y) with the distribution of Π, namely

θ̂ =
∫

θ(y)Π(dy) (58)

Proof. We firstly transform the PDE by averaging θ(y). Because V(0) is independent of y, we get the
following PDE,

V(0)
t − 1

2
θ̂2 (V

(0)
x )2

V(0)
xx

− λV(0) = λe−γx, V(0)
T = e−γx (59)

By making the substitution of V(0)
T = −e−γx M, we get the following ODE,

Mt − (λ +
1
2

θ̂2)M = −λ, MT = 1 (60)

Then we can obtain the solution of (55) by solving the above equation.

We then introduce

R(0) = −V(0)
x

V(0)
xx

(61)

Dk = (R(0))k ∂k

∂xk , k = 1, 2, · · · (62)

L†e
t,x,y =

∂

∂t
+

1
2

θ2(y)D2 + θ2(y)D1 − λ (63)

L†e
t,x =

∂

∂t
+

1
2

θ̂2D2 + θ̂2D1 − λ (64)

Equations (109) and (55) become

L†0V(2) + L†t,x,yV(0) = λe−γx, (65)

L†t,xV(0) = λe−γx. (66)

Subtracting (65) by (66), we get

V(2) = −η(y)(
1
2

D2 + D1)V(0), (67)

η(y) = L†−1
0 (θ2(y)− θ̂). (68)
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Substituting (67) into (54), we can get the following proposition

Proposition 4. The value of the fast modification form is the solution of the equation below,

L†e
t,x,yV(1) =

1
2

ρ1BD2
1V(0)(t, x), V(1)(T, x) = 0, (69)

whereB = θ(y)a(y)η(y).

Proof. As D2 = −D1, we have

V(2) = −η(y)(
1
2

D2 + D1)V(0) = −1
2

η(y)D1V(0). (70)

Based on (56) and (54), we have

V(1)
t − 〈V

(0)
x

V(0)
xx

θ(y)[V(1)
x + ρ1a(y)V(2)

xy ]− (V(0)
x )2

2(V(0)
xx )2

V(1)
xx θ2(y)〉 − λV(1)

= V(1)
t − 〈−θ(y)D1V(1)

x − ρ1a(y)θ(y)D1V(2)
y − 1

2
θ2(y)D2V(1)〉 − λV(1) (71)

= V(1)
t + θ̂(y)D1V(1) − 1

2
ρ1BD2

1V(0) +
1
2

θ̂2(y)D2V(1) − λV(1),

where B = 〈a(y)θ(y)η′(y)〉.

Lemma 1. The operators L†e
t,x and D1 acting on smooth functions of (t, x) commute:

L†e
t,xD1 = D1L†e

t,x. (72)

Proof.

D2D1 − D1D2 = (R(0))2 ∂2

∂x2 (R(0)wx )− R(0) ∂

∂x
((R(0))2wxx) = (R(0))2R(0)

xx wx (73)

L†e
t,xD1w = (

∂

∂t
+

1
2

θ̂2D2 + θ̂D1 − λ)D1w

= D1
∂

∂t
+

1
2

θ̂2D1D2 + θ̂D2
1 − λD1)w + (R(0)

t +
1
2

θ̂2(R(0))2R(0)
xx )wx (74)

= D1L†e
t,xw.

From Lemma 1 we can draw the conclusion that L†e
t,x(Dk

1V(0)) = Dk
1L†e

t,xV(0), which leads to the
following proposition.

Proposition 5. The solution of (69) is

V(1) = −(T − t)
1
2

ρ1BD2
1V(0)(t, x) + c(t, x), (75)
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where B = θ(y)a(y)η′(y), and

c(t, x) = (
M′

N′
(T − t) +

M′

N′2
− M′

N′2
eN′(T−t))e−γx, (76)

M′ =
1
2

ρ1Bλγ2, (77)

N′ =
1
2

θ̂2(R(0))2 − θ̂R(0)γ− λ. (78)

Proof. We firstly assume that the solution of (69) is

V(1) = −(T − t)
1
2

ρ1BD2
1V(0)(t, x) + c(t, x). (79)

Substituting (79) into (69), we obtain

1
2

ρ1BD2
1V(0) − (T − t)

1
2

ρ1BD2
1L†t,xV(0) + L†t,xc(t, x) =

1
2

ρ1BD2
1V(0). (80)

Then we obtain
L†t,xc(t, x) = (T − t)

1
2

ρ1BD2
1L†t,xV(0). (81)

Because L†t,xV(0) = λe−γx, we obtain the PDE as follows

L†t,xc(t, x) = (T − t)
1
2

ρ1Bγ2λe−γx, c(T, x) = 0. (82)

Assume c(t, x) = A(t)e−γx, then we obtain

At + N′A = (T − t)M′, A(T, x) = 0, (83)

where

M′ =
1
2

ρ1Bλγ2, N′ =
1
2

θ̂2(R(0))2 − θ̂R(0)γ− λ. (84)

The terminal condition here is arisen from the condition V(1)(T, x) = c(T, x) = 0. By solving the
ODE for A, we get

A =
M′

N′
(T − t) +

M′

N′2
− M′

N′2
eN′(T−t), (85)

and

c(t, x) = (
M′

N′
(T − t) +

M′

N′2
− M′

N′2
eN′(T−t))e−γx. (86)

From the expansion (51), and the solution of V(0), V(1) and V(2), we obtain

V(ξ) = V(0) +
√

ξV(1) + ξV(2) + o(ξ
3
2 )

= (1−
√

ξ
1
2
(T − t)ρ1BD2

1)V
(0)(t, x) +

√
ξc(t, x) + o(ξ

3
2 ).

(87)

Then we analyse the approximation of the maximizer π∗ as given in (48).
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Using Taylor expansion, we get

Vx

Vxx
=

V(0)
x +

√
ξV(1)

x

V(0)
xx +

√
ξV(1)

xx

=
1

V(0)
xx

(V(0)
x +

√
ξV(1)

x )(1−
√

ξ
V(1)

xx

V(0)
xx

)

=
V(0)

x

V(0)
xx

+
√

ξ(
V(1)

x

V(0)
xx

− V(0)
x V(1)

xx

(V(0)
xx )2

) (88)

=
V(0)

x

V(0)
xx

+

√
ξ

V(0)
xx

(cx + R(0)cxx)

=
V(0)

x

V(0)
xx

−
√

ξ
1

V(0)
x

(D1 + D2)c + o(ξ),

and
Vxy

Vxx
=

V(0)
xy +

√
ξV(1)

xy + ξV(2)
xy

V(0)
xx +

√
ξV(1)

xx + ξV(2)
xx

= ξ
V(2)

xy

V(0)
xx

= −ξ
1

V(0)
x

η(y)
1
2

D2D1V(0)
y .

(89)

Substituting the above into (48) yields

π∗ = − θ(y)
δ(y)

V(0)
x

V(0)
xx

+

√
ξ

V(0)
x

[
θ(y)
δy

(D1 + D2)c + ρ1η(y)
1
2

D1D2V(0)
y ] (90)

Similarly, the solution of the bond holders’ problem is given in the following properties,

Proposition 6. The leading term of the bond holder’s problem is

U(0) = − λ
1
2 θ̂2 + λ

e−γx + (1− λeγc

1
2 θ̂2 + λ

)e−(
1
2 θ̂2+λ)(T−t)−γ(x+c) (91)

where θ̂ is the average of θ(y) with respect to the distribution Π, namely

θ̂ =
∫

θ(y)Π(dy). (92)

The fast-scale modification term of the bond holder’s problem is

(1−
√

ξ
1
2
(T − t)ρ1BD2

1)U
(0)(t, x) +

√
ξC(t, x) + o(ξ

3
2 ), (93)

where

C(t, x) = (
M′

N′
(T − t) +

M′

N′2
− M′

N′2
eD(T−t))e−γx. (94)

So the approximation of the bond holder’s value function is

U(ξ) = U(0) +
√

ξU(1) + ξU(2) + o(ξ
3
2 )

= (1−
√

ξ
1
2
(T − t)ρ1BD2

1)U
(0)(t, x) +

√
ξC(t, x) + o(ξ

3
2 ).

(95)
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5. Numerical Study of Exponential Utility

5.1. Analysis of the Value Function

The utility we use from Bond seller is exponential and is given by

V(x) = −e−γx, (96)

where γ > 0 represents the risk aversion parameter. We can prove that the utility function is concave
and increasing since

V′(x) = γe−γx > 0, V′′(x) = −γ2e−γx < 0. (97)

The concave property of the utility function implies that the bond seller is risk aversion. The risk
aversion rate is calculated by the Arrow-Pratt index,

AP[U] := −U′′(x)
U′(x)

= γ, (98)

where the larger the γ is, the higher risk averse the agent is. The risk-tolerance function at terminal
time T is

R(T, x) = − U′

U′′
=

1
γ

. (99)

5.2. The Effect of Volatility Correction

The study above is all based on the general form. In order to demonstrate the result graphically,
we give the special case as follows:

dSt

St
= Ytdt +

√
YtdWt, (100)

dYt =
1
ξ
(m1 −Yt)dt +

√
2
ξ

vdW(1)
t . (101)

If Yt is an ergodic process, it has the distribution of N(m1, v2). Assuming that m1 = 0.01, v2 = 0.25,
ξ = 1

200 , and based on the definition of θ̂, we obtain

θ̂ =
1√
2πv

∫ ∞

−∞

√
ye−

(y−m1)
2

2v2 dy (102)

According to (57) and (79), we get the solution of V(0), and also the fast modification term of V(1),
we then calculate the utility term as V(0) +

√
ξV(1). The approximations to the value functions are

plotted in Figures 1 and 2.
Also, since the bond pays $1 on maturity date T if the firm has survived till then, the bond seller’s

value function will be higher than the bond holder’s value function. The comparison of the value
function is shown in Figures 3 and 4. The Stochastic Volatility Model(SVM) in Figure 4 represents the
Stochastic Volatility(SV) modification form.

The approximate indirect utilities V(0) or V(0) +
√

ξV(1) can also be represented by their certainty
equivalents U−1(V(0)) and U−1(V(0) +

√
ξV(1)), which are shown in Figures 5 and 6.

In Figures 1 and 2, the original value function is denoted by blue line, while the dashed blue line
is the value function with stochastic volatility correction. We can see clearly that the correction line is a
little lower than the original line. In Figures 3 and 4, we make a comparison of the value function for
holding and not holding the bond. Figure 3 shows the relationship before SV correction while Figure 4
shows the relationship after SV correction. Figures 5 and 6 show the certainty equivalent before or
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after the correction; the solid line shows the certainty equivalent before the correction and the dashed
line shows the after situation.

Figure 1. Value Function of Bond Seller.

Figure 2. Value Function of Bond Holder.

Figure 3. Leading Term Value Function.
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Figure 4. SV Modification Value Function.

Figure 5. Certainty Equivalents of Bond Seller.

Figure 6. Certainty Equivalents of Bond Holder.

Therefore, we can draw the conclusion that by adding a stochastic volatility process into
model (101), the investor becomes more risk adverse. The stochastic Volatility is lower than both the
utility function and the certainty equivalent. Also, as bond holder will get a fixed pay at the maturity
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date if default does not happen, the value function of the bond holder will be a little higher than that
of the bond seller. That is why we give the definition of indifference price p0. By cutting down the
initial wealth of bond holder, the expected utility of bond holder should be the same as that of the
bond seller. In the following subsection, we will analyse the indifference and yield spread numerically.

5.3. Analysis of Yield Spread

According to the Definition 1, it is easy to calculate p0 and the yield spread. Without the
modification term, the indifference price p(0)0 is given by

p(0)0 = e−rT +
1
γ

ln
u− (1− u)e−(

1
2 θ̂2+λ)T

ueγc − (1− ueγc)e−(
1
2 θ̂2+λ)T

, (103)

where
u =

λ
1
2 θ̂2 + λ

. (104)

If γ takes the value of 0.05, 0.1, 0.25, 0.5 and 0.75 respectively, we obtain the profile of yield spread
y0(T) = − 1

T log(p(0)0 (T))− r as shown in Figure 7.

Figure 7. Yield Spread.

It is noted that the yield spread is not flat even though the intensity is a constant, and this is due
to the effect of the intensity rate λ upon T. When T goes to infinity, yield spread will convergent to
a long time level and become flat. As we can read from Figure 7, the yield spread for the investor is
upward sloping and is approximated to a long time level due to the different maturity time.

6. Numerical Study of CRRA Utility

The utility we use from Bond seller is exponential and given by

V(x) = c0
x1−γ

1− γ
, (105)

where γ > 0 represents the risk aversion parameter. We can prove that the utility function is concave
and increasing since

V′(x) = x−γ > 0, V′′(x) = −γx−γ−1 < 0. (106)
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The concave property of the utility function implies that the bond seller is risk aversion. The risk
aversion rate is calculated by the Arrow-Pratt index,

AP[U] := −U′′(x)
U′(x)

= γ/x, (107)

where the larger the γ is, the higher risk averse the agent is. And the risk-tolerance function at terminal
time T is

R(T, x) = − U′

U′′
=

1
γ

x. (108)

Under the assumption of the CRRA utility form, the above leading term and the first-order
correction term reduce to

V(0)
t − 1

2
θ̂2 (V

(0)
x )2

V(0)
xx

− λV(0) = −λc0
x1−γ

1− γ
, (109)

V(1)
t − < NL(1) > −λV(1) = 0, (110)

with the terminal condition V(0)(T, x) = c0
x1−γ

1−γ and V(1)(T, x) = 0. The leading term can be solved
analytically by assuming

V(0) = x1−γ M(t). (111)

Substituting (111) into (109), we obtain the following ordinary differential equation(ODE)

Mt + (
1− γ

2
θ̂2 − λ)M = − λc0

1− γ
, (112)

with the terminal condition M(T) = 1
1−γ . Solving the above ODE together with the initial condition,

we obtain

V(0) =

− λc0

λ− 1−γ
2γ θ̂2

+

 1
1− γ

+
λc0

λ− 1−γ
2γ θ̂2

 e−(λ−
1−γ
2γ θ2)(T−t)

 x1−γ, (113)

Similarly, we solve U0 with respect to the terminal condition of U(0)(T, x) = (x + c)1−γ/(1− γ),
and obtain

U(0) =

− λc0

λ− 1−γ
2γ θ̂2

+

 1
1− γ

(
x + c

x
)1−γ +

λc0

λ− 1−γ
2γ θ̂2

 e−(λ−
1−γ
2γ θ2)(T−t)

 x1−γ, (114)

In order to obtain the first order correction term V(1), we assume V(1) = −(T− t) 1
2 ρ1BD2

1V(0)(t, x +
c(t, x)), with c(t, x) satisfying

L†t,xc(t, x) = (T − t)
1
2

ρ1Bλc0D2
1

x1−γ

1− γ
, c(T, x) = 0. (115)

We can not derive the analytic form of the solution of the above equation because the right hand
side of the equation is not necessary an affine structure. In this case, we solve it numerically by finite
element discretization shown in Appendix A.

The results are shown in Figures 8 and 9, from which we know that value function is concave
and increasing considering the risk attitude. However, the fast scale stochastic volatility correction
drag the value function a little bit downward, and the main reason is that incorporation of uncertain
volatility gives the investors more risk exposure.
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Figure 8. Value Function of Bond Seller.

Figure 9. Value Function of Bond Holder.

Similar results are also shown in the certainty equivalents, that is incorporation of stochastic
volatility lower down the value function, as shown in Figures 10 and 11.

Figure 10. Certainty Equivalents of Bond Seller.
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Figure 11. Certainty Equivalents of Bond Holder.

Table 1 gives the results of the percentage change of the mean value when the model parameter is
given a 1% change. Clearly, the value function is sensitive to the correlation rate, and the long term
mean variance m1 is more sensitive compared to the volatility of volatility.

Table 1. Sensitivity study of parameters.

Name Value Sensitivity

m1 0.11 3.65%
v 0.25 1.80%
λ 0.5 1.32%
ρ 0.5 −19.61%

7. Conclusions and Future Work

In this paper, we study the single-name bond under the stochastic intensity and the stochastic
volatility. In order to solve the non-linear PDE, we use the method of asymptotic approximation.
We establish the expression of leading term V(0), and fast-scale modification term V(1). By comparing
the leading term and the utility with fast scale modification, we can draw the conclusion that by
considering the effects of the fast-scale volatility, investors become more and more risk aversive,
which lowers down their utility and increases the certainty equivalents. Also, according to the analysis
above, we prove that the yield spread of the investor goes up with the maturity time and converges
to a long time level. The advantage of the asymptotic method is that it reduces the high dimensional
problem into a lower dimensional problem, which is relatively easy to solve. However, the limitation
of this approach is that it only works for a specific utility model, and for other utilities, the analytic
solutions may not be obtained so that numerical method is needed. In our future research, the effect of
multiscale volatility and stochastic interest rate will be taken into consideration.
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Appendix A

In order to obtain the first correction of the CRRA utility, we solve the following parabolic
equation numerically,

V(1)
t +

1
2γ2 θ̂2x2V(1)

xx +
1
γ

θ̂2xV(1) − λV(1) = f (T − t, x), (A1)

with f (T − t, x) = (T − t) 1
2 ρ1Bλc0D2

1
x1−γ

1−γ , c(T, x) = 0, and terminal condition V(1)(T, x) = 0.
Let τ = T − t, we can obtain the weak form of (A1),

(V(1)
τ , V) +

1
2

θ̂2(x2V(1)
x , Ux)− θ̂2 1

γ
(1 +

1
γ2 )(xV(1)

x , U) + λ(V(1), U) = ( f (τ, x), U). (A2)

The basis function V(1), the test function U and the function f can be approximated by the
following form

V(1)(x, τ) =
N

∑
i=1

ui(τ)Φi(x)

U(x) =
N

∑
j=1

vjΦj(x), (A3)

f (x, τ) =
N

∑
i=1

fi(τ)

We then obtain the ODE systems,

MU̇ + RU = F,

U(0) = 0, τ ∈ [0, T]
(A4)

where

M = (Φi, Φj);

R =
1
2

θ̂2(x2
i

∂Φi
∂x

,
∂Φj

∂x
)− θ̂2 1

γ
(1 +

1
γ2 )(xi

∂Φi
∂x

, Φj) + λ(Φi, Φj); (A5)

F = ( fi, Φj)

We apply the backward Euler method to solve the above dynamic ODE system and yields

(
M
∆t

+ R)Un+1 = M
Un

∆t
+ F. (A6)
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