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Abstract: A hybrid photovoltaic (PV) forecasting model is proposed for the ultrashort-term prediction
of PV output. The model contains two parts: offline modeling and online forecasting. The offline
module uses historical monitoring data to establish a weather type classification model and PV
output regression submodels. The online module uses real-time monitoring data for weather
type identification on target days and the forecasting of irradiation intensity and temperature
time series. The appropriate regression submodel can be selected based on the subsequent results,
and the ultrashort-term real-time forecasting of PV output can be performed over a short time scale.
The model incorporates power generation and historical meteorological data from the PV station
and is suitable for practical engineering applications. In addition to the irradiation intensity and
temperature, other factors related to photovoltaic output are evaluated; however, they are excluded
from the model for simplicity and efficiency. The performance of the model is verified by practical
modeling analysis.
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1. Introduction

According to the prediction of the International Energy Agency (IEA), global crude oil can be
exploited for 45 years, and coal can be exploited for 230 years [1]. Solar energy has increasingly replaced
traditional fossil fuel energy because of the global energy crisis and environmental deterioration. As an
important technology path for the utilization of solar energy, photovoltaic (PV) power systems have
been rapidly developed in recent years. By 2015, the global PV installed capacity reached 227 GW.
With a total installed PV capacity of 43.18 GW, China has become the country with the largest installed
capacity of photovoltaic power generation in the world. Notably, the new installed capacity has reached
15.13 GW, and the installed capacity of PV power stations is 37.12 GW [2]. However, the operational
stability and power quality of the power grid have been seriously influenced by the large-scale
integration of PV power stations [3,4]. PV consumption has become an important obstacle for further
improvements in the PV industry. Currently, PV power forecasting is an effective way of solving this
problem. On one hand, power generation information can be provided for the coordinated control and
optimal dispatching of the power grid, which can play a significant role in solving voltage fluctuations
when a large number of PV systems are connected to the power grid [5]. On the other hand, the PV
absorption ability can be promoted to increase the rate of return on investments in PV power stations.
PV power forecasting includes ultrashort-term (0~6 h), short-term (6~24 h) and mid-and-long-term
(>24 h) methods. From the perspective of power grid operation, it is more beneficial for emergency
management and prevention to have a short prediction period [6]. Therefore, ultrashort-term power
forecasting for PV power stations should be given increased attention.
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Traditionally, PV power forecasting methods can be categorized into direct forecasting and
indirect forecasting methods. Usually, direct forecasting models are regression models of instantaneous
power generation established using associated data, such as irradiance, temperature, humidity and
wind speed data. These data are supplied by PV power stations or numerical weather prediction
(NWP). Modeling methods include artificial neural network (ANN) [7–9], support vector machine
(SVM) [10,11] and multivariate regression [12] methods, among others. Indirect forecasting models
comprise two continuous processes. One is the prediction of the solar irradiation intensity or other
meteorological information. The other is the calculation of instantaneous PV power using prediction
data. Nephogram processing methods (including cloud tracking images [13], ground-based sky
images [14], geostationary satellite imagery [15], etc.), time series analysis [16,17], fuzzy logic [18],
and hidden Markov models [19] are all suitable irradiation intensity forecasting methods.

Because of complementary advantages of different algorithms and the associated high forecasting
accuracy, hybrid forecasting has gradually become a new research direction [20–24]. Typically, hybrid
forecasting is a two-step process that includes the classification and recognition of weather types and
the regression and forecasting of PV power generation. K-means clustering [25] and fuzzy c-means [26]
are used for clustering of weather types. Self-organizing map (SOM), learning vector quantization
(LVQ) [27], gray correlation coefficient [28], generalized weather class (GWC) and SVM [29] methods
are effective approaches for weather pattern recognition. In addition, support vector regression
(SVR) [27], support vector machines optimized with genetic algorithms (GA-SVM) [28], and particle
swarm-optimized SVR (PSO-SVR) [30] can be selected as corresponding regression algorithms.

The acquisition accuracy and frequency of PV data have improved with the development of online
monitoring technology. Currently, it is possible to establish a real-time PV forecasting mechanism for
power grid regulation. In this paper, a novel ultrashort-term forecasting model is proposed that can
predict PV power every 5 min. Modeling data from the meteorological service and online monitoring
system are reliable and actual, which can reflect the real situation and improve forecast ability in
rolling mode.

This model can be divided into offline modeling and online forecasting. The offline modeling
is based on the processing of historical data and establishment of a regression model. Real-time
modeling is performed in online forecasting. In offline modeling, weather classification and pattern
recognition are performed to eliminate interference and increase the forecasting accuracy. The kernel
fuzzy c-means (KFCM) method is adopted to classify the characteristic data of different weather
conditions, and an SVM is used to construct the weather recognition model. Subsequently, several SVR
submodels (sub-SVRs) are established for power forecasting. In online forecasting, the autoregressive
integrated moving average (ARIMA) can be used to predict solar irradiation and temperature using
monitoring data (the sampling period is 5 min) from PV power stations in a step-by-step process in a
rolling forecasting mode. Finally, real-time instantaneous PV power (forecast period is also 5 min) can
be acquired by previously established sub-SVRs. The performance of the proposed model is verified
using historical data from PV power stations in Wujiang District, Jiangsu Province, China.

2. Correlation Analysis of PV Generation Factors

Generally, geographical location and meteorological conditions strongly affect the generation of
PV power stations. However, the geographical location of a PV power station, layout and arrangement
of PV cell panels, global system efficiency and other factors known before the construction of a PV
power plant affect generation. Therefore, only the local meteorological conditions are adopted for
modeling PV power generation. To reflect the operational status over time, online monitoring systems
have been widely applied in many PV power stations. Figure 1 depicts the scheme of a monitoring
system that can collect important electrical and meteorological information.
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Figure 1. Typical structure of an online monitoring system in a PV power station. 

Specifically, these meteorological data include the irradiation intensity, temperature, wind 
speed and direction, etc. In theory, meteorological factors, especially the irradiation intensity and 
temperature, have influence on the instantaneous power generation of a PV power station. Figure 2 
shows the curve and scatter of the irradiation intensity, temperature and instantaneous power under 
different sunny and cloudy days. From the scatter diagram, an obvious linear relation between 
radiation intensity and instantaneous power is shown on both sunny and cloudy days. However, 
there is not a clear relationship between temperature and instantaneous power. Meanwhile, 
weather type has a certain influence on this relationship. For example, the scatter points are more 
concentrated on sunny rather than cloudy days. Therefore, a strong positive correlation exists 
between the radiation intensity and instantaneous power, while temperature has a weaker 
correlation with instantaneous power. 
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Figure 1. Typical structure of an online monitoring system in a PV power station.

Specifically, these meteorological data include the irradiation intensity, temperature, wind speed
and direction, etc. In theory, meteorological factors, especially the irradiation intensity and temperature,
have influence on the instantaneous power generation of a PV power station. Figure 2 shows the curve
and scatter of the irradiation intensity, temperature and instantaneous power under different sunny
and cloudy days. From the scatter diagram, an obvious linear relation between radiation intensity
and instantaneous power is shown on both sunny and cloudy days. However, there is not a clear
relationship between temperature and instantaneous power. Meanwhile, weather type has a certain
influence on this relationship. For example, the scatter points are more concentrated on sunny rather
than cloudy days. Therefore, a strong positive correlation exists between the radiation intensity and
instantaneous power, while temperature has a weaker correlation with instantaneous power.
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Figure 2. Cont.
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Figure 2. Comparison of instantaneous power, irradiation intensity and temperature. (a) curve and 
scatter diagram of instantaneous power and irradiation intensity on sunny days; (b) curve and 
scatter diagram of instantaneous power and temperature on sunny days; (c) curve and scatter 
diagram of instantaneous power and irradiation intensity on cloudy days; (d) curve and scatter 
diagram of instantaneous power and temperature on cloudy days. 

The selection of reasonable data is a prerequisite for building an accurate regression model. As 
shown in Figure 2, the irradiation intensity and temperature directly influences power generation in 
all weather conditions. In addition, to improve the computational accuracy and efficiency, other 
monitoring meteorological data must be considered. Therefore, it is necessary to perform 
correlation analysis to independently explore the correlation degrees between meteorological factors 
and instantaneous power. Pearson correlation analysis is chosen in this study, and the related results 
are shown in Table 1. Note that the sine and cosine values of wind direction are adopted. 

Table 1 shows that irradiation intensity and temperature have higher correlations with power 
generation than others do. Moreover, the correlations of wind speed and direction are sufficiently 
small and can be eliminated from the regression model. As a result, irradiation intensity and 
temperature are adopted as the training datasets of the SVR model. 

Table 1. Correlation degrees between meteorological factors and PV power generation. 

Meteorological Factor Correlation
Irradiation intensity 0.885 

Temperature 0.316 
Wind speed 0.025 

Direction (sin) −0.028 
Direction (cos) −0.128 

3. Hybrid Forecasting Model 

3.1. Data Verification and Cleaning 

The training data were collected from a PV power station in Wujiang District, Jiangsu Province, 
China. This power station has three grid-connected points, and its total installed capacity is 10 MW. 
Currently, a comprehensive monitoring system has been set up at this station, and nearby 
independent weather stations collect real-time weather information for the system. Power metering 

Figure 2. Comparison of instantaneous power, irradiation intensity and temperature. (a) curve and
scatter diagram of instantaneous power and irradiation intensity on sunny days; (b) curve and scatter
diagram of instantaneous power and temperature on sunny days; (c) curve and scatter diagram
of instantaneous power and irradiation intensity on cloudy days; (d) curve and scatter diagram of
instantaneous power and temperature on cloudy days.

The selection of reasonable data is a prerequisite for building an accurate regression model.
As shown in Figure 2, the irradiation intensity and temperature directly influences power generation
in all weather conditions. In addition, to improve the computational accuracy and efficiency,
other monitoring meteorological data must be considered. Therefore, it is necessary to perform
correlation analysis to independently explore the correlation degrees between meteorological factors
and instantaneous power. Pearson correlation analysis is chosen in this study, and the related results
are shown in Table 1. Note that the sine and cosine values of wind direction are adopted.

Table 1 shows that irradiation intensity and temperature have higher correlations with power
generation than others do. Moreover, the correlations of wind speed and direction are sufficiently small
and can be eliminated from the regression model. As a result, irradiation intensity and temperature
are adopted as the training datasets of the SVR model.

Table 1. Correlation degrees between meteorological factors and PV power generation.

Meteorological Factor Correlation

Irradiation intensity 0.885
Temperature 0.316
Wind speed 0.025

Direction (sin) −0.028
Direction (cos) −0.128

3. Hybrid Forecasting Model

3.1. Data Verification and Cleaning

The training data were collected from a PV power station in Wujiang District, Jiangsu Province,
China. This power station has three grid-connected points, and its total installed capacity is 10 MW.
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Currently, a comprehensive monitoring system has been set up at this station, and nearby independent
weather stations collect real-time weather information for the system. Power metering devices are
installed at grid-connected points to collect power information, which is sampled at an interval of 5 min.
The period of the modeling data spans from April 2016 to February 2017, for almost a total of nine
months, amounting to 295 days. There are 31,397 samples when nighttime samples with instantaneous
power values of 0 are removed. The samples [Ti, IRi, Pi] include temperature Ti, irradiation intensity
IRi and instantaneous power Pi. Generally, some inaccurate data exist in a database due to sensor
failure, data acquisition module failure and system error. These data have negative effects on weather
pattern recognition and regression modeling. Therefore, they must be eliminated in advance. In this
paper, the inaccurate and incorrect data are cleaned using residual processing based on SVR. As noted
in Table 1, Pi has a relatively high relationship with IRi and Ti. Thus, Pi and Pj (Pi and Pj are ith and
jth samples) should not significantly deviate over similar ranges of IRi, IRj and Ti, Tj. Otherwise,
these samples can be regarded as incorrect samples. Figure 3 shows the data cleaning process. First,
all the historical samples are used to establish the SVR model with inputs IRi and Ti and output Pi.
Then, fitting residuals can be calculated. Second, the samples with maximum residuals of 5% are
considered to be inaccurate and are used to establish a corresponding threshold. Finally, samples
are eliminated if their residuals are greater than the threshold. Remaining samples are used in the
forecasting model.
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3.2. Hybrid Forecasting Model

The hybrid forecasting model contains an offline module for historical data processing and an
online module for real-time forecasting. The integrated model is shown in Figure 4. The main functions
of the offline module are as follows:

• the classification of historical samples according to meteorological characteristics;
• the establishment of regression submodels (sub-SVRs);
• the effective identification of weather types and selection of sub-SVRs.

The main functions of the online module are as follows:

• the forecasting of irradiation intensities and temperatures in rolling mode;
• the real-time forecasting of instantaneous power generation for a PV station.

Rolling forecasting is a forecasting mode. Predicted value can be obtained by a time series model.
Simultaneously, this time series model can be extended and corrected by the actual value for further
forecasting step by step.
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Data verification and cleaning, weather identification and sub-SVRs establishment are all included
in the offline module, while time series forecasting and regression are performed in the online module.
The classified regression model has better accuracy than the overall model due to the advantage of
eliminating the interference of unknown factors on other weather conditions. In this paper, KFCM
and SVM are selected to identify weather types. The real-time forecasting of irradiation intensity and
temperature is achieved using the ARIMA method. The instantaneous power of the PV station is
obtained using sub-SVRs. The processing steps are as follows:

Step 1. Meteorological feature selection: The feature vectors [IRmax, Tmax, DIFFIRmax, MVIR, STDIR,
TDIRmax] of the KFCM model are calculated. IRmax is the maximum irradiance, and Tmax

is the maximum temperature. DIFFIRmax, MVIR, STDIR and TDIRmax are the maximum
fluctuation, mean fluctuation, standard deviation of fluctuate on and maximum third
derivative, respectively. They are standardized by the Z-score method.

Step 2. Clustering and optimization: An unsupervised clustering model is established using KFCM.
In addition, the VXB indicator is selected to determine the optimal clustering number.
Both historical samples and meteorological features are denoted by category labels.

Step 3. Establishment of the sub-SVR model: the historical samples in one category are used to
construct the SVR submodel. Additionally, several submodels are established.

Step 4. Multiclassification modeling: An SVM recognition model is established using meteorological
features. To obtain the category attributes on target days, the features calculated from the
NWP service are input into the SVM model. Corresponding submodels are selected according
to the category label of the target day.
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Step 5. Time series modeling: The ARIMA time series model is established using some data, including
T and IR, collected by the online PV monitoring system on the target day. Then, new predicted
values of the time series can be obtained via rolling forecasting.

Step 6. Instantaneous power forecasting: The predicted values are input into the corresponding
sub-SVR models and yield the final instantaneous power Pi.

3.3. Feature Selection for Weather Identification

As discussed above, the temperature and irradiation intensity play major roles in PV power
generation. Additionally, irradiation fluctuation is the most important factor that influences PV power
forecasting due to the random interference caused by meteorological conditions. Therefore, in weather
identification, the fluctuation indexes of irradiance are used as the main features in weather clustering
under different fluctuation conditions. In this paper, six features are selected for modeling. The first
three are as follows:

• maximum irradiance IRmax = max(IRi),
• maximum temperature Tmax = max(Ti),
• the maximum fluctuation DIFFIRmax = max(DIFFIRi).

Generally, the derivative of irradiance can be used to describe the irradiance fluctuation. However,
for discrete data with a constant sampling rate, the first difference DIFFIR is typically adopted to
replace the first derivative:

DIFFIRi = IRi+1 − IRi(i = 1, 2, . . . , n− 1), (1)

where n is the number of sampling points. The final three features include the following variables:

• the fluctuation mean value MVIR, which is the average of DIFFIRi,
• the fluctuation standard deviation STDIR of DIFFIRi, and
• the maximum third derivative TDIRmax of DIFFIRi. The third derivative is more sensitive to rapid

weather changes than are the other derivatives [31].

IRmax and Tmax can reflect maximum instantaneous power. Other features reflect
weather fluctuations.

The Z-score method is adopted to eliminate data dimensionality:

x̃i =
xi − x

σ
, (2)

where xi and x̃i are the features before and after standardization, respectively, and x and σ are the
mean value and standard deviation of the features.

3.4. KFCM Clustering and Optimization

To classify historical data, feature samples are used to establish the KFCM clustering model.
To enhance the separation, the KFCM method transforms the feature space into a high-dimensional
space via nonlinear mapping. Therefore, KFCM can overcome the shortcoming of K-means and fuzzy
c-means such as local optimum and sensitive to abnormal data. To assess the clustering effectiveness,
a cluster validity index must be determined. In this study, the Xie–Beni index [32] VXB is used to
evaluate the clustering performance:

VXB =

C
∑

i=1

n
∑

j=1
um

ij ‖xj−νi‖2

ns
s = min

j 6=i
‖νj − νi‖2

, (3)
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where C and n are the clustering number and sample number, respectively; uij is the membership
degree; xj is the jth sample; νi is the ith clustering center; and VXB is the minimum resulting
value. At this value, KFCM displays the best performance, and the corresponding value of C is
the optimal clustering number. Considering the practical application of model refinement methods,
KFCM clustering must be hierarchically executed. Specifically, the first clustering step is executed in
accordance with the features ([IRmax, Tmax, DIFFIRmax, TDIRmax]). Then, the initial results are clustered
again with the remaining features ([MVIR, STDIR]). The KFCM process is shown in Figure 5.

Sustainability 2018, 10, x FOR PEER REVIEW  8 of 18 

where C and n are the clustering number and sample number, respectively; iju  is the membership 

degree; jx  is the jth sample; iν  is the ith clustering center; and XBV  is the minimum resulting 

value. At this value, KFCM displays the best performance, and the corresponding value of C is the 
optimal clustering number. Considering the practical application of model refinement methods, 
KFCM clustering must be hierarchically executed. Specifically, the first clustering step is executed in 
accordance with the features ( max max IRmax IRmaxIR T DIFF TD  ， ， ， ). Then, the initial results are clustered 

again with the remaining features ( IR IRMV STD  ， ). The KFCM process is shown in Figure 5. 

max max IRmax IRmaxIR T F TD  ， ， ，

IR IRSTD MV  ，
 

Figure 5. KFCM modeling process and optimization. 

The process is as follows: 

Step 1. Data preparation: the samples in the first clustering include max max IRmax IRmaxIR T DIFF TD  ， ， ， . 
Step 2. The initial clustering number is C = 2. 
Step 3. KFCM is executed as follows: 

Step a. Initialization of KFCM clustering centers iν , 
Step b. Membership degrees iku  are calculated by the following equation: 

( ) ( ) ( )( )( ) ( )

( ) ( ) ( )( )( ) ( )

1/ 1

1/ 1

1

1 / , , 2 ,

1 / , , 2 ,

m

k k i i k i

ik c m

k k j j k j
j

K x x K K x
u

K x x K K x

ν ν ν

ν ν ν

−

−

=

+ −
=

+ −
,

 
(4) 

where xk is the sample, and K is the Gaussian kernel function:  

Figure 5. KFCM modeling process and optimization.

The process is as follows:

Step 1. Data preparation: the samples in the first clustering include [IRmax, Tmax, DIFFIRmax, TDIRmax].
Step 2. The initial clustering number is C = 2.
Step 3. KFCM is executed as follows:

Step a. Initialization of KFCM clustering centers νi,
Step b. Membership degrees uik are calculated by the following equation:

uik =
(1/(K(xk, xk) + K(νi, νi)− 2K(xk, νi)))

1/(m−1)

c
∑

j=1

(
1/
(
K(xk, xk) + K

(
νj, νj

)
− 2K

(
xk, νj

)))1/(m−1)
, (4)
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where xk is the sample, and K is the Gaussian kernel function:

K
(

xi, xj
)
= exp

(
−
‖xi − xj‖

δ2

)
. (5)

δ is the kernel parameter.
Step c. New clustering centers are updated as follows:

νi =

n
∑

k=1
um

ikK(xk, νi)xk

n
∑

k=1
um

ikK(xk, νi)
. (6)

Step d. KFCM terminal conditions: When the minimum variation in clustering centers νi or the
cycle number threshold is met, the cycle is stopped. Otherwise, the cycle continues from
Steps a to d.

Step 4. The clustering validity coefficient VXB(C) is calculated using Formula (3).
Step 5. C = C + 1; if C 6= Cmax, proceed to step 3. Otherwise, proceed to step 6.
Step 6. The optimum clustering number Copt is determined by the minimum VXB(C).
Step 7. A second clustering process will be executed to classify the results of the first clustering using

[MVIR, STDIR] and based on steps 1–6.

3.5. SVM Recognition and the Sub-SVR Model

As a machine learning algorithm, SVM is widely used in data classification, pattern recognition
and fault diagnosis. The core concept of SVM is to construct an optimal separating hyperplane so that
the distance between the hyperplane and the sample nearest the hyperplane is the maximum distance.
For classification problem (xi, yi), i = 1, 2, · · · , l, xi ∈ Rn, yi ∈ {−1,+1}, samples can be accurately
separated into two categories by the optimal hyperplane w·x + b = 0. Therefore, the construction of
the optimal hyperplane can be transformed into an optimization problem:

min
w,b

1
2
‖w‖2 + c

l

∑
i=1

ξi. (7)

The SVM constraint condition is given by Label (8):

yi((w·xi) + b) ≥ 1− ξi, i = 1, 2, · · · , l, (8)

where w is the normal vector of the optimal hyperplane and b, c, and ξi, are the threshold,
penalty parameter and slack variable, respectively.

The Lagrange multiplier method can be used to solve this optimization problem. For nonlinear
classification, samples in low-dimensional space are mapped into high-dimensional space using the
function φ(x). The kernel function K(xi, xj) is the same as that used in the KFCM method. The objective
function can be expressed as follows:

max. L =
l

∑
i=1

αi −
1
2

l

∑
i,j=1

αiαjyiyjK(xi, xj), (9)

where αi is the Lagrange multiplier.
SVR is an important branch of SVM. The main concept of SVR is to map linearly inseparable

samples into high-dimensional space for linear regression. Ultimately, the nonlinear regression function
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f (x) = wT ϕ(x) + b can be obtained. The sub-SVR model in this paper is a combination of several
independent SVR models.

3.6. ARIMA Model

Generally, the ARIMA model can be expressed as ARIMA(p, q, d), where p is the autoregressive
order, q is the moving average order, and d is the difference order. The ARIMA process is as follows:

Step 1. Differential processing: The stationary time series data [XAt] are obtained from the original
time series [Xt] based on a difference method. In this paper, two ARIMAs are established
based on the irradiance intensity sequence [Xt-IR] and the temperature sequence [Xt-T].

Step 2. Model identification and p and q confirmation: An autocorrelation function (ACF) and a
partial correlation function (PACF) are calculated for [XAt]. Then, the model type (AR, MA,
or ARMA) will be determined according to the ACF and PACF. In general, the ARIMA model
can be expressed as follows:

XAt =
p

∑
i=1

aiXAt−i +
q

∑
j=0

bjet−j, (10)

where ai is the autoregressive coefficient, bj is the moving average coefficient, and et−j is a
white noise series, which represents independent error. The Akaike information criterion
(AIC) is commonly used to confirm p and q.

Step 3. Parameter estimation: After parameter estimation, ARIMA(p, q, d) is established.
Step 4. Data forecasting: Single-step forecasting is performed to obtain predictions of the irradiance

intensity and temperature using the ARIMA model.

Rolling forecasting is adopted for the ARIMA method in this paper because it uses monitoring
data to correct the real-time ARIMA model and improve the forecasting accuracy. In this paper,
the sampling interval of the PV monitoring system is 5 min. Therefore, the predictive value is acquired
by ARIMA model at a 5-min interval. For example, the temperature sequence Ti (i = 1, 2, · · · , n) is
the first n monitoring samples on the target day. First, the ARIMA forecasting model is established
using Ti . Then, the predicted temperature value T′n+1 can be obtained. Second, actual monitoring
sample Tn+1 can be acquired 5 min later and is added to Ti (i = 1, 2, · · · , n) to update the ARIMA
model. Finally, the next predicted value T′n+2 is obtained by the new ARIMA model, and the model is
updated again. The remainder of the process is performed in the same manner.

4. Modeling and Evaluation

According to the data cleaning and modeling processes described in Sections 3.1 and 3.2, the PV
generation forecasting model is established. Four typical weather conditions, sunny (21 July), cloudy
(19 May), rainy (7 June) and overcast (22 August), are selected as the test dataset (586 samples).
The remaining 30,811 samples are used as the training dataset.

4.1. Data Verification and Cleaning Based on SVR

As shown in Figure 3, the sub-SVR model should be established using the training dataset
with irradiation intensity IRi and temperature Ti inputs and instantaneous power Pi as the output.
The model parameters should be optimized using a cross-validation method. Penalty parameter c
and kernel parameter g are set to 194.02 and 0.0098, respectively. Then, the training samples are fitted
by the SVR model to calculate the residuals. Finally, the residuals are ranked in descending order.
The samples in the highest 5% of residuals are removed as abnormal samples, and the remaining
samples are regarded as valid samples. To evaluate the fitting precision of PV instantaneous power,
the mean absolute percentage error (εMAPE) is chosen to measure the global error, while the root
mean square error (εRMSE) is chosen to measure the difference between predicted and real values.
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The histograms of the residual distribution before and after cleaning are shown in Figure 6. εMAPE and
εRMSE are shown in Table 2:

εMAPE =
100
n

n

∑
i=1

∣∣∣∣Pi − P′i
Pi

∣∣∣∣%, (11)

εRMSE =

√
1
n

n

∑
i=1

(
Pi − P′i

)2. (12)

Table 2. εMAPE and εRMSE before and after cleaning.

Before Cleaning After Cleaning

εMAPE 19.38% 18.56%
εRMSE 83.73 45.63

Figure 6 and Table 2 show that εMAPE and εRMSE decrease, and the residual distribution becomes
more reasonable.
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4.2. Weather Identification and Regression Submodel Establishment

After data cleaning, daily meteorological features are extracted from the modeling
dataset using the methods presented in Section 3.3. Notably, 261 valid days are used
([IRmax, Tmax, DIFFIRmax, MVIR, STDIR, TDIRmax]). These feature days are categorized to label the
modeling data. Next, a hierarchical clustering model is established, as discussed in Section 3.4.
In general, an overly large clustering number can negatively affect the clustering performance.
Therefore, the maximum clustering number is set to Cmax = 10. The variation of VXB is shown in
Figure 7. Notably, when C = 2, VXB is at a minimum. Therefore, the optimal clustering number of the
two layers is 2. Moreover, all the feature days are divided into four categories. The clustering results
are shown in Table 3.

Table 3. Clustering results of weather features.

Days Number in Clusters

First clustering 118 (A + B) 143 (C + D)
Second clustering 45 (A) 79 (B) 39 (C) 104 (D)
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Figure 7. VXB curves of first and second clustering. (a) VXB curves of first clustering; (b) VXB curves of
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After labeling the 261 feature days, these days are used to establish the multiclassification SVM
model for weather type identification. Specifically, 183 days are selected for training, and the remaining
78 days are used as the test dataset. Through cross-validation, the penalty parameter c = 111.4305
and the kernel parameter g = 0.00156 are obtained. The results of the weather type test are shown in
Table 4.

In Table 4, the SVM model misclassifies four days that belong to category B, resulting in a 94.78%
classification accuracy. Thus, the SVM accuracy is high enough for weather recognition, and this
model can identify the weather types on target days. Therefore, corresponding sub-SVR models can be
reasonably selected.

Table 4. Results of the weather type test based on the SVM model.

Actual Category
Test Category

Total
A B C D

A 10 0 0 0 10
B 3 22 1 0 26
C 0 0 11 0 11
D 0 0 0 31 31

Total 13 22 12 31 78

4.3. ARIMA Time Series Forecasting and Sub-SVRs

According to Section 3.2, two essential steps should be completed by the online module: sub-SVR
selection and regression and ARIMA modeling and forecasting.

In the first step, 29,829 data samples over 261 days are classified into A, B, C and D classes
by KFCM. The sub-SVR model is established using samples with the same label. Four submodels
(SUB-A, SUB-B, SUB-C and SUB-D) with irradiation intensity IRi and temperature Ti inputs and
output instantaneous power Pi as the output are obtained. Subsequently, weather type identification
is performed. The weather information on target days is input into the SVM multiclassification
model to obtain the category attribute. The target days selected include 19 May, 7 June, 21 July, and
22 August. The category labels obtained for these four days using the SVM model are B, C, D and B,
which correspond to submodels SUB-B, SUB-C, SUB-D and SUB-B, respectively.

In the second step, the hybrid forecasting models based on ARIMA time series and sub-SVR
are established in accordance with the process described in Section 3.6, and rolling forecasting is
adopted. To meet the requirements of time series modeling and engineering applications, two ARIMA
models are established using the first 20 values of IRi and Ti (I = 1~20), which are obtained from
the online PV monitoring system on the target days. The sampling interval is 5 min. For example,
on 21 July, the first monitoring values appeared at 6:15 a.m. The first 20 monitoring values (IRi,Ti) are
collected from 6:15 a.m. to 7:55 a.m. Then, ARIMA modeling and forecasting begin. Subsequently,
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two time series models, ARIMAIR and ARIMAT, can be constructed to forecast irradiation intensity
and temperature, respectively. Model parameters p, q and d are set to 1. Then, the subsequent values of
IR′ i+1 and T′ i+1 (5 min later at 8:00 a.m.) can be predicted using the ARIMAIR and ARIMAT models.
These predicted values are input into the submodel SUB-D to obtain the predicted instantaneous
power P′ i+1. In addition, the new actual monitoring values IRi+1 and Ti+1 can be used in real time
to modify the ARIMAIR and ARIMAT models. IRi+1 and Ti+1 are obtained from the PV monitoring
system at 8:00 a.m. Then, the next predicted values, IR′ i+2, T′ i+2 and P′ i+2 (8:05 a.m.), can be similarly
obtained. The instantaneous power P is forecasted in real time via a rolling cycle. The forecasts of
IR and T and the regression of P by the hybrid forecasting models on four target days are shown in
Figures 8–10. Additionally, the forecasting accuracy is shown in Table 5. Moreover, for comparison
of different forecasting algorithms, four different regression models are established: the sub-SVR
model, a global SVR model (G-SVR), a back propagation neural network submodel (S-BPNN) and a
global BPNN model (G-BPNN). The global models are established using all the training data, while
submodels are established using the classified data. The forecasting results are shown in Table 6.
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Figure 8. Forecasting results of irradiation intensity for four weather types. (a) forecasting results of 
irradiation intensity on May 19; (b) forecasting results of irradiation intensity on June 7; (c) 
forecasting results of irradiation intensity on July 21; (d) forecasting results of irradiation intensity 
on August 22. 

Figure 8. Forecasting results of irradiation intensity for four weather types. (a) forecasting results of
irradiation intensity on 19 May; (b) forecasting results of irradiation intensity on 7 June; (c) forecasting
results of irradiation intensity on 21 July; (d) forecasting results of irradiation intensity on 22 August.
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Figure 9. Forecasting results of temperature for four weather types. (a) forecasting results of 
temperature on May 19; (b) forecasting results of temperature on June 7; (c) forecasting results of 
temperature on July 21; (d) forecasting results of temperature on August 22. 
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Figure 10. Forecasting results of power for four weather types. (a) forecasting results of power on 
May 19; (b) forecasting results of power on June 7; (c) forecasting results of power on July 21; (d) 
forecasting results of power on August 22. 

Table 5. Forecasting accuracy of IR and T. 

Model Data Object MAPEε  RMSEε  

ARIMA 

19 May 
IR 17.24% 105.20 
T 1.11% 0.3373 

7 June 
IR 18.93% 73.70 
T 0.56% 0.1967 

21 July 
IR 2.35% 17.13 
T 0.52% 0.2629 

22 August IR 16.02% 152.54 

Figure 9. Forecasting results of temperature for four weather types. (a) forecasting results of
temperature on 19 May; (b) forecasting results of temperature on 7 June; (c) forecasting results of
temperature on 21 July; (d) forecasting results of temperature on 22 August.
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Figure 10. Forecasting results of power for four weather types. (a) forecasting results of power on 
May 19; (b) forecasting results of power on June 7; (c) forecasting results of power on July 21; (d) 
forecasting results of power on August 22. 
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Figure 10. Forecasting results of power for four weather types. (a) forecasting results of power
on 19 May; (b) forecasting results of power on 7 June; (c) forecasting results of power on 21 July;
(d) forecasting results of power on 22 August.

Table 5. Forecasting accuracy of IR and T.

Model Data Object ”MAPE ”RMSE

ARIMA

19 May IR 17.24% 105.20

T 1.11% 0.3373

7 June IR 18.93% 73.70

T 0.56% 0.1967

21 July IR 2.35% 17.13

T 0.52% 0.2629

22 August IR 16.02% 152.54

T 1.14% 0.4634



Sustainability 2018, 10, 820 15 of 17

Table 6. Forecasting accuracy of P.

Model

Accuracy

19 May 7 June

”MAPE ”RMSE ”MAPE ”RMSE

Sub-SVR 17.12% 142.71 20.76% 112.77

G-SVR 18.33% 143.51 22.21% 112.29

S-BPNN 17.48% 146.38 24.48% 117.90

G-BPNN 19.09% 144.59 29.13% 114.54

Model
21 July 22 August

”MAPE ”RMSE ”MAPE ”RMSE

Sub-SVR 4.47% 43.34 17.00% 201.09

G-SVR 7.58% 56.71 17.53% 207.78

S-BPNN 4.51% 42.40 20.52% 222.25

G-BPNN 7.45% 55.62 24.58% 218.42

The following conclusions can be obtained from the forecasting results:

• The accurate forecasting results of IR and T can be used as inputs in the sub-SVR to improve the
forecasting performance of P. As a result, the forecasted and actual curves are similar.

• IR and T are relatively stable on the sunny day (21 July), and the variation trends are clear.
Reasonable forecasting results can be obtained with the ARIMA models. The curves of forecasted
IR and T are coincident with the actual monitoring curves on the sunny day. However, in other
weather conditions, errors can be observed in the forecasting results for various reasons.

• The effect of variations in T on P is considered in this hybrid model. For instance, on 21 July, the
peak value of IR occurs at approximately 12 p.m. However, the peak value of P appears between
10 p.m. and 11 p.m. On one hand, IR is stable and does not considerably affect the fluctuation in
P. On the other hand, the increase in temperature during this period decreases P. This result is
reflected by the forecasting curve in Figures 8, 9 and 10c.

• In the ARIMA models, T is more stable than IR under all weather conditions, with higher
forecasting accuracy. However, the correlation between IR and P is higher than the correlation
between T and P. Thus, the influence of IR on P is larger than that of T. Meanwhile, volatility will
considerably affect the time series fitting ability of ARIMA. Therefore, the forecasting accuracy of
the hybrid model depends on the processing of IR volatility.

Generally, SVR has an advantage in processing fluctuant data relative to BPNN. However, because
it is sunny on 21 July, T and IR are more stable than other days, and forecasting performances of
G-BPNN and G-SVR are approximate. Except for this day, the G-SVR model has better fitting and
forecasting ability than the G-BPNN model. Moreover, the submodels can improve the forecasting
accuracy by excluding interference factors under different weather conditions. Therefore, the hybrid
forecasting model proposed is a reasonable choice.

5. Conclusions

Grid dispatching and power quality are impacted where the large number of PV systems
are connected to power grid. Control and regulation of the power balance between PV power
generation and other energy power generation are the main problem of power grids. In this paper,
the ultrashort-term forecasting model of PV power station generation can provide reliable information
for the grid dispatching system every 5 min in time. It is an effective method of improving the
coordinated control and enhancing the consumption capacity of PV energy. In this paper, irradiation
intensity and temperature are selected to establish the hybrid forecasting model for weather type
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identification and time series analysis. KFCM and SVM are used in the classification and identification
of weather types, respectively. SVR submodels and an ARIMA model are constructed for the real-time
tracking and reconstruction of the forecasting model, respectively. The data analysis yielded the
following results:

• The hybrid forecasting model is established based on actual monitoring data from a PV power
station. These data reflect the actual meteorological and working conditions of the PV station
in real time. Rolling forecasting is adopted to correct the ARIMA model using real-time data.
Meanwhile, the hybrid model exhibits good agreement with the online monitoring system and
displays high accuracy.

• The data fitting accuracy was improved by excluding abnormal data through data preprocessing,
including data cleaning and correction processes. Correlation analysis was used to determine the
inputs of the forecasting model and improve the calculation efficiency by simplifying the model.

Based on the test results, errors in the hybrid forecasting model increased as irradiation
fluctuations increased. Therefore, improving observations of these fluctuations will be emphasized in
future research.
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