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Abstract: The tradeoffs and synergies of ecosystem services are widely discussed and recognized.
However, explicit information for understanding and managing the complex relationships of multiple
ecosystem services at regional scales is still lacking, which often leads to the degradation of important
ecosystem services due to one ecosystem service being enhanced over another. We assessed the
biodiversity and the production of nine ESs (ecosystem services) across 779 counties in the Yangtze
River Basin, the largest basin in China. Then, we mapped the distribution of ES for each county and
used correlations and “partitioning around medoids” clustering analysis to assess the existence of
ES bundles. We found five distinct types of bundles of ecosystem services spatially agglomerated
in the landscape, which could be mainly explained by land use, slope and altitude gradients. Our
results also show landscape-scale tradeoffs between provisioning and almost all regulating services
(and biodiversity), and synergies among almost all regulating services (and biodiversity). Mapping
ecosystem service bundles can identify areas in a landscape where ecosystem management has
produced exceptionally desirable or undesirable sets of ecosystem services, and can also provide
explicit, tailored information on landscape planning for ecosystem service conservation and the
design of payment policies for ecosystem services within diverse landscapes at watershed scales.

Keywords: ecosystem services; ecosystem service bundle; ecosystem service interaction; landscape;
spatial analysis

1. Introduction

Ecosystem services are defined as the benefits that people obtain from ecosystems [1,2], including
the goods and services that ecosystems provide to society [3]. Mapping the spatial patterns of
ecosystem services and biodiversity could help to identify regions for which conservation is beneficial
to both biodiversity and ecosystem services [4], and help understand how the distributions of different
services compare and where trade-offs and synergies among ecosystem services might occur [5].
Trade-offs of ecosystem services occur when one service increases at the cost of reducing the provision
of another service [6], whereas synergies arise when multiple ecosystem services are enhanced
simultaneously [7]. The relationships among multiple ecosystem services and the mechanisms behind
these relationships will improve the ability to sustainably manage ecosystems to provide multiple
ecosystem services [8].
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The tradeoffs and synergies of ecosystem services are widely discussed and recognized. Generally,
tradeoffs exist between provision services and (1) regulating services and (2) biodiversity, and synergies
exist among regulating services (e.g., soil retention, water retention, carbon sequestration) [9–14].
At regional scales, the complex relationships of multiple ecosystem services present diverse types and
different patterns due to diverse landscapes [7,15–18]. However, explicit information for understanding
and managing the complex relationships of multiple ecosystem services at regional scales is still
lacking, which often leads to the degradation of important ecosystem services due to one ecosystem
service being preferably enhanced over another [17]. Especially in a large basin, where the natural
conditions and socio-economic impacts are extremely complicated, understanding the ecosystem
service aggregation pattern and drivers, and the important ecosystem service sets for different
conservation objectives, can help to provide tailored watershed management information across
the upper and lower basin reaches. Ecosystem service bundles can be used to identify the cluster
pattern of multiple ecosystem services and analyze the interactions among ecosystem services [7,15,17].

The Yangtze River Basin, the largest watershed in China, includes almost all geological,
topographical, and climatic conditions, vegetation and soil types found in China. It is one of the
most densely populated and agriculturally productive areas in the country. The Yangtze River Basin is
a microcosm of China’s ecology in terms of both its resources and its problems, and plays an important
role in assuring healthy and intact ecosystems in China [19]. In our study, based on the concept
and method of ecosystem service bundles [15,20,21], we used the Yangtze River Basin as a test case
for a large-scale watershed. We selected biodiversity and the production of nine ESs (ecosystem
services), including the regulating and provisioning services in the category of Millennium Ecosystem
Assessment [3], to assess the spatial characteristics of the individual ecosystem services, trade-offs and
synergies among multiple services, the distribution of ecosystem bundles and the driving forces across
the whole area of the Yangtze River Basin. The objectives of the study were as follows: (1) investigate
the distinct spatial patterns of multiple ecosystem services and biodiversity, and their relationships;
(2) reveal how multiple ecosystem services consistently coexist together or differ from upper to lower
reaches and spatially form different ecosystem service bundles across the whole Yangtze River Basin
area; and (3) give implications for watershed ecosystem service management. This case study can
improve the understanding of the complex interactions of multiple ecosystem services in a large
watershed, and provide a reference for watershed ecosystem management globally.

2. Materials and Methods

2.1. Study Area

The Yangtze River Basin, the largest watershed in China, covers approximately 1.8 × 106 km2,
accounting for 18.8% of China’s land area (Figure 1). The natural conditions differ significantly across
the source regions, the upper reaches, and the middle and the lower reaches with various landforms
(such as plateaus, mountains, hills and plains) in which the highest elevation exceeds 7 km. The
Yangtze River Basin is a key area of ecological conservation in China. As a globally crucial region for
biodiversity conservation, the Yangtze River Basin contains a huge number of rare and indigenous
species: more than 14,000 higher plants, 280 mammals, 762 birds, 145 amphibians, and 166 reptiles [22].
In particular, the upper reaches of the Yangtze River are one of the global biodiversity “hotspots” [23],
but the ecosystems are sensitive and vulnerable [24]. In addition, the Yangtze River Basin is one of
the most densely populated and agriculturally productive areas in China, where the cultivated land
accounts for 25% of the total cultivated land area in China, and the agricultural production accounts
for 40% of the total value of the country’s agricultural outputs.
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Figure 1. The Yangtze River Basin.

2.2. Mapping of Ecosystem Services

The Yangtze River Basin is not only the largest basin in China, but also one of the most important
grain production bases, as well as the hotspot of biodiversity conservation in China. According to the
basin’s regional importance and ecological problems, we evaluated the ecosystem services important
for human well-being in the Yangtze River Basin, including regulating services (water retention,
soil retention, flood mitigation, carbon sequestration, water purification and sandstorm prevention),
provision services (crop production, edible oil production and meat production), and biodiversity.
Table 1 shows these ecosystem services and the data sources for the parameters.

Table 1. Data sources for ecosystem service evaluation.

Ecosystem Services Unit Data Source

Regulating services

Soil retention t/km2

Classification map of ecosystems in 2015;
Vegetation coverage;
Digital elevation model (DEM) (from U.S. Geological Survey);
Soil properties (from WestDC [25]);
Rainfall erosivity (from Beijing Normal University)

Water retention
t/km2

Classification map of ecosystems in 2015;
Precipitation (from China Meteorological Administration);
Evapotranspiration (from Institute of Geographic Sciences and Natural
Resources Research, CSA)Flood mitigation

Water purification m2/kg

Classification map of ecosystems in 2015;
Precipitation;
Soil depth (from Harmonized World Soil Database);
Soil properties;
DEM

Carbon sequestration gC/m2 Classification map of ecosystems in 2015;
Ecosystem biomass
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Table 1. Cont.

Ecosystem Services Unit Data Source

Sandstorm prevention t/km2

Classification map of ecosystems in 2015;
Vegetation coverage;
Soil properties;
DEM;
Precipitation;
Temperature (from China Meteorological Administration);
Wind speed (from Institute of Geographic Sciences and Natural
Resources Research, CSA);
Solar radiation (from WestDC: [25])

Biodiversity conservation species Distribution information for plants, mammals, amphibians, reptiles and
birds [26]

Provision services

Crop production
t/km2 County-level agriculture data (from the Agricultural Information

Institute of the Chinese Academy of Agricultural Sciences)Edible oil production
Meat production

Data from the classification map of ecosystems in 2015, vegetation coverage and ecosystem biomass were from the
national ecological environment survey and evaluation database. t = metric tons.

Ecosystem service data were processed by the method of minimum–maximum normalization
to eliminate the influence of dimension. The ecosystem services were mapped using ArcGIS 10.3.1
software (ESRI, Inc., Redlands, CA, USA) [27] to compare their spatial patterns.

2.2.1. Regulating Services

The detailed calculation methods of water retention, soil retention, carbon sequestration and
sandstorm prevention refer to the reference [28]. For each county, we calculated the capacity of water
retention, soil retention, carbon sequestration, sandstorm prevention and flood mitigation per unit
area as the indicators of the services.

• Water retention service

Water retention refers to the water retained in ecosystems. We assessed the water retention service
using the following equation [28] revised from the InVEST model [29].

TQ =
j

∑
i=1

(Pi − Ri − ETi)·Ai

where TQ is total water retention, Pi is precipitation, Ri is storm runoff, ETi is evapotranspiration, Ai is
the area of the ecosystem as defined by land cover, i refers to the ecosystem type i, and j is the number
of ecosystem types in the study area.

• Soil retention service

Soil retention refers to the soil retained by the ecosystems, which was calculated using the
Universal Soil Loss Equation [30] and the InVEST model. The equation can be expressed as:

SC = R × K × LS × (1 − C)

where SC represents the soil retention capacity, R is the rainfall erosivity factor, K is the soil erodibility
factor, LS is the topographic factor, and C is the vegetation cover factor.
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• Carbon sequestration service

Carbon sequestration refers to carbon sequestered by terrestrial ecosystems, a process that can
reduce the current rate of increase of atmospheric CO2. The biomass carbon storage of different types
of ecosystem (BCSin) was obtained using the following equations:

BCSin = ∑n
j=1 BCDijm × ARi × 10−6

BCDijm = Bijm × CCi

where BCDijm is the biomass carbon density of ecosystem i in pixel j in year m. ARi is the area of each
pixel, Bijm is the biomass density of ecosystem i in pixel j in year m, and CCi is the carbon content in
the biomass of ecosystem i, which is 0.5 for forest and wetland, and 0.45 for grassland [31,32].

• Sandstorm prevention service

Sandstorm prevention refers to the sand retained in an ecosystem. We used the Revised Wind
Erosion Equation model [33] to estimate the sandstorm prevention service.

• Flood mitigation service

The flood mitigation service is closely related to storm rainfall (>50 mm), the surface runoff and
the ecosystem type. It was calculated using the following equation:

FQ =
j

∑
i=1

(Pri − Rri)× Ai

where FQ is the flood mitigation capacity (m3), Pri is the storm rainfall (mm), Rri is storm runoff
(mm), and Ai is the area of ecosystem i. The surface runoff resulting from torrential rain can be
calculated using a regression function of storm rainfall. We analyzed information about storm rainfall
and surface runoff for each ecosystem type from approximately 310 published sources and determined
the regression functions of rainfall and runoff.

• Water purification service

Water purification was obtained using the Nutrient Delivery Ratio module in the InVEST
model [29]. First, the annual water yield was calculated using the water yield module [34], then
nutrient output was calculated according to the annual water yield, terrain data, spatial pattern
of ecosystem types and nutrient output coefficients [34]. The water purification capacity in each
county was represented by the absorption area of a unit mass of nutrients, calculated using the
following equation:

WP = Ac/Nexport

where Ac is the area of the county (m2), and Nexport represents the total amount of nutrients (kg) output
from the ecosystems in the county.

2.2.2. Provision Services

We chose the total yield of major grain crops (rice, wheat and corn) in the Yangtze River Basin to
indicate the crop production service. Edible oil crops represented the major cash crop in the Yangtze
River Basin and were also included as a kind of provision service (edible oil production service). As the
main source of protein, meat production was identified as meat production service. For each county,
we used the yields of crop, edible oil and meat per unit area as the indicators of crop production
service, edible oil production service and meat production service, respectively.
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2.2.3. Biodiversity Conservation

We selected threatened species listed in the International Union for Conservation of Nature (IUCN)
Red List or China’s Red List as indicator species [26], including categories of critically endangered
(CR), endangered (EN), and vulnerable (VU) species. First, we obtained the distribution information
for plants, mammals, amphibians, reptiles and birds mainly from the Scientific Database of China Plant
Species, IUCN, and BirdLife International. Then, we refined the potential habitat based on specific
distribution areas, elevation range, and vegetation. The detailed mapping process of biodiversity refers
to the reference [26]. For each county, we calculated the mean value of the number of species as the
indicator of biodiversity.

2.3. Data Analysis

The spatial clustering of all ecosystem services was determined using Moran’s I test [35] with
queen contiguity. A correlation analysis on each pair of the ecosystem services was performed using R
statistical software [36] by the Pearson parametric correlation test.

To avoid interference of the outliers in the data of a large number of counties in the Yangtze
River Basin, the partitioning around medoids (PAM) clustering method [37] was used. We applied
the PAM module in the R statistical software to cluster biodiversity and the nine ecosystem services
of 779 counties. Compared with the hierarchical clustering method, the PAM method can address a
larger amount of data. In addition, PAM assigns a cluster center using a representative observation
value instead of the mean value; therefore, it is more robust and insensitive to outliers compared with
the k-means clustering method. The clustering results corresponded to the ecosystem service bundles.
We spatialized the ecosystem service bundles using the ArcGIS software. We counted the geographic
and socio-economic variables of each ecosystem service bundle to analyze their characteristics. Then,
we performed a principal component analysis (PCA) using IBM SPSS software (Version 22, IBM Corp.,
Armonk, NY, USA) to identify the gradients along which the ecosystem service bundles changed. In the
PCA, the driver variables selected are proportion of cropland, proportion of forest land, proportion of
wetland, proportion of urban land, altitude, slope, population density, GDP (gross domestic product)
and the distance to big cities. The response variables are the quantities of the nine ecosystem services
and biodiversity. We also applied RDA (redundancy analysis) using CANOCO 4.5 (Biometris-Plant
Research International, Wageningen, The Netherlands) to identify the relationships between major
driver variables and ecosystem services.

3. Results

3.1. Spatial Patterns of Ecosystem Services

At the county level, the ecosystem services and biodiversity were spatially aggregated across
the study area (p < 0.01) rather than randomly distributed. There were similarities among the spatial
patterns of different services, such as flood mitigation and water retention, water purification and
biodiversity, crop production and edible oil production, but their individual patterns were distinct. The
clumped distribution of ecosystem services was determined by the geographical and climatic factors
and the concentration of human activities. For example, high water retention and flood mitigation
services tended to be distributed in areas that had higher precipitation and vegetation cover. High
biodiversity was mainly distributed in the Hengduan mountain area of the upper reaches of the basin.
The sandstorm prevention service was concentrated in the source regions of the Yangtze River Basin.
Higher values of provision services were aggregated within the flat areas of the basin, such as Sichuan
basin, the famous agricultural product supply region (Figure 2).
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Figure 2. Spatial distribution of the values obtained for individual ecosystem services (ESs) across the
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3.2. Trade-Offs and Synergies among Ecosystem Services

Most of the ecosystem services were significantly correlated with each other. Of the 45 possible
pairs of ecosystem services, 40 pairs were significantly correlated (Figure 3).

Most of the significant negative correlations existed between provision services and other
services. Among them, crop production was found to have the highest number of significant negative
correlations with other services, but the negative correlations between meat production and other
services were relatively weak. The correlation between edible oil production and sandstorm prevention,
and the correlation between meat production and sandstorm prevention, were not significant. Besides,



Sustainability 2018, 10, 857 8 of 16

sandstorm prevention was negatively correlated with carbon sequestration, water retention and soil
retention (Figure 3).
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Figure 3. Matrix of Pearson correlations between different ecosystem services (* p < 0.05; ** p < 0.01;
*** p < 0.001). Blue and red colors indicate positive and negative correlations, respectively. The deeper
the color, the higher the correlation.

There were significant synergies between regulation services and biodiversity, and significant
synergies among the regulating services, as well as among the provision services. Among them, carbon
sequestration, water retention, soil retention and flood mitigation were relatively highly positively
correlated. Among the provision services, the correlation between crop production and edible oil
production was the highest, but meat production was weakly correlated with them (Figure 3).

3.3. Ecosystem Service Bundles

The 779 counties in the Yangtze River Basin were placed in five groups across the basin based on
the cluster analysis of ecosystem services they provided (Figure 4). Each group consists of counties
with a bundle of ecosystem services that are more alike within the bundle than between bundles. The
corresponding area of each bundle is shown in Figure 4. The five ecosystem service bundles were
spatially clustered in the landscape (Figure 4, p < 0.01).

According to the ecosystem services provision and the socioeconomic activities occurring in
the grouped areas, the five ecosystem service bundles could be named as the “highest regulating
service bundle type”, “second-highest regulating service bundle type”, “high biodiversity bundle
type”, “sandstorm prevention bundle type” and “food provision bundle type”.
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Figure 4. Bundles of ecosystem services (ES) identified using partitioning around medoid clustering
for the study area. The five ES bundles (along the top of the figure) are represented by rosette diagrams.
The diagrams are dimensionless, as they are based on normalized data for each service, and a larger
petal length indicates the higher production of a particular service. The counties included in each
bundle are highlighted in different colors on the map.

(1) The highest regulating service bundle (B1), which had the largest proportion of forest cover,
highest water retention service, flood mitigation service, carbon sequestration service and soil retention
service, was distributed mainly in the important ecological functional regions in the midstream of the
Yangtze River Basin (Figure 4). The mean slope of counties in this bundle is high, and the counties are
far from the major cities. Meanwhile, the area proportions of wetland, cropland and urban land, the
population density and the gross domestic product (GDP) are low (Table 2).

Table 2. Natural and socio-economic variables in the different ecosystem service bundles (B1–B5).

Natural and Socio-Economic Variables B1 B2 B3 B4 B5

Quantity of counties 126 324 53 4 272
Mean slope (degree) 13.2 13.1 24.0 6.6 3.6

Mean forest land rate (%) 63.3 39.0 34.8 0.0 11.6
Mean grassland rate (%) 2.6 5.4 31.4 71.5 1.0
Mean wetland rate (%) 2.0 4.1 1.2 10.0 8.8
Mean cropland rate (%) 16.4 28.9 2.7 0.0 55.9

Mean urban land rate (%) 3.3 6.4 0.2 0.0 18.7
Mean population density (person/km2) 196 510 35 3 1579

Mean GDP (108 yuan) 103.2 186.4 24.5 77.2 476.5
Mean distance to big cities (km) 204.4 178.0 312.9 535.6 113.0

(2) The second-highest regulating service bundle (B2), which had high forest cover, high carbon
sequestration service and water retention service, relatively high soil retention service, flood mitigation
service and biodiversity, and low production of crops and edible oil, was distributed mainly in the
upper reaches of the Yangtze River Basin. The mean slope of counties in this bundle is as high as that
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in the counties comprising bundle B1. The counties in B2 are also located far from major cities, but are
closer to these cities than are the counties in bundle B1. Meanwhile, the area proportions of wetland,
cropland and urban land, the population density and GDP are low, but higher than in B1 counties
(Table 2).

(3) The high biodiversity bundle (B3), which had the richest biodiversity, the highest water
purification service, relatively high carbon sequestration service and water retention service, was
distributed mainly in the Hengduan mountains in the upper reaches of the basin. The mean slope
of counties in this bundle is the highest, and the counties are extremely far away from major cities.
Meanwhile, the area proportion of wetland is the lowest, and the area proportions of cropland and
urban land, the population density and GDP are extremely low (Table 2). Most of the counties in B3
are very poor and comprised of sparsely populated mountain areas.

(4) The sandstorm prevention bundle (B4), which had the highest sandstorm prevention service,
high water purification service and biodiversity, but poor levels of other regulating services and
provision services, was distributed in the source regions of the Yangtze River. The mean slope is low
in these counties, and the counties are located the farthest away from the major cities. Meanwhile, the
area proportions of grassland and wetland are both the highest, and the area proportions of cropland
and urban land, and the population density are the lowest (Table 2).

(5) The food provisioning bundle (B5), which had the highest provision services, low regulating
services, and poor of biodiversity, was distributed mainly in the important agricultural regions in the
Yangtze River Basin. The counties in this bundle are the richest, and almost entirely distributed on the
flat area. These counties had the highest GDP, population density, area proportions of cropland and
urban land, a high proportion of wetland area, and the lowest mean slope, and are the nearest to the
major cities (Table 2).

Though the regulating services and biodiversity were significantly positively correlated, they did
not always coexist in the ecosystem service bundles. For example, the soil retention service, water
retention service, flood mitigation service and carbon sequestration service were bundled together in
B1, B2, and B5, but the situation was different for B3 and B4.

The results of PCA (Figure 5) and RDA (Figure 6) indicated that the geographical and
socio-economic variables were correlated with the spatial patterns of ecosystem services. The result of
RDA showed the major driving factors that could explain the spatial patterns of ecosystem services
(proportion of forest land, proportion of cropland, slope and altitude explained 46.6%, 31.1%, 30.5%
and 19.5% of the total variance, respectively) (Figure 6). The result of a PCA analysis indicated that
the gradient of geographical factors and socio-economic factors could explain the spatial patterns of
the ecosystem services and the ecosystem service bundles (Figure 5). In Figure 5, the horizontal axis
and the vertical axis represent the first principal component and the second principal component,
respectively. As the first principal component was significantly highly correlated with the proportion
of forest land (r = 0.85, p < 0.001), the proportion of cropland (r = −0.77, p < 0.001) and the mean slope
(r = 0.69, p < 0.001), it corresponded to the change of land use and slope. This change was from the high
proportion of cropland to the high proportion of forest land, and from flat area to the mountainous
area. The first principal component explained 38.6% of the variance. The second principal component
was significantly highly correlated with the mean altitude (r = −0.73, p < 0.001), and it represented the
altitude gradient (from high altitude to low altitude), which explained 19.9% of the variance.

In addition, the ecosystem services shown in Figure 5 could be divided into four groups, and
each ecosystem service bundle we obtained corresponded to a group of ecosystem services whose
values were higher than those of other bundles. Group 1 (characterized by flood mitigation, water
retention, soil retention and carbon sequestration) corresponded to the two high regulating service
bundles. Group 2 (characterized by biodiversity and water purification) corresponded to the high
biodiversity bundle. Group 3 (characterized by sandstorm prevention) corresponded to the sandstorm
prevention bundle. Group 4 (characterized by production of crops, edible oil and meat) corresponded
to the food provision bundle.
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Figure 6. Redundancy analysis (RDA) results showing the relationships between driver variables and
response variables. Driver variables include the following: (1) PC (proportion of cropland); (2) PF
(proportion of forest land); (3) SL (slope); (4) AT (altitude). Response variables include the following:
(1) BD (biodiversity); (2) SR (soil retention); (3) WR (water retention); (4) FM (flood mitigation);
(5) WP (water purification); (6) SP (sandstorm prevention); (7) CS (carbon sequestration); (8) CP (crop
production); (9) EOP (edible oil production); (10) MP (meat production). The cosine of the angle
between arrows approximates the correlation coefficient between variables and the length of arrows
represents the extent to which the variable is explained.
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4. Discussion

Analysis of ecosystem service bundles can help improve the management of multifunctional
ecosystems [15]. A deeper understanding of how services are bundled together and the key interactions
between them can help managers take advantage of synergies among services and minimize the risk of
unnecessary ecological trade-offs [8]. In our study, at a large watershed scale, the key regulating services
and biodiversity vital to the conservation of the Yangtze River Basin, as well as the major provision
services, were analyzed in terms of their spatial patterns, trade-offs and synergies. We identified
the distinct spatial patterns of ecosystem services. We also determined how multiple ecosystem
services coexist together and differ from the upper to lower basin reaches, and how they spatially form
different ecosystem service bundles through complex social–ecological interactions across the whole
area of the Yangtze River Basin. Our findings could have implications for multifunctional ecosystems
management in watersheds around the world.

4.1. Trade-Offs and Synergies among Ecosystem Services

The understanding of the complex relationships (trade-offs or synergies) among multiple
ecosystem services is the foundation of rational ecosystem-based management [8,15]. We found
that synergies exist between biodiversity and regulating services, as other studies showed [9,10,38].
However, the flood mitigation service, for which high values mainly distributed in the areas with
high annual precipitation in the middle-lower reaches of the basin, was not correlated significantly
with biodiversity, for which high values mainly concentrated in the Hengduan mountains in the
upper reaches with complex terrain and climate [23]. The lack of correlation is somewhat surprising
given that flood mitigation and biodiversity are both closely related to the proportion and quality of
natural ecosystems. Most of the regulating services had significant trade-offs with provision services,
as previous studies showed [7,15,16]. However, we found that the sandstorm prevention service,
which was aggregated within the plateau area in the source regions of the Yangtze River Basin,
was not significantly correlated with productions of oil and meat, which were concentrated in the
plain area. Meanwhile, our results showed similar synergies among regulating services, as other
studies revealed [9,15], but the sandstorm prevention service was not significantly correlated with
other regulating services. These relationships are determined by the spatial clustering patterns of
the individual services at the watershed landscape scale, which is important for protecting specific
services in a particular area, and helps decrease the ecological risks at the watershed scale.

4.2. Ecosystem Service Bundles and Implications for Management

Policies should be implemented that target bundles of services, instead of individual services or
empirical combinations of ecosystem services, taking advantage of different types of social–ecological
interactions [10]. We found five distinct ecosystem service bundles across the whole area of the
Yangtze River Basin, and they are likely produced by different sets of social–ecological interactions.
Previous studies showed that natural and socio-economic gradients influenced the spatial variance
in the ecosystem services [7,15]. In the Yangtze River Basin, we found land use, slope and altitude
gradients could explain the spatial patterns of ecosystem services and the formation of ecosystem
service bundles. Provision services were concentrated in the flat areas with dense cropland, wetland,
and the largest population density, a finding similar to that of previous studies [7,15,16]. Most of
the regulating services and high levels of biodiversity in our study tended to be distributed in the
mountain areas with high forest coverage, except for the sandstorm prevention service, which was
located only in the grassland area of the plateau. Meanwhile, high biodiversity levels tended to be
located in high-altitude, sparsely populated areas compared to regulating services. Differences in
terrain and socio-economic factors determine that high biodiversity and high regulating services do
not coexist consistently. The enhancement of regulating services cannot always improve biodiversity,
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and the enhancement of one regulating service cannot always improve other regulating services in the
Yangtze River Basin.

Mapping ecosystem service bundles can identify areas in a landscape where ecosystem
management has produced exceptionally desirable or undesirable sets of ecosystem services, and helps
identify interventions that can have desired effects on multiple ecosystem services simultaneously [10].
The agriculture bundle type and forest bundle type are the most common types of aggregated ES
revealed by previous studies [7,15,16,39]; these represent high provision services and high regulating
services, respectively. We obtained two high regulating service bundles: the highest regulating
service bundle (mainly distributed in the middle-lower reaches) and the second-highest regulating
service bundle (mainly distributed in the upper reaches). In particular, carbon sequestration, water
retention, soil retention and flood mitigation, which are highly positively correlated with each other
and can bring direct benefits to human welfare (such as water supply, flood avoidance, prevention
of soil erosion and air quality regulation), consistently coexist in these bundles. This coexistence
indicates that the desirable composition of regulating services is similar in these bundles, and that the
enhancement of regulating services also may achieve the objective of improving multiple ecosystem
services simultaneously in these bundles. In our study, both the highest and the second-highest
regulating service bundles were distributed mostly in the mountain areas, and areas where the bundles
were located had the same mean value of slope. However, the provision services were higher in
the latter bundle, which was located closer to major cities and presented more trade-offs between
regulating services and provision services. For example, sloping cropland caused the problem of
soil erosion in the mountain area. To avoid losing the erosion regulating service, arable land used to
grow crops on steep slopes should be converted into forest [40], and sustainable soil management
should be further enhanced [41]. Besides, depending on management practices, agriculture may
cause other problems, such as sedimentation of waterways, greenhouse gas emissions, and pesticide
contamination of water and soil resources [2]. To mitigate the trade-offs between provision services
and other services, appropriate agricultural management practices (such as ecological agriculture [42])
should be improved to realize the benefits of ecosystem services and reduce the undesirable side-effects
from agricultural production [2]. In addition, although the proportions of cropland and urban land
were the highest in the food provisioning bundle, these counties had high proportions of wetlands
(8.8%) and forest lands (11.6%). The wetland and forest could provide the opportunities to increase
regulating services within the food provisioning bundle (e.g., returning farmland to lake, ecotourism)
in order to achieve better landscape sustainability and reduce the trade-offs between ecosystem services.
Changes in such trade-offs may create significant opportunities for ecosystem management [8] to
achieve the sustainable provision of diverse ecosystem services.

Ecosystem service bundles can also provide explicit, tailored information on landscape planning
for ecosystem service conservation and design of payment policies for ecosystem services within
diverse landscapes at the watershed scale. The biodiversity bundle and the sandstorm prevention
bundle that we found in the upper reaches of the Yangtze River Basin are critical to the people in the
lower reaches because of their unique ecological functions. As an ecological shelter zone, the natural
landscape in the upper Yangtze River (e.g., grassland and forest) must be conserved because it is
very important for the sustainable development of ecosystems in the whole basin [43]. In addition,
the ecosystems in the upper reaches are sensitive and vulnerable to climate change and to human
activities [44]. Therefore, the ecosystem service management of the counties comprising these bundles
should focus on conserving their unique and important ecological functions. For the high regulating
service bundles in the mountain areas, the focus should be on conservation of the diverse regulating
services. Meanwhile, with the acceleration of urbanization in the Yangtze River Basin [45], conservation
of the dominant ecological functions should be fully considered in the planning of urban land use
within these bundles. Besides, the differentiation revealed in our study of the composition of multiple
ecosystem services from the upper to lower reaches in the Yangtze River Basin helps clarify that the
providers of important ecosystem services in the upper reaches convey benefits to urban areas in the
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lower reaches by facilitating a better socio-economic situation [46]. This realization provides useful
information for the design of payment policies for ecosystem services between the upper and lower
reaches of a watershed, promoting synergistic development of various ecosystem services at an entire
watershed scale [47].

Our study analyzed the spatial patterns, the relationships of multiple ecosystem services, and
the ecosystem service bundles in the Yangtze River Basin, the largest watershed in China. The study
focused on the major regulating services, provision services and biodiversity in the Yangtze River
Basin. Because of data limitations, we did not consider the cultural services and other provision
services (such as aquatic products); these aspects need to be further studied and compared with the
results of the present study. At the macro level, the study revealed the general spatial patterns of
multiple ecosystem services, their interactions and the drivers in the Yangtze River Basin. Further
research could be conducted on the subsystems of the ecosystem service bundles that we generated to
investigate the more complex relationships among multiple ecosystem services at a finer scale than
a river basin. Furthermore, the temporal scale could be further considered to analyze the dynamic
changes of the multiple ecosystem services and their interactions, as well as the consequent dynamic
changes of the ecosystem service bundles.
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