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Abstract: This study assesses the geographical distribution of agricultural water scarcity in
Bangladesh in order to streamline the adaptation measures. The agricultural water scarcity was
assumed to be a system with five subsystems, namely, groundwater depth, surface water availability,
rainfall availability, groundwater salinity for irrigation, and surface water salinity for irrigation.
The catastrophe-theory-based multi-criteria decision making approach was used for the estimation
of agricultural water scarcity index from five subsystem indices. The obtained results showed that
agriculture in about 6.3% of the area of the country is experiencing very high-risk water scarcity,
19.1% with high water scarcity, 37.2% with moderate water risk, and the rest is low or no risk of water
scarcity for agriculture. Results showed that the western part of Bangladesh was more vulnerable to
agricultural water scarcity. The analysis of the results showed that higher agriculture water scarcity
in the northwest region resulted from water unavailability, and in the southwest region it was closely
related to poor water quality. The severe areas of water scarcity are very similar to those that are
usually regarded as water-scarce. The approach presented in this study can be used for rapid but
fair assessment of water scarcity with readily available data, which can be further improved by
incorporating other factors related to water scarcity.

Keywords: water scarcity; catastrophe theory; standardized precipitation index; salinity; streamflow;
groundwater; pre-monsoon; Bangladesh

1. Introduction

Growing water demand due to population growth, economic development, and declining water
supply have caused water scarcity in many countries across the world [1]. It has been reported that
approximately 36% or 2.4 billion of the global population are already living under water stress [2].
The global water demand will continue to grow with population growth and economic development [3].
The world’s population will be 9.6 billion in 2050 [4], and 70% more food will be required to feed this
growing population [5]. A rapid growth in agricultural activities for supplemental food production
will cause 55% increase in global water demand by 2050 [6]. The greatest increases will be observed
in the developing countries that are already experiencing water stress conditions [3]. This will make
water resources scarcer in the developing regions, especially those are located in Asia [7].

South Asia, inhabited by around 30% of the world population, is declared as a water-scarce
region [7]. It has been reported that water security is becoming an important issue in South Asia due
to rapid socio-economic development [8]. The Economic and Social Commission for Asia and the
Pacific (ESCAP) [9] identified India, Pakistan, Maldives, Nepal, and Bangladesh as water hotspots in
the region. Bangladesh, with a population of 156 million over a small land area, is highly dependent
on irrigated agriculture [10]. Recently, Vörösmarty et al. [11], based on a multi-factorial water security
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index, showed very high (0.8–1) water scarcity threat over Bangladesh on a threat scale of 0 (no apparent
threat) to 1 (extremely threatened).

Several droughts indices have been developed to assess water stress in terms of quantitative
availability of water resources. Those indices are widely used for estimation of meteorological droughts
or deficit of rainfall, such as the Standardized Precipitation Index [12], Standardized Precipitation
Evapotranspiration Index [13], etc.; hydrological droughts or inadequacy in surface and subsurface
water resources, such as the Surface Water Supply Index [14], Streamflow Drought Index [15], etc.;
and agricultural droughts or lack of sufficient soil moisture required for crop growth, such as the crop
moisture index [16] and the Soil Wetness Deficit Index [17], etc. Besides those, aggregate drought
indices based on all physical forms of drought (meteorological, hydrological, and agricultural), such as
the Aggregate dryness Index [18], Nonlinear Aggregate Drought Index [19], etc., have been developed
and used for the assessment of droughts and water scarcity. However, water scarcity does not only
depend on physical availability of water resources, but also the quality of water. This is particularly
true for the region where water quality is not sufficient for irrigation. Few studies have been conducted
to assess water scarcity during different cropping seasons using drought indices [20,21]. All those
studies were unable to depict the spatial distribution of agriculture water scarcity of Bangladesh due
to ignorance of water quality and groundwater depth.

Water scarcity in Bangladesh is a recent phenomenon resulting from the geography,
climate change, and socio-domestic status of the region [10]. Moreover, high demand and insufficient
availability of water for irrigation, intervention in Trans Boundary Rivers, unreliable rainfall,
and salinity intrusion in coastal rivers, particularly during the pre-monsoon (March to May),
cause seasonal water scarcity [22]. Additionally, the country is also considered as one of the most
vulnerable countries in the world to climate change [23]. The country often experiences extreme
floods [24], cyclones [25], storm surges [26], and droughts. Thus, a comprehensive assessment of
present situation for agricultural water scarcity during the pre-monsoon season is important in order
to propose necessary adaptation measures for sustainability of water resources.

Agricultural water scarcity assessment is a multi-attribute comprehensive assessment system
that encompasses different dimensions such as water availability, water quality, water accessibility,
etc., which need to be clearly addressed using appropriate indices. In the past, several water
scarcity assessment indices were developed and applied, including the Falkenmarker indicator [27],
water resources vulnerability index [28], water poverty index [29], watershed sustainability index [30],
etc. Although these indices have been successfully implemented in some regions, they are not
fully applicable to other regions [31]. Additionally, these indices need the judgment of decision
makers to assign weights for obtaining the relative importance of one indicator over the other [32].
The weight assigned by decision makers reflects the personal preference for a specific region or purpose,
which eventually precludes their global application.

Therefore, this study used the catastrophe theory to assign weights to different indicators.
The proposed method avoids the direct involvement of decision makers and draws the weights
by its inner mechanism [32]. This study aims to assess agricultural water scarcity in Bangladesh
using the catastrophe theory by considering availability and quality of water resources during the
pre-monsoon crop growing season. The possible changes in agricultural water scarcity due to climate
change were also assessed through literature reviews. Finally, the ongoing adaptation measures were
evaluated for streamlining.

2. Study Area

Bangladesh covers an area of 144,000 km2, located on deltas of three mighty rivers of Asia, namely,
Ganges, Brahmaputra, and Meghna. Geographically, it is situated between latitude 20◦34′ N and
26◦38′ N, and longitude 88◦01′ E and 92◦41′ E. The topography of the country is very flat with some
highlands in the southeast and the northeast. Elevation of about 80% of the land of the country lies
between 0 and 100 m.
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2.1. Climate

Bangladesh has a monsoon-dominated tropical humid climate with periodic rain variation,
moderately warm temperatures, and high humidity. The climate of Bangladesh can be classified into
four seasons: (i) hot pre-monsoon summer (March to May); (ii) hot, humid, and rainy monsoon (June to
September); (iii) post-monsoon (October–November); and (iv) dry winter (December to February) [33].
The annual average rainfall varies from about 1500 mm in the northwest to more than 4200 mm in the
northeast. Seasonal variation of rainfall is also very high. The spatial and seasonal rainfall variations
are shown in Figure 1. About 75% of the total rainfall occurs during the monsoon. Only 10% of the
total rainfall occurs during the pre-monsoon, and it is also very unreliable. The climate of pre-monsoon
season is governed by the occurrence of thunderstorms. Warm moisture air in the low level and cold air
in the high level provide favorable conditions for convections, causing thunderstorms. Thunderstorms
bring rainfall ranges from 150 mm in the west-central part to more than 800 mm in the northeast [34].

The hottest month of the country is April, and the coolest is January. In April, the maximum
temperature rise is 41 ◦C, and in January, for most of the country the average temperature at nighttime
goes down to 10 ◦C. The seasonal variation in average temperature is shown in Figure 2. Low rainfall
and high temperature make water resources in Bangladesh often scarce during pre-monsoon.
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2.2. Agriculture

Agriculture is one of the prime producing parts of the economy of Bangladesh, which contributes
21% to the national Gross Domestic Product (GDP) and provides 66% labor supply for employment.
About 57.4% of the total land area is utilized for cultivation [34]. Rice productivity is the most significant
source for economy of the country. There are three prime seasons of cultivation in Bangladesh,
namely, pre-monsoon (pre-Kharif), monsoon (Kharif), and winter (Rabi). Boro is the main rice variety
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predominantly grown in the pre-monsoon season. Boro rice is cultivated in 80% of the total cultivable
land and contributes 55% of the total rice production in Bangladesh [35]. Boro rice is cultivated under an
irrigation scheme, and due to unavailability of surface water during pre-monsoon, mainly groundwater
is used for irrigating Boro rice field.

2.3. Water Stress

The irrigation water-wells in Bangladesh has grown by more than ten-fold in last two decades
(Figure 3). The huge withdrawal of groundwater for irrigation has caused overdraft and gradual
declination of groundwater level. Groundwater level in some parts of the country goes below the
operating range of shallow tube-wells during the irrigation period.
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Salinity in streamflow and groundwater is another major factor of water scarcity in Bangladesh.
Reduction of freshwater flow from rivers and improper management of groundwater has caused
sea water intrusion of coastal aquifers [37]. Seasonal salinity of groundwater in the year 2004 in the
coastal region is shown in Figure 4. Groundwater salinity in some parts in the coastal regions has
reached beyond the tolerance level of crops, especially during pre-monsoon, and made the resources
completely unsuitable for irrigation. It is anticipated that the situation will certainly be worsening in
near future due to sea level rise induced by climate change.
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3. Methodology

3.1. Framework of This Study

Water scarcity in agriculture is directly related to both water availability and water quality.
Water sources in Bangladesh include surface water, including rainfall and river water, and groundwater.
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Therefore, the agricultural water scarcity in Bangladesh during the pre-monsoon season was
evaluated from groundwater availability (average depth of groundwater), available rainfall,
river water availability, groundwater salinity for irrigation, and surface water salinity for irrigation.
Following steps were used to quantify the agricultural water scarcity:

1. Standardized precipitation index (SPI; [12]) during the pre-monsoon season was estimated from
the long-term monthly rainfall record to assess the spatial distribution of the return periods of
meteorological droughts. Rainfall was considered less available in the area with lower return
period of meteorological drought and vice versa.

2. Spatial distribution of groundwater depth was estimated by interpolating the average
groundwater depth during the pre-monsoon season to measure the availability of
groundwater resources.

3. The ratio of low lift pump (LLP) used for surface water irrigation to groundwater abstraction
wells was used as a proxy indicator to measure the contribution of surface water in irrigation
during the pre-monsoon season.

4. Spatial distribution of groundwater salinity for irrigation was calculated by interpolating the
groundwater salinity data.

5. The surface water salinity map prepared by Soil Resource Development Institute (SRDI) and was
used to assess the spatial distribution of surface water salinity for irrigation.

6. All the maps described in steps 1 to 5 were assigned weights using the catastrophe theory.
7. Finally, all the maps were integrated into the map of agriculture water scarcity.

3.2. Data and Sources

Rainfall data from 30 rain-gauge stations for the period 1961–2010 was obtained from Bangladesh
Meteorological Department (BMD). Bi-monthly groundwater depth data of 503 groundwater
monitoring wells for the time period 1996–2009 was obtained from Bangladesh Water Development
Board. Therefore, this time period of rainfall and groundwater data were selected for the analysis.
Groundwater salinity data were collected from the Public Health Engineering Department of
Bangladesh (PHEDB). Surface water salinity map was collected from SRDI. The agricultural statistics
data were collected from Bangladesh Bureau of Statistics. Locations of rain gauges and groundwater
monitoring stations are shown in Figure 5.
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3.3. Standardized Precipitation Index (SPI)

SPI can be used for year-to-year comparison of rainfall over a specific period, and therefore
it facilitates the temporal analysis of rainfall deficit. To compute SPI, rainfall data for a time scale
are fitted to a probability distribution function. The resulting function represents the cumulative
probability of a rainfall event for a given time scale. In the present study, three-month SPI in the month
of May was calculated to identify the rainfall deficit over the pre-monsoon season (March to May).
In general, SPI was classified to identify the rainfall deficit or dry events: extreme dry (SPI < −2.0),
severe dry (SPI < −1.5), moderate dry (SPI < −1.0), and normal (SPI > −1.0).

3.4. Catastrophe Theory

The catastrophe progression method based on catastrophe theory [39] was used for the estimation
of agricultural water scarcity from different subsystem indicators. In the catastrophe progression
method, the state of a system is described by the state variable (agricultural water scarcity) and control
parameters (subsystem indicators). The influence of control variables on the state variable is estimated
using catastrophe fuzzy membership function instead of user’s preferences. The procedure used for
the estimation of agricultural water stress using the catastrophe progression method is outlined below:

1. The agricultural water stress depends on number of factors, depending on geographical context
of a region. Therefore, agricultural water stress system is divided into number of subsystems
each consist of an evaluation indicator system.

2. The catastrophe model for the indicator system is determined based on the levels of which the
evaluation indicators are decomposed. For example, the butterfly catastrophe model is used
when an evaluation indicator is decomposed into four levels.

3. A standardized method is used to convert the indicator values to dimensionless numbers in the
range of 0 to 1 in order to remove the influence of range and units of different indicators.

4. The catastrophe model is used to estimate the value of fuzzy membership function for
standardized evaluation indicator values.

5. The process is repeated to fuzzy membership function values of all indicators.
6. The average of standardized indicator values is estimated as the weight of each control variable

on state variable considering complementarity principle, which means the control variables can
compensate each other.

There are seven catastrophe models, namely, fold, cusp, dovetail, butterfly, swallowtail, hyperbolic
umbilical, and parabola umbilical catastrophe models, as shown in Table 1, where x is state variable,
and a, b, c, and d are control parameters.

Table 1. Seven types of catastrophe models [39].

Catastrophe Model Control
Parameters

State
Variables Potential Function

Fold 1 1 Va(x) = 1/3x3 + ax
Cusp 2 1 Vab(x) = 1/4x4 + 1/2ax2 + bx

Dovetail 3 1 Vabc(x) = 1/5x5 + 1/3ax3 + 1/2bx2 + cx
Butterfly 4 1 Vabcd(x) = 1/6x6 + 1/4ax4 + 1/3bx3 + 1/2cx2 + dx

Oval umbilici point 3 2 Vabc(x, y) = x3 − xy2 + a
(

x2 + y2)+ bx + cy
Elliptic umbilici point 3 2 Vabc(x, y) = x3 − xy2 + a(x2 + y2) + bx + cy

Parabolic umbilici point 4 2 Vabc(x, y) = x2y + y4 + ax2 + by2 + cx + dy

For the assessment of water scarcity, it is considered that water scarcity is consisted of a number
of subsystems. Each subsystem is consisted of a number of indicators. The catastrophe model type for
a subsystem was determined according to the number of indicators of the subsystem. The appropriate
catastrophe model was used to normalize the data of each indicator of a subsystem to get the fuzzy
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membership function of the subsystem. Details of the estimation of fuzzy membership functions for
different subsystems of water scarcity are discussed below.

3.4.1. Selection of Indicators

The selection of indicators mainly depends on the objective of study and availability of the
data [32]. Practically, the availability of data is a major constraint in the selection of indicators. Thus,
in the present study indicators were selected based on the availability of data. The details of the
indicators in subsystems and their scarcity levels are shown in Table 2.

Table 2 shows that pre-monsoon drought, groundwater depth, groundwater salinity, surface water
availability, and surface water salinity are the subsystems of agricultural water scarcity. Groundwater
depth characterizes the groundwater storage and provides indirect knowledge of groundwater
recharge and discharge [40]. Therefore, it is used as an indicator of groundwater availability and
accessibility in this study. Each subsystem is further classified as extreme, severe, moderate, and mild.
The catastrophe models can handle a maximum of four control variables. Therefore, the subsystems
are classified into four classes to show the variability in data. These types of classifications can also
be seen from the studies of [41,42]. However, the data of indicators are classified into four classes
according to collected data using the natural break method. Natural break is a common method widely
used to classify the data. The method attempts to find the most suitable class range by testing them
against the distribution of the data [43]. In other words, natural break classification minimizes the
differences between values within the classes and maximizes differences between values within in
different classes.

Table 2. Levels of any subsystems.

Sub-System Indicator Data

Pre−Monsoon Drought

Extreme −2.5 to −2.25
Severe −2.25 to −2

Moderate −2 to −1.75
Mild −1.75 to −1.5

Groundwater Salinity (dS/m)

Mild <6
Moderate 6 to 8

Severe 8 to 10
Extreme >10

Groundwater Depth (m)

Mild <8
Moderate 8 to 10

Severe 10 to 15
Extreme >15

Surface Water Salinity (dS/m)

Mild <6
Moderate 6 to 8

Severe 8 to 10
Extreme >10

Surface Water Availability (%)

Extreme 0 to 0.13
Severe 0.14 to 0.42

Moderate 0.43 to 0.72
Mild 0.73 to 1

3.4.2. Standardization of Data

Because the measuring units of different indices are usually different, standardization which
transforms into the dimensionless form is necessary. The equation used for standardization of “the
larger the better” indices is

x′i =
xi − xmin

xmax − xmin
. (1)
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The equation used for standardization of ‘the smaller the better’ indices is

x′i = 1− xi − xmin
xmax − xmin

(2)

where, i is the attribute, xi is the original value of i, and xmax and xmin are maximum and minimum
values, respectively.

In the present study, groundwater and surface water salinity and groundwater depth were
considered as “the smaller the better or less water scarcity”, as higher values of these indicators
indicate higher water scarcity. On the other hand, the pre-monsoon drought and surface water
availability were considered as “the higher the better or less water scarcity”, as higher values of those
indicators indicate less water scarcity.

3.4.3. Normalization for Catastrophe Theory

Catastrophe models are used for normalization of subsystem indicator values and the estimation
of weight of each subsystem. In this study, the butterfly catastrophe model was used, and the number
of control parameters was four in all the cases. The butterfly model is defined as,

xa = a1/2, xb = b1/3, xc = c1/4 and xd = d1/5 (3)

where, x is the state variable, and a, b, c, and d are the control parameters.
The complementary or non-complementary principle can be used for the estimation of subsystem

weight from normalized values of indicator [32]. The complementary method is used in this study as
the subsystems complement each other in defining water stress.

3.4.4. Computation of Agricultural Water Scarcity

In order to assess the agricultural water scarcity, initially the thematic maps of groundwater
depth, groundwater salinity, surface water contribution, surface water salinity, and pre-monsoon
drought index were generated by using ArcGIS. The thematic maps were then assigned weights and
the features of each theme were assigned ratings using catastrophe theory. The overlay tool in ArcGIS
was used to identify the agricultural water scarcity index (AWSI) for Bangladesh using the following
equation:

AWSI = GWDwGWDr + SWAwSWAr + RDwRDr + GWQwGWQr + SWQwSWQr (4)

where, GWD, SWA, RD, GWQ, and SWQ represent groundwater depth, surface water availability,
pre-monsoon drought, groundwater salinity, and surface water salinity, respectively; subscript w
represents weight of each subsystem, and r represents the rank or importance of different classes of
the indicator in a subsystem.

4. Results

4.1. Representation of Five Subsystems

To identify agricultural water scarcity, the maps of groundwater depth, pre-monsoon drought,
surface water availability, groundwater salinity, and surface water salinity were prepared in ArcGIS.
The groundwater depth map shown in Figure 6 is prepared using the groundwater depth values.
It can be seen that groundwater depth is classified into four classes: >15 m, 10–15 m, 8–10 m, and <8 m.
Classification was done based on the suction lift capacity of shallow water-wells. The figure shows
that groundwater during the pre-monsoon goes below 15 m in some pockets located in northwest and
central parts of Bangladesh. A groundwater level drop below 10 m is common in the whole northwest.
On the other hand, groundwater in the north, northeast, and the coastal region was found to be near
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the surface during the pre-monsoon season. Therefore, it can be remarked that groundwater is hard to
access for irrigation in the northwest during the pre-monsoon season.Sustainability 2018, 10, x FOR PEER REVIEW  9 of 18 
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Figure 6. Spatial distribution of average groundwater depth in Bangladesh during the
pre-monsoon season.

Figure 7 shows the pre-monsoon drought patterns. It can be seen that doughty severity are
classified into four classes to demarcate different drought-prone zones. The figure shows that droughts
are more frequent in the north-central and the northwest, and less frequent in the northeast. Therefore,
it can be remarked that water scarcity due to pre-monsoon droughts is more in the northwest.
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Groundwater salinity zones were classified according to salinity tolerance level of crop. The map
of groundwater salinity was prepared by interpolating groundwater salinity data using the ordinary
kriging method and shown in Figure 8. Ordinary kriging was used for interpolation of point data in
this study as it showed least root mean square error in interpolation. The map shows that groundwater
in the coastal zones, especially the southwest coastal region, is heavily contaminated by saline water
and made the groundwater completely unsuitable for irrigation.Sustainability 2018, 10, x FOR PEER REVIEW  10 of 18 
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Figure 8. Spatial distribution of groundwater salinity in Bangladesh.

The percentage of surface water contribution to total irrigation supply during the pre-monsoon
season was estimated from the ratio of LLP. Therefore, it was considered that contribution of surface
water to total irrigation in an area depends on the availability of surface water. Surface water
contribution to irrigation during the pre-monsoon is shown in Figure 9. The map shows that surface
water availability in two third area of Bangladesh is very poor.
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The surface water salinity map prepared by SRDI of Bangladesh was used in this study.
Surface water salinity during the pre-monsoon is shown in Figure 10. The map shows that surface
water in the coastal zones, especially in the southwest coastal region, is heavily contaminated by
saline water. Moreover, salinity was found to exceed the tolerance limit [44], which decreases the yield
potential of crops in a major part of coastal Bangladesh, and therefore becomes completely unsuitable
for irrigation.Sustainability 2018, 10, x FOR PEER REVIEW  11 of 18 
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4.2. Application of the Catastrophe Theory

The catastrophe theory was applied to derive the weights for delineating the agricultural water
scarcity map. The catastrophe theory defines agriculture water scarcity as a system while pre-monsoon
drought, groundwater depth, groundwater salinity, surface water availability, and surface water
salinity are defined as five subsystems. The subsystem is further defined by indicators which
contain the collected data. The data of indicators were standardized using Equations (1) and (2).
After standardization of data, the butterfly model of the catastrophe theory was used to derive the
weights. The butterfly model was selected as each subsystem has four indicators. The standardized
raw data were normalized using the normalization formula of the butterfly model of Equation (3).
For example, the values of the indicators of pre-monsoon drought subsystem were calculated using
butterfly model as, Extreme = a1/2 = 11/2 = 1; Severe = a1/3 = 0.671/3 = 0.875; Moderate = a1/4 = 0.331/4

= 0.758; and Mild = a1/5 = 01/5 = 0. The normalized values are the rank or influence of different
classes of indicator. For example, 1 is the rank of extreme drought, 0.875 is the rank of severe drought,
and so on. The average of the normalized values of the indicators, (1 + 0.875 + 0.758 + 0)/4 = 0.658
is the weight of the pre-monsoon drought subsystem. Similarly, the weights of all subsystems were
derived and given in Table 3.

In the catastrophe theory, the weight of a subsystem depends on the variance among the mean
value of subsystem indicators. It estimates similar weight of two subsystems when the variabilities of
both subsystem indicators are similar. The major advantage of the catastrophe-theory-based weighting
approach is that it estimates the real influence of each subsystem according to its indicator values.
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Table 3. Standardized and weighted values of any component of water scarcity.

System Sub-System Indicator Data Standardize Weight

Agricultural
Water Scarcity

Pre-Monsoon Drought

Extreme −2.375 1

0.658
Severe −2.125 0.67

Moderate −1.875 0.33
Mild −1.625 0

Groundwater Depth (m)

Extreme 15 1

0.702
Severe 12.5 0.8

Moderate 9 0.6
Mild 0 0

Groundwater Salinity (dS/m)

Extreme 0 0

0.715
Severe 7 0.7

Moderate 9 0.9
Mild 10 1

Surface Water Availability (%)

Extreme 0.065 1

0.669
Severe 0.28 0.73

Moderate 0.58 0.36
Mild 0.87 0

Surface Water Salinity (dS/m)

Extreme 0 0

0.715
Severe 7 0.7

Moderate 9 0.9
Mild 10 1

Finally, Equation (4) was used to calculate the agricultural water scarcity using the overlay tool of
ArcGIS. It was observed that AWSIs in the integrated layer varied between 0.067 and 0.543. They were
then classified into four classes using the natural break method to prepare the map of agricultural
water scarcity, which is shown in Figure 11.
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Overall, high water scarcity is found in some northern, northwestern, most central districts,
and the coastal zone of Bangladesh. Most districts in the western and southern parts of the country
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have moderate water scarcity. On the other hand, water scarcity is found less in the northeast and the
eastern parts of Bangladesh.

The areas of highest water scarcity correspond very well, in general, with the areas that are usually
thought as water-scarce and have records of high levels of agricultural damage due to water scarcity.
Reports of various governmental and non-governmental organizations working on natural resources
of Bangladesh also mentioned decrease in crop production due to water scarcity in northwest and
southwest Bangladesh [45]. Summarization of recent media reports on water scarcity in different parts
of Bangladesh also revealed that the problem is acute in the northwest districts and southwestern
coastal region.

A radar chart was used to show the effect of different factors on water scarcity in the northwest,
southwest, and central areas of Bangladesh where water scarcity was more than moderate (Figure 12).

Figure 12 reveals that unavailability of surface water resources, droughts, and limited accessibility
of groundwater resources during the dry season have made the northwest region of the Bangladesh
highly vulnerable to water scarcity. On the other hand, extreme salinity in surface and groundwater
has made the southwest region of the country highly vulnerable to water scarcity. The possible changes
in water scarcity due to climate change and adaptation measures that can be adopted to reduce the
impacts of water scarcity in Bangladesh are discussed in adaptation of water scarcity section.
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5. Discussion

5.1. Water Scarcity in Southwest Bangladesh

The sea water ingress through the creeks contaminates the aquifers in the coastal region of
Bangladesh. Inundation through tidal flooding and upward or lateral movement of saline groundwater
during the dry season cause soil salinity in the region [46]. Increasing salinity in surface and
groundwater is a major concern in the southwest coastal region of Bangladesh. The new lands
in the region are affected by salinity every day, and then the availability of freshwater resources for
drinking water, irrigation, agriculture, and other uses are gradually limited. Ali [47] reported that rice
production has been reduced in some parts of southwest Bangladesh by 69% over the time period
1983–2003. Sarwar [48] reported that 23% of reduction happened because of increased salinity in the
soil and water. It can be anticipated that situation will become aggravated in the near future due
to sea level rise and the increasing severity and frequency of storm surges and tidal flooding due
to climate change. It has been reported that the rate of land-falling tropical storms has increased
by 1.18 times per year since 1950 [49]. The average sea level in the coast region of Bangladesh is
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projected to increase in the range from 0.3–1.0 m by 2100 [50], which is supposed to intensify surge
heights. According to World Bank [51], the increased salinity alone from a 0.3-m sea level rise will
cause a net reduction of 0.5 million metric tons of rice production in Bangladesh. On the other hand,
Payo et al. [52] found small changes in soil salinity in the coastal region of Bangladesh for different
climate change scenarios, including relative sea-level rise in 2050. However, their results indicated
that more inter-season variability in rainfall and river flow due to climate change may increase of
salinization of agriculture soils in coastal Bangladesh. Therefore, it can be remarked that salinity in the
coastal region of Bangladesh will continue to increase and will severely affect the agro-based economy
and people’s livelihood if proper adaptation measures are not taken.

5.2. Water Scarcity in Northwest Bangladesh

The geology of northwest Bangladesh does not support for large-scale exploitation of groundwater.
Shwets et al. [53] suggested that the fast discharge of groundwater towards the rivers of the
Gangetic-influenced area results in scarcity of both surface- and groundwater by declining of
water table and ceasing the groundwater withdrawal operations for the domestic and agricultural
utilization in bigger scale. Consequently, excessive groundwater exploration after the introduction of a
groundwater-based irrigation project has caused the lowering of groundwater level in the region [40].
According to Bangladesh Agricultural Development Corporation (BADC; [54]), the groundwater-based
irrigation system in the area has reached a critical phase with croplands in many places going out
of the reach of shallow-level aquifer due to fast depleting groundwater. Declination of groundwater
level below the operating range of irrigation wells during peak irrigation period is a common problem
in the region in the recent years [54]. The situation is worsening gradually with the expansion of
irrigated agricultural lands. Climate change may affect groundwater resources and aggravate the
situation in future. Döll [55] reported that the densely populated south Asian region is highly sensitive
to the decreases in groundwater recharge due to climate change because of the high dependency on
groundwater. Saleh et al. [56] found that average groundwater level during the pre-monsoon irrigation
period decreased by 0.15–2.01 m due to an increase in temperature of 1.0–5.0 ◦C. Modeling groundwater
level under general circulation model revealed that groundwater levels in Northwest Bangladesh
would drop by only 0.18 to 0.45 m, under a 1.5 ◦C temperature rise scenario [57]. This indicates that
climate change will aggravate the existing condition of water scarcity in the region.

5.3. Adaptation of Water Scarcity

Various measures were taken by government and non-government organizations working in
the southwest coastal region to build resilience to water scarcity due to environmental changes.
The farmers in coastal region of Bangladesh are trying to adapt with growing salinity through digging
canals to flush freshwater through fields in order to reduce salinity, and cultivation of salinity tolerance
crops. However, flushing freshwater through fields is not often possible due to the unavailability
of freshwater, and therefore a large portion of cultivable lands remain fallow throughout the year.
On the other hand, agricultural agencies of government have claimed to develop salinity tolerance
crops, though they are still not available to farmers. A study also showed that the coastal region of
Bangladesh is too salty for salt-tolerant rice [58]. Therefore, cultivation of tolerance crops is rarely
practiced in the region.

In order to adapt with growing water scarcity, farmers should be encouraged to reschedule the
cropping period to take the maximum advantage of rainfall during the pre-monsoon season [59].
Government support should be provided toward excavation and re-excavation ponds or canals to
store monsoon rain for irrigation during the dry period. In addition, the stored freshwater can
be used for flushing the salts from the soil. High salinity tolerance crops should be approached
easily available to farmers. The farmers should also be trained properly to grow salinity tolerance
crops. Besides that, improving agricultural practices and developing integrated farming should be
encouraged for resilient livelihoods in saline-prone regions [60]. Groundwater from deep aquifers



Sustainability 2018, 10, 819 15 of 18

can be exploited for irrigation. It has been reported that deep aquifers in many coastal regions
are still not contaminated with salinity [61]. However, it should be noted improper exploitation of
groundwater can pollute even the deep aquifer. Therefore, coordinated exploitation of groundwater
with reliable scientific information is required. Furthermore, structural measures like building dykes
and embankments can also be made in the coastal region to resist saline water intrusion as a long-term
mitigation measure.

About 80% of the land of Bangladesh is extremely flood-prone, and therefore it is not possible
to manage water scarcity through regulatory measures such as building dams and reservoirs.
Groundwater is the sole source of water during the dry period in drought-prone regions. Therefore,
the national water policy encouraged groundwater development for irrigation in the 1980s. However,
overexploitation of groundwater to meet the ever-increasing irrigation demand has caused the decline
of groundwater level and water scarcity in drought-prone northwest Bangladesh. A number of
measures have been taken to adapt with water scarcity in the region, which include rainwater
harvesting, changes irrigation practices, expanding food storage facilities, promoting backyard
farming to supplement food supplies, promoting microcredit and educating people about its use,
and forming and training community groups to implement and maintain these various measures [62].
However, those were not enough to maintain the sustainable groundwater yield due to extensive
use of groundwater, extension of agricultural land, and changes in climate. It has been reported that
groundwater level in the study area has declined steadily over the recent decades [60]. Furthermore,
national water resources management plans are necessary to build resilience to increasing water
scarcity in the context of climate change.

Development of surface water resources for irrigation is essential in order to reduce the growing
pressure on groundwater in the region. In addition, rainwater harvesting for supplemental irrigation
and recharging groundwater is very important for the region. The concept of integrated water resources
management (IWRM) can be adopted to enhance adaptive capacity to climate change.

6. Conclusions

This study has been carried out to understand the present situation of water scarcity, considering
that it will help in water resources planning, development, and management in the context of growing
water scarcity. The obtained results showed that agriculture in about 6.3% of the area of the country is
experiencing very high-risk water scarcity, 19.1% with high water scarcity, 37.2% with moderate water
risk, and the rest is low or no risk of water scarcity for agriculture. The result showed that agricultural
water scarcity is more in the western part of Bangladesh compared to the east. Frequent occurrence of
drought has appeared in the northwestern part of Bangladesh, making it susceptible to water scarcity.
On the other hand, high salinity in groundwater has turned up in the southwestern part of Bangladesh
and is affecting agricultural productivity. Existing evidence indicate that water scarcity will increase in
the near future due to population growth and climate change. This study emphasizes adaptation to
growing water scarcity through rainwater harvesting, changing irrigation practices, crop scheduling,
and management of groundwater resources. It is expected that the study will be beneficial to number
of stakeholders, including national and local agencies and policy makers to understand the present
situation of water scarcity as well as to plan adaptation to growing water scarcity at the climate change
situation. However, some areas are important to be considered: (1) concepts and mechanisms of
agricultural water scarcity still need further study; (2) the catastrophe model for agricultural water
scarcity still needs further improvement. We only set up a system with five subsystems, but because
agricultural water scarcity is influenced by many subsystem indicators, it still needs more subsystems.
Besides this, future study is required concerning the adaptation strategies, which should be paid more
attention by both local government and international researchers.
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