
sustainability

Article

Advanced Camera Image Cropping Approach for
CNN-Based End-to-End Controls on
Sustainable Computing

Yunsick Sung 1, Yong Jin 1, Jeonghoon Kwak 1, Sang-Geol Lee 2 and Kyungeun Cho 1,* ID

1 Department of Multimedia Enginnering, Dongguk University-Seoul, 30 Pildong-ro, 1-gil, Jung-gu,
Seoul 04620, Korea; sung@dongguk.edu (Y.S.); j.yong@dongguk.edu (Y.J.); jeonghoon@dongguk.edu (J.K.)

2 Department of Electrical and Computer Engineering, Pusan National University, 2 Busandaehak-ro,
63 Beon-gil, Geumjeong-gu, Busan 46241, Korea; leesg@pusan.ac.kr

* Correspondence: cke@dongguk.edu; Tel.: +82-2-2260-3834

Received: 1 February 2018; Accepted: 9 March 2018; Published: 15 March 2018

Abstract: Recent research on deep learning has been applied to a diversity of fields. In particular,
numerous studies have been conducted on self-driving vehicles using end-to-end approaches based
on images captured by a single camera. End-to-end controls learn the output vectors of output
devices directly from the input vectors of available input devices. In other words, an end-to-end
approach learns not by analyzing the meaning of input vectors, but by extracting optimal output
vectors based on input vectors. Generally, when end-to-end control is applied to self-driving vehicles,
the steering wheel and pedals are controlled autonomously by learning from the images captured by
a camera. However, high-resolution images captured from a car cannot be directly used as inputs to
Convolutional Neural Networks (CNNs) owing to memory limitations; the image size needs to be
efficiently reduced. Therefore, it is necessary to extract features from captured images automatically
and to generate input images by merging the parts of the images that contain the extracted features.
This paper proposes a learning method for end-to-end control that generates input images for CNNs
by extracting road parts from input images, identifying the edges of the extracted road parts, and
merging the parts of the images that contain the detected edges. In addition, a CNN model for
end-to-end control is introduced. Experiments involving the Open Racing Car Simulator (TORCS),
a sustainable computing environment for cars, confirmed the effectiveness of the proposed method
for self-driving by comparing the accumulated difference in the angle of the steering wheel in the
images generated by it with those of resized images containing the entire captured area and cropped
images containing only a part of the captured area. The results showed that the proposed method
reduced the accumulated difference by 0.839% and 0.850% compared to those yielded by the resized
images and cropped images, respectively.

Keywords: self-driving; convolution neural network; end-to-end control

1. Introduction

Research on utilizing sensors, such as radar and light detection and ranging (LiDAR), attached to
vehicles has been actively under way to accurately recognize surrounding environments for self-driving
vehicles [1]. The recognized surrounding environment information is used to control the vehicles.
For example, vehicles are controlled based on fuzzy logic [2] or motor primitives [3].

As sensors for self-driving vehicles are generally expensive, various methods for deriving
environmental information using relatively low-cost cameras have been attempted. A traffic sign area
is derived [4] or a traffic sign is recognized [5] to recognize the road on which a vehicle is driving.
Images captured by cameras attached to both sides of a vehicle have been utilized for analyzing the

Sustainability 2018, 10, 816; doi:10.3390/su10030816 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0003-2219-0848
http://dx.doi.org/10.3390/su10030816
http://www.mdpi.com/journal/sustainability

Sustainability 2018, 10, 816 2 of 13

environment so that the vehicle can drive in keeping with its lane [6]. Additionally, a method has been
proposed to derive the position of the lane on which a vehicle is driving using the captured images of
the area in front of the vehicle [7]. Using images captured by a camera mounted on a vehicle, obstacles
are recognized [8,9] or the intentions of pedestrians on the road are predicted [10]. Furthermore,
research has been conducted on sharing the environment information measured by one vehicle with
other vehicles [11].

Recently, studies on end-to-end control-based self-driving have been actively conducted to
control vehicles using images captured by one or multiple cameras attached to them as input [12–14].
In general, the entire process of enabling a vehicle to drive autonomously consists of the following steps:
recognizing obstacles, deciding on a driving direction based on recognized obstacles, and controlling
the vehicle based on the decided driving direction. However, end-to-end control has an advantage
in that it controls the vehicle by learning vehicle control signals based on input images without the
need for the traditional process of recognition, decision, and control. Various deep learning techniques
have been applied to learning for end-to-end control. Vehicles operate autonomously by learning from
images of the road entered into convolutional neural networks (CNNs) [12–14]. Studies have been
conducted on autonomous driving using deep neural networks (DNNs) [15] and on predicting the
driving distance of vehicles using recurrent convolutional neural networks (RCNNs) [16]. However,
high-resolution images cannot be entered into CNNs directly due to memory limitations and need to
be adjusted for end-to-end control. In other words, the high-resolution images should be cropped or
resized such that they retain sufficient information for self-driving vehicles. Existing learning methods
involve manual extraction of the area in front of vehicles from captured images [14] or use an optimal
area by learning based on multiple learning areas directly set by users [17]. However, there is a need
for a method that can automatically derive the area without users selecting the learning areas, to enable
autonomous driving in various environments.

This paper proposes a method to generate input images for CNNs. Multiple parts of images
featuring both sides of a lane are extracted and merged, by considering the perspective of the car, as
input images. This reduces the learning time needed for self-driving cars through end-to-end controls.
A CNN model is also proposed for the system to learn by using the generated input images. Based on
the cropped images and the proposed CNN model, the process of the system learning how to control
the car is described. Furthermore, an approach to infer the angles of the steering wheel to control the
car using cropped images is introduced.

The structure of the remainder of this paper is as follows: Section 2 introduces related work in
the area and Section 3 describes the image generation method for CNNs in detail. Section 4 discusses
the experimental results to validate the proposed method and Section 5 contains the conclusions of
this paper.

2. Related Works

2.1. Research on Awareness of Cars

Research has been conducted on the recognition of traffic signs on the road [4,5]. Based on images
captured by a self-driving car, a traffic sign is recognized using a CNN [5]. The hinge loss stochastic
gradient descent approach has been proposed to train the CNN. The target zone for detecting the
traffic sign is filtered by a color-based thresholding algorithm. The traffic sign shape is then identified
using the distance-to-borders (DtBs) approach. Zainal et al. [4] propose recognizing traffic signs using
an artificial neural network (ANN) based on two feature descriptors, the histogram-oriented gradient
(HOG), and speeded-up robust features (SURF). The velocity of the car is controlled based on the
detected traffic signs.

Studies have been conducted to estimate the location of a lane for self-driving cars [6,7]. The lane
location on both sides of the car was estimated by DeepLanes [6] using cameras. The location of a given
lane was divided into 316 locations and learned using the captured images. The lane with the highest

Sustainability 2018, 10, 816 3 of 13

probability among the 316 lane locations was determined to be the real one. Jiman et al. [7] investigate
ego lanes using a camera facing the front of a car. A deep learning model was trained using the data
to identify ego lanes in the collected images, and the location of the lane was estimated based on the
deep learning model.

Furthermore, Sebastian et al. [8] detect obstacles in front of a car using cameras mounted on it.
A three-dimensional (3D) stixel was created using the semantic and geometric features of the data
collected by the cameras. Additionally, stereo estimation was used to recognize obstacles in front of
a car using a single camera [9], where images taken at the front of a car were used to train a CNN.

Researchers have also attempted to identify the surroundings of self-driving cars [1,10].
Moving objects are recognized using multiple radars, LIDAR, and vision sensors mounted on the
car. Depending on the distance between an object and the car, and the type of the object, shape data
are provided. Friederike et al. [10] identifies the behaviors of pedestrians using a support vector
machine (SVM).

A self-driving car requires expensive systems to detect its surroundings. An approach is needed
to determine the direction of motion of the car without lanes. It is also necessary to plan driving routes
to avoid obstacles in the environment.

2.2. Research on Driving Method of Cars

An approach has been proposed to estimate the motion of self-driving cars [18]. The direction of
motion of a car can be estimated using cameras mounted on it. Studies have also examined self-driving
using the deep Q-network [19] where a Q-value is updated through simulations. A car autonomously
runs using the Q-value, and learning is needed to update it.

Unghui et al. [20] plan routes for self-driving cars, where the car autonomously operates by
considering obstacles. The car checks for obstacles along its path. In case an object is detected along
the route, a new self-driving route is created to avoid collision in light of the estimated collision point.

Furthermore, studies have investigated self-driving cars based on driving commands and
captured images [12–14]. While being driven, the car learns a model for self-driving based on the
images and the driving commands. Spikes are extracted from the images collected, and the car learns
a spiking neural network model based on these images as input data and the driving commands
as output data. The driving commands are then estimated through the spiking neural network by
extracting the spiked images from the input images.

2.3. End-to-End Controls of Cars

Visual odometry (VO) is a method of calculating the position changes of a vehicle using images and
sensors attached to the vehicle [16]. To measure the position changes of a vehicle, VO calculates them
through steps such as feature extraction, feature matching, motion estimation, and local optimization.
The end-to-end control method is used to reduce the number of steps involved in VO. Using the
end-to-end method, position changes can be calculated by setting the input of the RCNN as camera
images and the output as the pose of the vehicle.

Pen et al. [15] apply the end-to-end control method to autonomous driving on a mountain road
using low-cost on-board sensors. A DNN was trained using captured images and vehicle control
signals to autonomously control vehicles on the mountain road. It demonstrated that autonomous
driving is possible even with low-cost on-board sensors by applying the end-to-end control method.

Owing to environmental constraints in a real environment, end-to-end control cannot train the
model fully. To overcome this problem, a virtual simulation environment has been used to train
the model them fully [14]. An environment similar to the real environment is set up for a virtual
simulation, and captured images and control signals of the driving records of virtual vehicles are
collected. A CNN is trained based on the collected images and control signals, and then used to control
a vehicle in the real environment.

Sustainability 2018, 10, 816 4 of 13

However, owing to memory limitations, captured images cannot be used as inputs to a CNN.
Therefore, an approach is required that can crop input images. To address this issue, a study was
conducted to extract part of the images captured by cameras attached to the front of the vehicle and
use them for training [13]. To reduce the cost of collecting images during driving, images captured
from the right, left, and front cameras attached to the front side of a vehicle are used. The images
captured by the right and left cameras are transformed into the same shape as those captured by
the front camera using a random shift and rotation. The images transformed from the right and left
images and the images created by cropping the front area of the vehicle from the front camera images
are collected. A CNN is trained using the collected images and steering angles. The vehicle is then
autonomously driven by inferring steering angles from the images created by cropping the front area
of the vehicle.

Two frameworks that determine a featuring area have been introduced to reduce the training
cost of end-to-end control [17]. Each training result is analyzed after generating and learning various
learning images. The first framework trains the CNN with the entire captured image. At the time of
execution, the sky area, mountain area, and road area are manually derived from the captured images.
Steering angles are inferred by inputting the captured images into the CNN that learned them as input
images, by which control results are compared. The second framework divides the entire captured
image into the sky area, mountain area, and road area, and trains the CNN with each area. At the time
of execution, the results of controlling a vehicle based on the entire captured image are analyzed.

During autonomous driving using end-to-end control, some of the captured images are manually
derived for use owing to memory issues. A method is required for automatically deriving these images.
In particular, it is necessary to derive them by identifying the parts of images that affect the control of
steering angles.

3. Image Cropping Approach for Self-Driving Cars

This section describes the proposed method for cropping images captured by a camera mounted
on a car to enhance learning performance for self-driving based on the angles of the steering wheel
and the cropped images. The method of estimating the angles of the steering wheel using the CNN
model is also explained.

3.1. System Overview

The proposed end-to-end control method controls a steering wheel after learning partially merged
images obtained from a camera and the angles of the steering wheel. The proposed method comprises
of a data collection phase, a learning phase, and an execution phase.

The data collection phase involves collecting images along the driving direction of a car and
extracting parts of the images, merging the parts of the images, and recording the merged images with
the angles of the steering wheel as shown in Figure 1. Specifically, the RGB image captured at time t is

image iL
t ,

iL
t,1,1 · · · iL

t,WIDTH,1
...

. . .
...

iL
t,1,HEIGHT · · · iL

t,WIDTH,HEIGHT

, and the steering wheel angle of the car at t is angle

aL
t . The pixel iL

t,x,y is expressed using RGB colors. The image iL
t and angle aL

t generated while driving
the car are transferred to a shared memory. The image iL

t in shared memory is divided and merged
into two zones, including the lane considered for self-driving. The merged image i′Lt and angle aL

t are
stored in a database.

In the learning phase, the car learns a CNN as an end-to-end control based on the merged image
i′Lt and angle aL

t stored in the database, as shown in Figure 2. The steering wheel angle aE
t is inferred

using the CNN by comparing with the angle aL
t , adjusting back-propagation weights, and obtaining

an error.

Sustainability 2018, 10, 816 5 of 13

Sustainability 2018, 10, x FOR PEER REVIEW 4 of 13

from the right, left, and front cameras attached to the front side of a vehicle are used. The images

captured by the right and left cameras are transformed into the same shape as those captured by the

front camera using a random shift and rotation. The images transformed from the right and left

images and the images created by cropping the front area of the vehicle from the front camera images

are collected. A CNN is trained using the collected images and steering angles. The vehicle is then

autonomously driven by inferring steering angles from the images created by cropping the front area

of the vehicle.

Two frameworks that determine a featuring area have been introduced to reduce the training

cost of end-to-end control [17]. Each training result is analyzed after generating and learning various

learning images. The first framework trains the CNN with the entire captured image. At the time of

execution, the sky area, mountain area, and road area are manually derived from the captured images.

Steering angles are inferred by inputting the captured images into the CNN that learned them as

input images, by which control results are compared. The second framework divides the entire

captured image into the sky area, mountain area, and road area, and trains the CNN with each area.

At the time of execution, the results of controlling a vehicle based on the entire captured image are

analyzed.

During autonomous driving using end-to-end control, some of the captured images are

manually derived for use owing to memory issues. A method is required for automatically deriving

these images. In particular, it is necessary to derive them by identifying the parts of images that affect

the control of steering angles.

3. Image Cropping Approach for Self-Driving Cars

This section describes the proposed method for cropping images captured by a camera mounted

on a car to enhance learning performance for self-driving based on the angles of the steering wheel

and the cropped images. The method of estimating the angles of the steering wheel using the CNN

model is also explained.

3.1. System Overview

The proposed end-to-end control method controls a steering wheel after learning partially

merged images obtained from a camera and the angles of the steering wheel. The proposed method

comprises of a data collection phase, a learning phase, and an execution phase.

The data collection phase involves collecting images along the driving direction of a car and

extracting parts of the images, merging the parts of the images, and recording the merged images

with the angles of the steering wheel as shown in Figure 1. Specifically, the RGB image captured at

time t is image 𝑖𝑡
𝐿, [

𝑖𝑡,1,1
𝐿 ⋯ 𝑖𝑡,𝑊𝐼𝐷𝑇𝐻,1

𝐿

⋮ ⋱ ⋮
𝑖𝑡,1,𝐻𝐸𝐼𝐺𝐻𝑇

𝐿 ⋯ 𝑖𝑡,𝑊𝐼𝐷𝑇𝐻,𝐻𝐸𝐼𝐺𝐻𝑇
𝐿

], and the steering wheel angle of the car at t is angle 𝑎𝑡
𝐿.

The pixel 𝑖𝑡,𝑥,𝑦
𝐿 is expressed using RGB colors. The image 𝑖𝑡

𝐿 and angle 𝑎𝑡
𝐿 generated while driving

the car are transferred to a shared memory. The image 𝑖𝑡
𝐿 in shared memory is divided and merged

into two zones, including the lane considered for self-driving. The merged image 𝑖′𝑡
𝐿 and angle 𝑎𝑡

𝐿

are stored in a database.

Figure 1. The data collection phase collects cropped images and steering wheel angles generated

while a user drives the car.

Figure 1. The data collection phase collects cropped images and steering wheel angles generated while
a user drives the car.

Sustainability 2018, 10, x FOR PEER REVIEW 5 of 13

In the learning phase, the car learns a CNN as an end-to-end control based on the merged image

𝑖′𝑡
𝐿 and angle 𝑎𝑡

𝐿 stored in the database, as shown in Figure 2. The steering wheel angle 𝑎𝑡
𝐸 is

inferred using the CNN by comparing with the angle 𝑎𝑡
𝐿, adjusting back-propagation weights, and

obtaining an error.

Figure 2. The learning phase learns the CNN using the partially merged images and steering wheel

angles collected during the data collection phase.

In the execution phase, the images captured and merged are entered into the CNN and the

corresponding steering wheel angle is inferred, as shown in Figure 3. Specifically, image 𝑖𝑡
𝐸 is stored

in the shared memory and merged as the image 𝑖′𝑡
𝐸. The merged image 𝑖′𝑡

𝐸 is entered into the CNN,

and the angle 𝑎𝑡
𝐸 is inferred and stored in the shared memory. It is then transferred to the car, where

the steering wheel angle is controlled based on it.

Figure 3. The execution phase crops the images and enters them into the CNN. The car operates using

the steering wheel angle as output data of the CNN.

3.2. Extracting and Merging Approaches

Generally, autonomous cars consider lanes for driving along a given route. Given that the lanes

constitute key information for self-driving, the areas including the lanes from images captured by a

camera mounted on the car should be extracted and utilized. The proposed method extracts lanes as

shown in Figure 4.

Figure 4. The input images of CNN are generated by extracting lanes and merging selected areas. The

road cell is selected and the number of pixels corresponding to the road in the road cell is calculated

Figure 2. The learning phase learns the CNN using the partially merged images and steering wheel
angles collected during the data collection phase.

In the execution phase, the images captured and merged are entered into the CNN and the
corresponding steering wheel angle is inferred, as shown in Figure 3. Specifically, image iE

t is stored in
the shared memory and merged as the image i′Et . The merged image i′Et is entered into the CNN, and
the angle aE

t is inferred and stored in the shared memory. It is then transferred to the car, where the
steering wheel angle is controlled based on it.

Sustainability 2018, 10, x FOR PEER REVIEW 5 of 13

In the learning phase, the car learns a CNN as an end-to-end control based on the merged image

𝑖′𝑡
𝐿 and angle 𝑎𝑡

𝐿 stored in the database, as shown in Figure 2. The steering wheel angle 𝑎𝑡
𝐸 is

inferred using the CNN by comparing with the angle 𝑎𝑡
𝐿, adjusting back-propagation weights, and

obtaining an error.

Figure 2. The learning phase learns the CNN using the partially merged images and steering wheel

angles collected during the data collection phase.

In the execution phase, the images captured and merged are entered into the CNN and the

corresponding steering wheel angle is inferred, as shown in Figure 3. Specifically, image 𝑖𝑡
𝐸 is stored

in the shared memory and merged as the image 𝑖′𝑡
𝐸. The merged image 𝑖′𝑡

𝐸 is entered into the CNN,

and the angle 𝑎𝑡
𝐸 is inferred and stored in the shared memory. It is then transferred to the car, where

the steering wheel angle is controlled based on it.

Figure 3. The execution phase crops the images and enters them into the CNN. The car operates using

the steering wheel angle as output data of the CNN.

3.2. Extracting and Merging Approaches

Generally, autonomous cars consider lanes for driving along a given route. Given that the lanes

constitute key information for self-driving, the areas including the lanes from images captured by a

camera mounted on the car should be extracted and utilized. The proposed method extracts lanes as

shown in Figure 4.

Figure 4. The input images of CNN are generated by extracting lanes and merging selected areas. The

road cell is selected and the number of pixels corresponding to the road in the road cell is calculated

Figure 3. The execution phase crops the images and enters them into the CNN. The car operates using
the steering wheel angle as output data of the CNN.

3.2. Extracting and Merging Approaches

Generally, autonomous cars consider lanes for driving along a given route. Given that the lanes
constitute key information for self-driving, the areas including the lanes from images captured by
a camera mounted on the car should be extracted and utilized. The proposed method extracts lanes as
shown in Figure 4.

First, set a road cell that contains only the road parts in a captured image with a rectangle as shown
in Figure 4a. The color contained in the road cell is recognized and processed as the road henceforth.

The following steps are taken to calculate the number of pixels corresponding to the road for each
pixel position in the captured image. The captured images are converted to gray images to simultaneously
process the RGB colors of the captured images. Each pixel of the converted gray image iL

t is represented
by gG

t,x,y. The maximum and minimum values of the gray pixels in the road cell are derived from

Sustainability 2018, 10, 816 6 of 13

all the captured images. Therefore, i′′ x,y is ∑t=1

{
1 i f MIN(gG

t,x,y) ≤ gG
t,x,y and gG

t,x,y ≤ MAX(gG
t,x,y)

0 i f MIN(gG
t,x,y) > gG

t,x,y and gG
t,x,y > MAX(gG

t,x,y)
.

The intermediate image i′′ Gt is

 i′1,1 · · · i′WIDTH,1
... i′x,y

...
i′1,HEIGHT · · · i′WIDTH,HEIGHT

 as shown in Figure 4b.

Gray images are generated using the intermediate images as shown in Figure 4c.
i′x,y is normalized and quantitated by Equation (1). The generated gray image i′′ Gt i′′ 1,1 · · · i′′WIDTH,1

... i′′ x, y
...

i′′ 1,HEIGHT · · · i′′WIDTH,HEIGHT

.

i′′ x,y =

αMAX × ((i′x, y −MIN(i′x,y))/(MAX(i′x,y)− MIN(i′x,y))× αMAX + αMIN)/
(

αMAX+1
β

)
(β− 1)

 (1)

where αMAX and αMIN are the maximum and minimum numbers of available gray colors and β is the
quantization constant.

Edges are derived by applying the Canny edge detection algorithm based on the gray image
i′M [21]. In the proposed method, the area containing the road cell is assumed to be the road area,
as shown in Figure 4d.

Sustainability 2018, 10, x FOR PEER REVIEW 5 of 13

In the learning phase, the car learns a CNN as an end-to-end control based on the merged image

𝑖′𝑡
𝐿 and angle 𝑎𝑡

𝐿 stored in the database, as shown in Figure 2. The steering wheel angle 𝑎𝑡
𝐸 is

inferred using the CNN by comparing with the angle 𝑎𝑡
𝐿, adjusting back-propagation weights, and

obtaining an error.

Figure 2. The learning phase learns the CNN using the partially merged images and steering wheel

angles collected during the data collection phase.

In the execution phase, the images captured and merged are entered into the CNN and the

corresponding steering wheel angle is inferred, as shown in Figure 3. Specifically, image 𝑖𝑡
𝐸 is stored

in the shared memory and merged as the image 𝑖′𝑡
𝐸. The merged image 𝑖′𝑡

𝐸 is entered into the CNN,

and the angle 𝑎𝑡
𝐸 is inferred and stored in the shared memory. It is then transferred to the car, where

the steering wheel angle is controlled based on it.

Figure 3. The execution phase crops the images and enters them into the CNN. The car operates using

the steering wheel angle as output data of the CNN.

3.2. Extracting and Merging Approaches

Generally, autonomous cars consider lanes for driving along a given route. Given that the lanes

constitute key information for self-driving, the areas including the lanes from images captured by a

camera mounted on the car should be extracted and utilized. The proposed method extracts lanes as

shown in Figure 4.

Figure 4. The input images of CNN are generated by extracting lanes and merging selected areas. The

road cell is selected and the number of pixels corresponding to the road in the road cell is calculated

Figure 4. The input images of CNN are generated by extracting lanes and merging selected areas.
The road cell is selected and the number of pixels corresponding to the road in the road cell is calculated
for each captured image. A gray image based on the number of pixels is created and edges are extracted.
Cropping areas are determined by utilizing edges and images are merged. A 200 × 200 RGB image is
generated by cropping images obtained from cameras of the car.

Cropping areas are calculated as follows based on the derived edges. In the gray image i′M,
the bottom left point of the road area is defined as edge point el , the bottom right point is defined as
point er, and the middle point is defined as edge point em, as shown in Figure 5a. Two rectangles are
generated with width γ. The middle of the upper edge of the two rectangles is placed at the edge point
em, the middle of each lower edge is placed at edge point el , and the bottom right point is placed at
edge point er. The created rectangles are utilized as cropping areas. The cropping areas are resized to
the size of the merged image, and then the final merged image is generated as shown in Figure 5b.

Sustainability 2018, 10, 816 7 of 13

Sustainability 2018, 10, x FOR PEER REVIEW 6 of 13

for each captured image. A gray image based on the number of pixels is created and edges are

extracted. Cropping areas are determined by utilizing edges and images are merged. A 200 × 200 RGB

image is generated by cropping images obtained from cameras of the car.

First, set a road cell that contains only the road parts in a captured image with a rectangle as

shown in Figure 4a. The color contained in the road cell is recognized and processed as the road

henceforth.

The following steps are taken to calculate the number of pixels corresponding to the road for

each pixel position in the captured image. The captured images are converted to gray images to

simultaneously process the RGB colors of the captured images. Each pixel of the converted gray

image 𝑖𝑡
𝐿 is represented by 𝑔𝑡,𝑥,𝑦

𝐺 . The maximum and minimum values of the gray pixels in the road

cell are derived from all the captured images. Therefore, 𝑖′𝑥,𝑦 is

∑ {
1 𝑖𝑓 𝑀𝐼𝑁(𝑔𝑡,𝑥,𝑦

𝐺) ≤ 𝑔𝑡,𝑥,𝑦
𝐺 𝑎𝑛𝑑 𝑔𝑡,𝑥,𝑦

𝐺 ≤ 𝑀𝐴𝑋(𝑔𝑡,𝑥,𝑦
𝐺)

0 𝑖𝑓 𝑀𝐼𝑁(𝑔𝑡,𝑥,𝑦
𝐺) > 𝑔𝑡,𝑥,𝑦

𝐺 𝑎𝑛𝑑 𝑔𝑡,𝑥,𝑦
𝐺 > 𝑀𝐴𝑋(𝑔𝑡,𝑥,𝑦

𝐺)
𝑡=1 . The intermediate image 𝑖′𝑡

𝐺 is [

𝑖′1,1 ⋯ 𝑖′𝑊𝐼𝐷𝑇𝐻,1

⋮ 𝑖′𝑥,𝑦 ⋮

𝑖′1,𝐻𝐸𝐼𝐺𝐻𝑇 ⋯ 𝑖′𝑊𝐼𝐷𝑇𝐻,𝐻𝐸𝐼𝐺𝐻𝑇

]

as shown in Figure 4b.

Gray images are generated using the intermediate images as shown in Figure 4c. 𝑖′𝑥,𝑦 is

normalized and quantitated by Equation (1). The generated gray image 𝑖′′𝑡
𝐺

[

𝑖′′1,1 ⋯ 𝑖′′𝑊𝐼𝐷𝑇𝐻,1

⋮ 𝑖′′𝑥,𝑦 ⋮

𝑖′′1,𝐻𝐸𝐼𝐺𝐻𝑇 ⋯ 𝑖′′𝑊𝐼𝐷𝑇𝐻,𝐻𝐸𝐼𝐺𝐻𝑇

].

𝑖′′𝑥,𝑦 = ⌊
𝛼𝑀𝐴𝑋 × ⌊((𝑖′𝑥,𝑦 − 𝑀𝐼𝑁(𝑖′𝑥,𝑦)) (𝑀𝐴𝑋(𝑖′𝑥,𝑦) − 𝑀𝐼𝑁(𝑖′𝑥,𝑦))⁄ × 𝛼𝑀𝐴𝑋 + 𝛼𝑀𝐼𝑁) (

𝛼𝑀𝐴𝑋 + 1
𝛽

)⁄ ⌋

(𝛽 − 1)
⌋ (1)

where 𝛼𝑀𝐴𝑋 and 𝛼𝑀𝐼𝑁 are the maximum and minimum numbers of available gray colors and 𝛽 is

the quantization constant.

Edges are derived by applying the Canny edge detection algorithm based on the gray image

𝑖′′𝑀 [21]. In the proposed method, the area containing the road cell is assumed to be the road area, as

shown in Figure 4d.

Cropping areas are calculated as follows based on the derived edges. In the gray image 𝑖′′𝑀, the

bottom left point of the road area is defined as edge point 𝑒𝑙, the bottom right point is defined as

point 𝑒𝑟, and the middle point is defined as edge point 𝑒𝑚, as shown in Figure 5a. Two rectangles

are generated with width γ. The middle of the upper edge of the two rectangles is placed at the edge

point 𝑒𝑚, the middle of each lower edge is placed at edge point 𝑒𝑙 , and the bottom right point is

placed at edge point 𝑒𝑟. The created rectangles are utilized as cropping areas. The cropping areas are

resized to the size of the merged image, and then the final merged image is generated as shown in

Figure 5b.

(a) (b)

Figure 5. Cropping areas are derived using the boundary. Input images are generated to CNN by

merging images based on the two derived cropping areas. (a) Derived cropping areas; and (b) the

final merged image.

Figure 5. Cropping areas are derived using the boundary. Input images are generated to CNN by
merging images based on the two derived cropping areas. (a) Derived cropping areas; and (b) the final
merged image.

3.3. Network Architecture

The CNN structure in the proposed system is shown in Figure 6, and was based on
an improvement on AlexNet [22]. However, the angle rather than the classification was inferred.
Thus, Euclidean distance was used as the loss function.

The RGB image taken by the camera on the car was converted into a 200 × 200 RGB image.
The result of cropping only the lanes considered for self-driving was normalized and used as input
data. The input layer of the CNN utilized the 200 × 200 merged image. The CNN comprises
five convolution layers, three max pooling layers, and two fully-connected layers. Convolution layers
1, 2, and 3 were estimated using a 5 × 5 kernel, and convolution layers 4 and 5 were estimated using
a 3 × 3 kernel. Max pooling layers 1, 2, and 3 were estimated using the 3 × 3 kernel. As the output,
the angle aE

t was returned.

Sustainability 2018, 10, x FOR PEER REVIEW 7 of 13

3.3. Network Architecture

The CNN structure in the proposed system is shown in Figure 6, and was based on an

improvement on AlexNet [22]. However, the angle rather than the classification was inferred. Thus,

Euclidean distance was used as the loss function.

The RGB image taken by the camera on the car was converted into a 200 × 200 RGB image. The

result of cropping only the lanes considered for self-driving was normalized and used as input data.

The input layer of the CNN utilized the 200 × 200 merged image. The CNN comprises five

convolution layers, three max pooling layers, and two fully-connected layers. Convolution layers 1,

2, and 3 were estimated using a 5 × 5 kernel, and convolution layers 4 and 5 were estimated using a

3 × 3 kernel. Max pooling layers 1, 2, and 3 were estimated using the 3 × 3 kernel. As the output, the

angle 𝑎𝑡
𝐸 was returned.

Figure 6. The CNN is configured to enter a 200 × 200 merged image to output the steering wheel angle.

4. Experiments

In experiments, the steering wheel angle using a cropped image from those taken was inferred.

The results concerning the steering wheel angle were compared and analyzed using an approach that

crops images using a traditional method based on the images captured from the car and that involves

resizing of the entire image.

4.1. Experimental Environment

The Open Racing Car Simulator (TORCS) [23] was used to create the driving environment for

the car. TORCS is an open-source 3D car racing simulator. It was developed using C++ and provides

multiple platforms. Table 1 presents the hardware used for the experiments, which were executed on

Ubuntu 16.04. The deep learning library used was Tensorflow, an open-source software [24]. Shared

memory was used for interlocking TORCS with Tensorflow. OpenCV (Intel Corporation, Santa Clara,

USA) [25] was used for cropping the images on TORCS.

Table 1. Hardware specifications to learn the CNN.

Items Content

Development Platform Ubuntu 16.04 (Canonical, London, UK)

Tool Pycharm 2017.1.4 (JetBrains, Prague, Czech Repubilc)

CPU i7-6850 K CPU@3.60 GHz (Intel Corporation, Santa Clara, USA)

GPU NVIDIA TITAN XP 12 GB × 4 (Nvidia Corporation, Santa Clara, USA)
Memory 16 GB DDR4

Library OpenCV 3.1.0, Tensorflow, Share memory

The images and steering wheel angles were collected as the car self-drove using a module in

TORCS. The car completed five laps along each of six tracks, as shown in Figure 7, and 370 × 640 RGB

images and angles were collected at 10 frames per second.

Figure 6. The CNN is configured to enter a 200× 200 merged image to output the steering wheel angle.

4. Experiments

In experiments, the steering wheel angle using a cropped image from those taken was inferred.
The results concerning the steering wheel angle were compared and analyzed using an approach that
crops images using a traditional method based on the images captured from the car and that involves
resizing of the entire image.

4.1. Experimental Environment

The Open Racing Car Simulator (TORCS) [23] was used to create the driving environment for
the car. TORCS is an open-source 3D car racing simulator. It was developed using C++ and provides
multiple platforms. Table 1 presents the hardware used for the experiments, which were executed
on Ubuntu 16.04. The deep learning library used was Tensorflow, an open-source software [24].
Shared memory was used for interlocking TORCS with Tensorflow. OpenCV (Intel Corporation, Santa
Clara, USA) [25] was used for cropping the images on TORCS.

Sustainability 2018, 10, 816 8 of 13

Table 1. Hardware specifications to learn the CNN.

Items Content

Development Platform Ubuntu 16.04 (Canonical, London, UK)
Tool Pycharm 2017.1.4 (JetBrains, Prague, Czech Repubilc)
CPU i7-6850 K CPU@3.60 GHz (Intel Corporation, Santa Clara, USA)
GPU NVIDIA TITAN XP 12 GB × 4 (Nvidia Corporation, Santa Clara, USA)

Memory 16 GB DDR4
Library OpenCV 3.1.0, Tensorflow, Share memory

The images and steering wheel angles were collected as the car self-drove using a module in
TORCS. The car completed five laps along each of six tracks, as shown in Figure 7, and 370 × 640 RGB
images and angles were collected at 10 frames per second.Sustainability 2018, 10, x FOR PEER REVIEW 8 of 13

(a) (b) (c)

(d) (e) (f)

Figure 7. TORCS tracks for data collection. The images and steering wheel angles were collected from

a self-driving car using a TORCS module on six tracks. (a) Ruunskogen; (b) Forza; (c) CG track 3; (d)

Wheel 1; (e) Street 1; and (f) E-Road.

The 200 × 200 images were created to entering into the CNN from the images taken by TORCS,

as shown in Figure 8. Figure 8a shows the original images from the camera of the car. Figure 8b shows

the images cropped using the proposed approach and Figure 8c displays the images resized to 200 ×

200 pixels [14]. Figure 8d shows the images with the forward field of the car cropped using the

traditional approach [13]. Two cropping areas were created with a 232 × 100 image at 71.85 degrees

centered on (296, 440) point and a 252 × 100 image at −70.39 degrees centered on the (296, 210) point.

(a) (b)

(c) (d)

Figure 8. Converted images from those taken on TORCS for input into the CNN. (a) The 370 × 640

image was converted into a 200 × 200 image and learned using the proposed CNN configuration. (a)

The original image; (b) the proposed method image; (c) the resized image [14]; and (d) the cropped

image [13].

4.2. Learning Routes

Learning was based on data collected during the self-driving of the car along six tracks for input

to the CNN as shown in Figure 7. Learning was carried out using data from the six tracks 30,000 times

through a multi-GPU for approximately four hours by changing the inputs. Figure 9 shows the loss

Figure 7. TORCS tracks for data collection. The images and steering wheel angles were collected from
a self-driving car using a TORCS module on six tracks. (a) Ruunskogen; (b) Forza; (c) CG track 3;
(d) Wheel 1; (e) Street 1; and (f) E-Road.

The 200 × 200 images were created to entering into the CNN from the images taken by TORCS,
as shown in Figure 8. Figure 8a shows the original images from the camera of the car. Figure 8b
shows the images cropped using the proposed approach and Figure 8c displays the images resized to
200 × 200 pixels [14]. Figure 8d shows the images with the forward field of the car cropped using the
traditional approach [13]. Two cropping areas were created with a 232 × 100 image at 71.85 degrees
centered on (296, 440) point and a 252 × 100 image at −70.39 degrees centered on the (296, 210) point.

Sustainability 2018, 10, x FOR PEER REVIEW 8 of 13

(a) (b) (c)

(d) (e) (f)

Figure 7. TORCS tracks for data collection. The images and steering wheel angles were collected from

a self-driving car using a TORCS module on six tracks. (a) Ruunskogen; (b) Forza; (c) CG track 3; (d)

Wheel 1; (e) Street 1; and (f) E-Road.

The 200 × 200 images were created to entering into the CNN from the images taken by TORCS,

as shown in Figure 8. Figure 8a shows the original images from the camera of the car. Figure 8b shows

the images cropped using the proposed approach and Figure 8c displays the images resized to 200 ×

200 pixels [14]. Figure 8d shows the images with the forward field of the car cropped using the

traditional approach [13]. Two cropping areas were created with a 232 × 100 image at 71.85 degrees

centered on (296, 440) point and a 252 × 100 image at −70.39 degrees centered on the (296, 210) point.

(a) (b)

(c) (d)

Figure 8. Converted images from those taken on TORCS for input into the CNN. (a) The 370 × 640

image was converted into a 200 × 200 image and learned using the proposed CNN configuration. (a)

The original image; (b) the proposed method image; (c) the resized image [14]; and (d) the cropped

image [13].

4.2. Learning Routes

Learning was based on data collected during the self-driving of the car along six tracks for input

to the CNN as shown in Figure 7. Learning was carried out using data from the six tracks 30,000 times

through a multi-GPU for approximately four hours by changing the inputs. Figure 9 shows the loss

Figure 8. Converted images from those taken on TORCS for input into the CNN. (a) The 370× 640 image
was converted into a 200× 200 image and learned using the proposed CNN configuration. (a) The original
image; (b) the proposed method image; (c) the resized image [14]; and (d) the cropped image [13].

Sustainability 2018, 10, 816 9 of 13

4.2. Learning Routes

Learning was based on data collected during the self-driving of the car along six tracks for input
to the CNN as shown in Figure 7. Learning was carried out using data from the six tracks 30,000 times
through a multi-GPU for approximately four hours by changing the inputs. Figure 9 shows the
loss according to the number of learning when changing input images. The loss from learning for
10,000 to 28,000 iterations was maintained the proposed approach, the resized image and that involving
the cropping of the forward field. The result of the loss converged to 0.01 with 28,000 iterations in
three approaches.

Sustainability 2018, 10, x FOR PEER REVIEW 9 of 13

according to the number of learning when changing input images. The loss from learning for 10,000

to 28,000 iterations was maintained the proposed approach, the resized image and that involving the

cropping of the forward field. The result of the loss converged to 0.01 with 28,000 iterations in three

approaches.

Figure 9. Change in CNN loss when learning CNN configuration on six tracks using three images.

4.3. Experimental Results and Performance Analysis

Figure 10 illustrates the self-driving course of the TORCS car using the steering wheel angle

created by the CNN learned through the six tracks. The car ran along the course using the learned

CNN by employing the image generated by the proposed method, the resized image, and the

cropped image.

(a) (b) (c)

(d) (e)

Figure 10. Final course determined to analyze the driving results using the learned CNN. The self-

driving test was conducted using the CNN learned with the image obtained by the proposed method,

the resized image, and the cropped image. (a) CG Speedway number 1; (b) CG Track 2; (c) Wheel 2;

(d) E-Track 4; and (e) Alpine 2

Figure 11 shows the results for the course in Figure 10. The car using the proposed approach

moved differently in the straight course, along the guard rail. CNN learning using the cropped image

failed to follow the route where the curve started and collided into the guard rail. The resized images

were smaller than the cropped image but were found to deviate from the curve on the course. In

Figure 11c–e, the car no longer ran along the course and collided in place and no longer proceeded.

On the contrary, the proposed approach successfully allowed the self-driving car to run along the

curve.

30,00020,00010,000

Loss

Tick

5,000 15,000 25,0000

Figure 9. Change in CNN loss when learning CNN configuration on six tracks using three images.

4.3. Experimental Results and Performance Analysis

Figure 10 illustrates the self-driving course of the TORCS car using the steering wheel angle
created by the CNN learned through the six tracks. The car ran along the course using the learned CNN
by employing the image generated by the proposed method, the resized image, and the cropped image.

Sustainability 2018, 10, x FOR PEER REVIEW 9 of 13

according to the number of learning when changing input images. The loss from learning for 10,000

to 28,000 iterations was maintained the proposed approach, the resized image and that involving the

cropping of the forward field. The result of the loss converged to 0.01 with 28,000 iterations in three

approaches.

Figure 9. Change in CNN loss when learning CNN configuration on six tracks using three images.

4.3. Experimental Results and Performance Analysis

Figure 10 illustrates the self-driving course of the TORCS car using the steering wheel angle

created by the CNN learned through the six tracks. The car ran along the course using the learned

CNN by employing the image generated by the proposed method, the resized image, and the

cropped image.

(a) (b) (c)

(d) (e)

Figure 10. Final course determined to analyze the driving results using the learned CNN. The self-

driving test was conducted using the CNN learned with the image obtained by the proposed method,

the resized image, and the cropped image. (a) CG Speedway number 1; (b) CG Track 2; (c) Wheel 2;

(d) E-Track 4; and (e) Alpine 2

Figure 11 shows the results for the course in Figure 10. The car using the proposed approach

moved differently in the straight course, along the guard rail. CNN learning using the cropped image

failed to follow the route where the curve started and collided into the guard rail. The resized images

were smaller than the cropped image but were found to deviate from the curve on the course. In

Figure 11c–e, the car no longer ran along the course and collided in place and no longer proceeded.

On the contrary, the proposed approach successfully allowed the self-driving car to run along the

curve.

30,00020,00010,000

Loss

Tick

5,000 15,000 25,0000

Figure 10. Final course determined to analyze the driving results using the learned CNN.
The self-driving test was conducted using the CNN learned with the image obtained by the proposed
method, the resized image, and the cropped image. (a) CG Speedway number 1; (b) CG Track 2;
(c) Wheel 2; (d) E-Track 4; and (e) Alpine 2

Figure 11 shows the results for the course in Figure 10. The car using the proposed approach
moved differently in the straight course, along the guard rail. CNN learning using the cropped
image failed to follow the route where the curve started and collided into the guard rail. The resized

Sustainability 2018, 10, 816 10 of 13

images were smaller than the cropped image but were found to deviate from the curve on the course.
In Figure 11c–e, the car no longer ran along the course and collided in place and no longer proceeded.
On the contrary, the proposed approach successfully allowed the self-driving car to run along the curve.

Sustainability 2018, 10, x FOR PEER REVIEW 10 of 13

(a)

(b)

(c)

X

Y

X

Y

X

Y

Figure 10. Cont.

Sustainability 2018, 10, 816 11 of 13

Sustainability 2018, 10, x FOR PEER REVIEW 11 of 13

(d)

(e)

Figure 11. The results of self-driving along the course in Figure 10. The car moved along the course

using the CNN learned with the image generated by the proposed method, the resized image, and

the results were obtained using a module in TORCS. (a) CG Speedway number 1; (b) CG Track 2; (c)

Wheel 2; (d) E-Track 4; and (e) Alpine 2

Images and steering wheel angles were collected by TORCS for the course in Figure 10. The

steering wheel angles of the three methods were compared and the accumulated results are shown

in Table 1. The average cumulative error of the proposed approach was 499.936, that of the method

using resized image was 595.672, and the error when cropped image was used was 587.785. The

proposed method has the smallest cumulative error, except for Table 2.

X

Y

X

Y

Figure 11. The results of self-driving along the course in Figure 10. The car moved along the course
using the CNN learned with the image generated by the proposed method, the resized image, and the
results were obtained using a module in TORCS. (a) CG Speedway number 1; (b) CG Track 2; (c) Wheel 2;
(d) E-Track 4; and (e) Alpine 2

Images and steering wheel angles were collected by TORCS for the course in Figure 10.
The steering wheel angles of the three methods were compared and the accumulated results are
shown in Table 1. The average cumulative error of the proposed approach was 499.936, that of the
method using resized image was 595.672, and the error when cropped image was used was 587.785.
The proposed method has the smallest cumulative error, except for Table 2.

Table 2. The accumulated difference between the steering wheel angles collected in TORCS and the
steering wheel angles generated by three approaches. Three approaches are the proposed method,
the resized image, and the cropped image.

Method CG Speedway Number 1 CG Track 2 Wheel 2 E-Track 4 Alpine 2

The proposed method 791.5418 320.236 593.2503 301.958 492.6927
The resized image [14] 833.7867 448.4071 744.6954 426.2724 525.1988
The cropped image [13] 912.9649 406.769 650.2188 278.4263 690.5489

5. Conclusions

This paper proposed a method to crop input images for self-driving cars using end-to-end control.
Areas in the images representing lanes were extracted from the images collected during self-driving

Sustainability 2018, 10, 816 12 of 13

for use as input to the end-to-end control. The images containing the lanes were used as the input to
the CNN and the steering wheel angle was set as the output.

The experiment involved the CNN learning the images and steering wheel angles during the
self-driving on TORCS. The steering wheel angles were then inferred. It was verified that the
learning result improved using the proposed cropping areas. The proposed method was 0.839%
better than the approach using the resized images containing the entire area of the original images, and
0.850% better than the approach using cropped images containing only a part of the original images.
The learning performance improved by eliminating unnecessary areas of the images using end-to-end
control. However, further research is needed to investigate the approach to improve performance on
unlearned roads.

Acknowledgments: This research was supported by BK21 Plus project of the National Research Foundation of
Korea Grant and by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology
Research Center) support program (IITP-2017-2013-0-00684) supervised by the IITP (Institute for Information and
communications Technology Promotion).

Author Contributions: Yunsick Sung proposed a main idea and wrote the proposed approach. Yong Jin did
experiments, Jeonghoon Kwak did additional experiments and is in charging in writing this paper overall,
Sang-Geol Lee designed the system based on the proposed approach and adjusted a CNN model, and Kyungeun
Cho supervised the main idea and written proposed method.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cho, H.; Seo, Y.W.; Kumar, B.V.; Rajkumar, R.R. A Multi-Sensor Fusion System for Moving Object Detection
and Tracking in Urban Driving Environments. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014.

2. Khoobjou, E.; Mazinan, A.H. On Hybrid Intelligence-based Control Approach with its Application to Flexible
Robot System. Hum.-Cent. Comput. Inf. Sci. 2017, 7, 1–18. [CrossRef]

3. Sung, Y.; Kwak, J.; Park, J.H. Graph-Based Motor Primitive Generation Framework: UAV Motor Primitives
by Demonstration-based Learning. Hum.-Cent. Comput. Inf. Sci. 2015, 5, 1–9. [CrossRef]

4. Abedin, M.Z.; Dhar, P.; Deb, K. Traffic Sign Recognition Using Hybrid Features Descriptor and Artificial
Neural Network Classifier. In Proceedings of the 19th International Conference on Computer and
Information Technology (ICCIT), Dhaka, Bangladesh, 18–20 December 2016.

5. Jin, J.; Fu, K.; Zhang, C. Traffic Sign Recognition with Hinge Loss Trained Convolutional Neural Networks.
IEEE Trans. Intell. Transp. Syst. 2014, 15, 1991–2000. [CrossRef]

6. Gurghian, A.; Koduri, T.; Bailur, S.V.; Carey, K.J.; Murali, V.N. DeepLanes: End-To-End Lane Position
Estimation using Deep Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), Las Vegas, NV, USA, 26 June–1 July 2016.

7. Jiman, K.; Chanjong, P. End-to-End Ego Lane Estimation based on Sequential Transfer Learning for
Self-Driving Cars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017.

8. Ramos, S.; Gehrig, S.; Pinggera, P.; Franke, U.; Rother, C. Detecting Unexpected Obstacles for Self-Driving
Cars: Fusing Deep Learning and Geometric Modeling. In Proceedings of the IEEE Intelligent Vehicles
Symposium (IV), Redondo Beach, CA, USA, 11–14 June 2017.

9. Luo, W.; Schwing, A.G.; Urtasun, R. Efficient Deep Learning for Stereo Matching. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

10. Schneemann, F.; Heinemann, P. Context-based Detection of Pedestrian Crossing Intention for Autonomous
Driving in Urban Environments. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016.

11. Han, H.; Park, S. Traffic Information Service Model Considering Personal Driving Trajectories. J. Inf.
Process. Syst. 2017, 13, 951–969. [CrossRef]

12. Kaiser, J.; Tieck, J.C.V.; Hubschneider, C.; Wolf, P.; Weber, M.; Hoff, M.; Friedrich, A.; Wojtasik, K.; Roennau, A.;
Kohlhaas, R.; et al. Towards a Framework for End-to-end Control of a Simulated Vehicle with Spiking Neural

http://dx.doi.org/10.1186/s13673-017-0086-5
http://dx.doi.org/10.1186/s13673-015-0051-0
http://dx.doi.org/10.1109/TITS.2014.2308281
http://dx.doi.org/10.3745/JIPS.03.0078

Sustainability 2018, 10, 816 13 of 13

Networks. In Proceedings of the IEEE International Conference on Simulation, Modeling, and Programming
for Autonomous Robots (SIMPAR), San Francisco, CA, USA, 13–16 December 2016.

13. Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.;
Muller, U.; Zhang, J.; et al. End to End Learning for Self-Driving Cars. arXiv, 2016.

14. Chen, C.; Seff, A.; Kornhauser, A.; Xiao, J. DeepDriving: Learning Affordance for Direct Perception in
Autonomous Driving. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
Santiago, Chile, 11–18 December 2015.

15. Pen, Y.; Cheng, C.A.; Saigol, K.; Lee, K.; Yan, X.; Theodoru, E.; Boost, B. Agile Off-Road Autonomous Driving
Using End-to-End Deep Imitation Learning. arXiv, 2017.

16. Wang, S.; Clark, R.; Wen, H.; Trigoni, N. Deepvo: Towards End-to-End Visual Odometry with Deep Recurrent
Convolutional Neural Networks. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), Singapore, 29 May–3 June 2017.

17. Yang, S.; Wang, W.; Liu, C.; Deng, W.; Hedrick, J.K. Feature Analysis and Selection for Training an End-to-End
Autonomous Vehicle Controller using Deep Learning Approach. In Proceedings of the IEEE International
Conference on Intelligent Vehicles Symposium (IV), Redondo Beach, CA, USA, 11–14 June 2017.

18. Lee, G.H.; Faundorfer, F.; Pollefeys, M. Motion Estimation for Self-Driving Cars with a Generalized Camera.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR,
USA, 23–28 June 2013.

19. Wolf, P.; Hubschneider, C.; Weber, M.; Bauer, A.; Härtl, J.; Dürr, F.; Zöllner, J.M. Learning How to Drive in
a Real World Simulation with Deep Q-Networks. In Proceedings of the IEEE Intelligent Vehicles Symposium
(IV), Los Angeles, CA, USA, 11–14 June 2017.

20. Lee, U.; Yoon, S.; Shim, H.; Vasseur, P.; Demonceaux, C. Local Path Planning in a Complex Environment for
Self-Driving Car. In Proceedings of the IEEE 4th Annual International Conference on Cyber Technology in
Automation, Control, and Intelligent Systems (CYBER), Hong Kong, China, 4–7 June 2014.

21. Canny, J.A. Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8,
679–698. [CrossRef]

22. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural
Networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems,
Lake Tahoe, NV, USA, 3–6 December 2012.

23. TORCS—The Open Racing Car Simulator. Available online: http://torcs.sourceforge.net/index.php
(accessed on 4 January 2018).

24. TensorFlow. Available online: https://www.tensorflow.org/ (accessed on 4 January 2018).
25. OpenCV. Available online: https://opencv.org/ (accessed on 4 January 2018).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://torcs.sourceforge.net/index.php
https://www.tensorflow.org/
https://opencv.org/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Research on Awareness of Cars
	Research on Driving Method of Cars
	End-to-End Controls of Cars

	Image Cropping Approach for Self-Driving Cars
	System Overview
	Extracting and Merging Approaches
	Network Architecture

	Experiments
	Experimental Environment
	Learning Routes
	Experimental Results and Performance Analysis

	Conclusions
	References

