
sustainability

Article

An Improved Cuckoo Search for a Patient
Transportation Problem with Consideration
of Reducing Transport Emissions

Liyang Xiao 1 ID , Mahjoub Dridi 1, Amir Hajjam El Hassani 1, Hongying Fei 2,* ID

and Wanlong Lin 3,* ID

1 Nanomedicine Lab, Univ. Bourgogne Franche-Comté, UTBM, 25030 Besancon, France;
liyang.xiao@utbm.fr (L.X.); mahjoub.dridi@utbm.fr (M.D.); amir.hajjam-el-hassani@utbm.fr (A.H.E.H.)

2 School of Management, Shanghai University, 99 ShangDa Road, BaoShan District, Shanghai 200444, China
3 Shanghai No.3 Rehabilitation Hospital, 100 JiaoCheng Road, JingAn District, Shanghai 200072, China
* Correspondence: Feihy@shu.edu.cn (H.F.); 13162638165@163.com (W.L.)

Received: 26 January 2018; Accepted: 7 March 2018; Published: 13 March 2018

Abstract: Many government agencies and business organizations have realized that it is necessary
to consider not only the economic cost but also the road transport emissions when they determine
the transport policies and operations. In this study, a patient transportation problem with the aim
of reducing transport emissions has been formulated by implementing CVRP model. In order
to determine the routes of patient transportation with optimized emissions for targeted hospital,
an improved Cuckoo Search (ICS) algorithm is proposed. In this study, a ‘split’ procedure has
been implemented to simplify the individual’s representation. A new category of cuckoos has been
introduced to improve the ICS’s search ability. Two heuristics have been applied to improve the
quality of initial population. A local search mechanism has been embedded in the search procedure
to improve the quality of solutions obtained at the end of each iteration. The computational results
were encouraging and demonstrated the effectiveness of the proposed solution method.

Keywords: vehicle routing; transport emissions; patient transportation

1. Introduction

The transportation sector is one of the main sources of urban noise [1] and greenhouse
gases (GHG), which respectively have significant effects on noise and air pollution. According to
United States Environmental Protection Agency, transportation sector contributed 27.5% of national
GHG emissions in 2015 [2]. With the rapid increase of vehicle numbers in China, road transport
emissions have a negative impact air quality and lead to critical environmental and health issues,
especially in urban areas. Except CO2, road transport also generates pollution materials as CO, N2O,
NH3, CH4. Reducing road transport emissions has attracted attentions. Many government agencies
and business organizations have realized that it is necessary to consider not only the economic cost
but also the road transport emissions when they determine the transport policies and operations.

The Vehicle Routing Problem (VRP), in which a set of routes must be defined for a fleet of vehicles
to travel from their depot(s) to customers so as to minimize total travel cost or fulfill some other
objectives while taking into account a set of given constraints. Many variants of VRPs have been
developed to tackle various constraints, such as Capacitated VRP (CVRP), VRP with Time Windows
(VRPTW), Multiple Depot VRP (MDVRP) an so on [3]. The VRP not only plays an important role in
industrial production but also gets widely applied to other areas [4], such as Supply Chain Logistics [5],
Emergency Preparedness [6], Green Logistics [7] and Patient Transportation [8].

Sustainability 2018, 10, 793; doi:10.3390/su10030793 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0003-4027-7701
https://orcid.org/0000-0003-3045-9093
https://orcid.org/0000-0003-3483-1913
http://dx.doi.org/10.3390/su10030793
http://www.mdpi.com/journal/sustainability

Sustainability 2018, 10, 793 2 of 19

Motivated by a real-life problem, this study addresses a patient transportation problem provided
by the Shanghai No. 3 Rehabilitation Hospital with consideration of reducing transport emissions.
The patient transportation service provided by the targeted hospital transfers its inpatients to
other hospitals (medical units) using a fleet of homogeneous vehicles with limited capacity of
each. Differing from other health care services, rehabilitation services are all non-emergency,
the patient transportation demands are reserved in advance, which are launched by doctors usually
according to the medical service requirements of inpatients and the available medical resources among
the medical units. This study aims at optimizing the total transport emissions of vehicle routes
meanwhile satisfying the patient transportation demands. The research problem can be formulated by
implementing CVRP model with consideration of reducing transport emissions. Moreover, in order to
solve the problem efficiently with solution of good quality, we then proposed an improved Cuckoo
Search (ICS), based on the one developed for solving the famous Travelling Salesman Problem (TSP).
The contributions of this study can be concluded as follows: (1) Extended the Cuckoo Search (CS)
algorithm, originally designed for TSP, to solve a patient transportation problem with consideration
of reducing transport emissions; (2) Implemented a ‘split’ procedure to simply the individual’s
representation and local search mechanism; (3) Improved the quality of initial population of CS
by using Saving Method and RNNH; (4) Accelerated the efficiency of the proposed ICS by both
introducing a new category of cuckoos and using a new local search strategy.

The rest of this paper is organized as follows. First, the relevant literature is reviewed in Section 2;
second, details about the patient transportation problem with consideration of reducing transport
emissions will be described in Section 3; then, a brief introduction to the basic structure of CS algorithm
together with the CS variant proposed by [9] will be given in Section 4. Section 5 will be dedicated to
the description of the structure of the proposed CS with its key elements. Afterwards, computational
results will be detailed in Section 6 for demonstrating effectiveness and efficiency. This paper will
finish with conclusions and perspectives.

2. Literature Review

As a variant of VRP, CVRP is also NP-hard and its computational complexity increases
exponentially as the number of customers grows. Although exact methods can obtain the optimal
solution, they are not efficient enough, especially for large-size instances [3]. Hence, the requirement
to find good solutions quickly (not necessarily the optimal solutions) has led to the development of
various heuristic algorithms [10] and approximate algorithms which are also called meta-heuristics in
many publications. Some well-structured heuristics can quickly attain feasible solutions for targeted
problems. However, the feasible solutions found by heuristic algorithms are not always near the optimal
one and thus cannot guarantee the quality of these solutions. On the other hand, a lot of meta-heuristic
algorithms, including Particle Swarm Optimization (PSO) [11,12], Tabu Search (TS) [13,14], Simulated
Annealing (SA) [15], Genetic Algorithms (GA) [16–18], Squeaky Wheel Optimization (SWO) [19,20] and
so on, have been proposed to solve VRPs. According to the literatures, it is easy to apply meta-heuristic
algorithms to various VRPs to get solutions with good quality, i.e., solutions quite near to the optimal
ones, with acceptable computational time [21–23]. Bio-inspired algorithms are designed after the
existing principles in nature systems. In the recent years, it has become an emerging trend in the
field of meta-heuristic algorithms to develop bio-inspired algorithms and such algorithms have been
widely applied to different scientific and engineering fields [24]. Furthermore, since Thangiah et al. [25]
first reported the application of bio-inspired algorithm to the VRP, a large number of proposals have
appeared for solving numerous VRP variants [26] with good experimental results [27–30].

It is worth mentioning that one of the bio-inspired meta-heuristic algorithms, developed by Yang
and Deb [31] and known as Cuckoo Search (CS), draws researchers’ attentions thanks to its strong
competence. CS is an optimization algorithm that is inspired by the obligate brood parasitism of some
cuckoo species by laying their eggs in the nests of other host birds. According to the literature, the CS
algorithm has been applied to continuous optimization problems with better performance than GA

Sustainability 2018, 10, 793 3 of 19

and Particle Swarm Optimization (PSO). Nowadays, CS algorithm and its variants have been applied
to many areas with good performance [9,32,33].

Although no variant of the CS algorithm has been developed for solving vehicle routing problem,
it was observed that Ouaarab et al. [9] have proposed a discrete CS algorithm for the famous travelling
salesman problem (TSP), a special version of VRP problem. Based on a comparison with a set of
TSP benchmarks, it was observed that the discrete CS algorithm proposed by Ouaarab et al. [9]
outperforms some other popular meta-heuristic algorithms in solving TSP problems. In consequence,
we are motivated to develop a CS-based meta-heuristic algorithm to solve the research problem to get
satisfactory solutions.

3. Problem Description

Similar to the VRP, the patient transportation problem can also be defined on a graph G = (V, A).
The node set V = {0, 1, ..., n}where node 0 represents the depot hospital and the other nodes represents
other medical units involved in patient transportation service. As for the arc set A = {(i, j) ∈ V}, an arc
((i, j) ∈ A) indicates a possible route linking nodes i and j and is associated with a given distance
dij = dji and velocity vij = vji. A fleet of K homogeneous vehicles, with limited capacity, are available for
transferring the patients from the given depot, indicated as node 0 in set V. Here are some hypotheses:

(1) Each medical unit must be visited by one and only one vehicle;
(2) The trip of each vehicle starts from and ends up at the depot hospital;
(3) The distance and velocity of each arc ((i, j) ∈ A) are constants;
(4) Each medical unit is associated with a given demand di of patient transportation service

(i ∈ V \{0});
(5) Each vehicle has a limited capacity Q;
(6) Total patients assigned to a vehicle trip must not exceed the vehicle’s capacity Q.

Transport Emissions Calculation

The objective is to determine trips of the vehicles visiting all medical units with patient
transportation demands to minimize total transport emissions while satisfying all necessary constraints.
Speak of transport emissions, MOBILE and COPERT are the most frequently used models [34],
which were respectively developed by American and European scientists. There are some other emission
models, such as PHEM [35] and TREMOD [36]. To be noticed, both TREMOD and COPERT used
Handbook of Emission Factors (HBEFA) database (http://www.hbefa.net/e/index.html). Distance,
load and velocity are the most important elements in all these emission models. In this study, COPERT
model was used to calculate transport emissions primarily because vehicles in Shanghai currently
adopt European-5 standards. The emission factor (EF) [37], which evaluates the quantity of transport
emissions exhausted by a single vehicle per kilometer (g/km). The transport emissions of each arc
((i, j) ∈ A), EFij, can be expressed as:

EFij = (a + c · vij + e · v2
ij)/(1 + b · vij + d · v2

ij), (1)

where a, b, c, d and e are emission parameters [37].
Let Xk

ij be decision variable, which equals to 1 if vehicle trip k travels from node i to node j
and otherwise equals to 0. The objection function of the research problem is then formulated in
following equation :

Min Σi∈VΣj∈VΣk∈KEFijdijXk
ij (2)

Subject to

Σk∈KΣi∈V Xk
ij = 1, j ∈ {1, ..., n} : i 6= j (3)

Σk∈KΣj∈V Xk
ij = 1, i ∈ {1, ..., n} : i 6= j (4)

http://www.hbefa.net/e/index.html

Sustainability 2018, 10, 793 4 of 19

Σi∈VΣj∈V Xk
ijdi ≤ Q, k ∈ K (5)

Σj∈V Xk
ij = Σj∈V Xk

ji, f or j 6= 0, i = 0, k ∈ K (6)

Σk∈KΣj∈V Xk
ij ≤ K, f or j 6= 0, i = 0 (7)

Objective Function (2) minimizes the total transport emissions. Constraints (3) and (4) make sure
that each medical unit is visited by exactly one vehicle. Constraints (5) guarantee that the patients
assigned to a trip does not exceed the vehicle’s capacity Q. Constraints (6) indicate that the depot
hospital is the start and end node for vehicle trips. Constraints (7) guarantee that there are at most K
vehicles available for patient transportation.

In order to solve the research problem, we proposed an improved Cuckoo Search. To the best
of our knowledge, no existing research has dealt with patient transportation with consideration of
reducing transport emissions, so there are no corresponding benchmarks to test the effectiveness of
the proposed ICS. By observing Equations (1) and (2), it can be easily concluded that the transport
emissions are in direct proportion to total travel distance in the research problem. To evaluate the
performance of the ICS proposed in this work, the patient transportation model is reduced into
a classical CVRP. As mentioned above, distance is one of the most important element of transport
emissions. However, the total travel distance may vary significantly among all the enormous number
of feasible routes. Take instance “P-n19-k2” [38] as example, two similar feasible routes are listed in
Table 1. Comparing to the second route, the first one reduces 42.57% travel distance and therefore
reduces 42.57 % emissions (using COPERT model).

Table 1. Case study: emission comparison between two feasible routes.

Route Distance

Trip 1: Depot-> 4-> 14-> 11-> 12-> 3->17-> 16-> 6-> 8-> Depot
Trip 2: Depot-> 5-> 18-> 13-> 15-> 9-> 7-> 2-> 1-> 10-> Depot 288

Trip 1: Depot-> 4-> 11-> 14-> 12-> 3->17-> 16-> 8-> 6-> Depot
Trip 2: Depot-> 18-> 5-> 13-> 15-> 9-> 7-> 2-> 10-> 1-> Depot 202

For a better understanding, we will first introduce the basic idea of CS algorithm. Afterwards,
the algorithm developed for TSP [9] (called CS-Quarrab hereinafter) is presented as well as the
proposed improved Cuckoo Search algorithm (called ICS in the rest of this paper).

4. Development of the Improved Cuckoo Search

In order to make CS algorithm cope with the TSP [9], where the coordinates of cities are fixed and
solutions are presented in the visiting order, the flights of cuckoos in search space should be translated
into permutations of visiting order of existing solutions. As mentioned in Section 1, it is observed that
the encouraging results in solving TSP with an extension of CS algorithm were published [9], in this
paper, we first extended the CS [9] to the vehicle routing problem and then developed an improved CS
algorithm to improve not only the quality but also the efficiency of the solution.

4.1. Standard Cuckoo Search

Firstly proposed by Yang and Deb in 2009 [31], the standard Cuckoo Search algorithm (CS) is
a meta-heuristic algorithm inspired by the interesting parasitism of cuckoo species and originally
developed for solving multimodal functions. CS algorithm can be summarized as three ideal rules:
(1) The egg, laid by each cuckoo in the randomly selected nest, represents a random solution; (2) At the
end of each iteration (generation), the best nest with an egg of high quality is kept for the next
generation, in other words, the solution with the best fitness is preserved; (3) The number of available
host nests is fixed, and the cuckoo’s egg might be found by the host bird with certain probability

Sustainability 2018, 10, 793 5 of 19

Pa ∈ [0, 1]. If the egg is found, the host bird will throw out the alien egg or abandon its nest so that the
egg will not be hatched. In the CS Algorithm, this phenomenon can be described in an easier way that
a fraction Pa of the current set of solutions is replaced by randomly generated solutions. A solution
Xt+1

i is generated from solution Xt
i of cuckoo i by performing a Lévy flight:

Xt+1
i = Xt

i + α⊕ Levy(s, λ) (8)

where α < 0 is the step size, which should be associated with the scales of the problem of interests and
α = 1 is most the common used value in the majority of cases.

The most important characteristic of Lévy flights is its intensive search around a solution and
the occasional big steps of Lévy flights can minimize the probability of falling into local optima.
In fact, the Lévy flight is modelled as a probability density function that has a power law tail, and the
step length is associated to the value generated by Lévy flights. Both step length and step size s are
randomly drawn from Lévy distribution:

Levy(s, λ) ∼ s−λ, (1 < λ ≤ 3) (9)

4.2. CS-Ouaarab Algorithm

Ouaarab et al. [9] proposed a variant of CS algorithm by considering a group of cuckoos
performing Lévy flights and adapted this algorithm to solving TSP problem with encouraging results.
This extension of CS, denoted as CS-Ouaarab in the rest of this paper, can be described as in Figure 1.

Figure 1. Flowchart of CS-Ouaarab.

Sustainability 2018, 10, 793 6 of 19

5. Improved Cuckoo Search Algorithm

In order to improve the efficiency of CS algorithm and to apply the CS algorithm to tackle CVRP,
another variant of CS algorithm is proposed in this study.

Notation:

- Nest: an individual in the population. In this study, a nest contains only one egg;
- Egg: an egg in a nest represents a solution. In this study, a solution is coded as a giant tour,

i.e., A sequence of customers without trips delimiters.

Based on the procedure of CS-Quaarab, two improvements are listed as follows:

(1) A local search strategy is performed by a small category of cuckoos with fraction Pd around
current nests.

Studies show that a host bird will simply throw the alien eggs or even abandon its nest if it realizes
the eggs are not its own. To reduce the probability of their eggs being discovered, some cuckoo species
have evolved in such a way that they can engage a kind of surveillance on nests likely to be a host [39].
Furthermore, some female parasitic cuckoos are often very specialized in the mimicry in colour and
pattern of the eggs of the chosen host birds so as to reduce the risk of being distinguished. Some other
cuckoos observe the hosts around to find whether the chosen nest is the best or not. In consequence,
we are inspired to introduce a local search strategy performed by a small category of astute cuckoos
with fraction Pd around the current nest.

In the adaptation of CS to TSP, 2-opt [40] and double-bridge moves [41] are performed via Lévy
flights to find a new area, where 2-opt is used for the small permutation and large permutations
are made by double-bridge moves. In order to apply CS to CVRP, this mechanism is remained in
this study: an “astute” cuckoo randomly chooses a direction from its current nest to search for the
best nest in a restrictive range of its current nest. To find a better nest, the rule Reinsertion [42] will
be applied that a randomly chosen node is replaced by the best solution found by the local search,
i.e., when a better nest is found, the “astute cuckoo" will abandon its current nest and move forward to
the best nest found via local search to improve the hatch condition of its egg. In this study, the moves
carried by cuckoos in the search space via Lévy flights are designed to be drawn from the interval
[0, 1] as detailed in Table 2.

(2) Set the probability Pb that a cuckoo be “astute” so as to balance between intensification and
diversification of solution obtained by the improved CS algorithm.

It is obvious that the new cuckoo category is introduced to strengthen intensive search around
their current solutions via best-improvement local search, but our preliminary experiments show that
this best-improvement local search strategy of astute cuckoos may cause stagnation in local optima.
A probability of astute cuckoos, Pb, is thus proposed to give better resistance against any potential
traps and stagnation in local optima. Pb represents the appearance probability of astute cuckoos in each
generation which can be regarded as mutation rate in genetic algorithm. The new search mechanism,
with a fraction Pd and probability Pb, plays an important role in controlling the balance between
intensification and diversification and can be directly introduced in CS.

Table 2. Moves in search space via Lévy flights.

Value of Lévy Flights (Step Length) Moves Carried by Cuckoos

[0, 0.2) one 2-opt move
[0.2, 0.4) two successive 2-opt moves
[0.4, 0.6) three successive 2-opt moves
[0.6, 0.8) four successive 2-opt moves
[0.8, 1] a double-bridge move

Sustainability 2018, 10, 793 7 of 19

The population of the improved CS algorithm (ICS) is associated with three types of Cuckoos:

(1) A fraction Pa of cuckoos that seek for new nests at the end of each generation;
(2) A fraction Pc of cuckoos that search for new nests from the current position. The range of their

movements is in proportional to the step length of Lévy flight;
(3) A fraction Pd of astute cuckoos that search with a probability Pb for a better nest in a restrictive

range of their current one towards a random direction. Once some better nests are found,
the cuckoo will abandon the current nest and move forward to the best nest found. The general
procedure of ICS is described as bellow (Algorithm 1):

Algorithm 1: General procedure of ICS

1 Generate initial population of n nests ;
2 while (t ≤MaxGeneration) or (not stop criterion) do
3 Start searching with a fraction Pc of cuckoos;
4 Get a cuckoo randomly by Lévy flights for a new solution (say, i);
5 Evaluate its quality/fitness Fi;
6 Choose a nest among n (say, j) randomly;
7 if Fi > Fj then
8 Replace j by the new solution i ;
9 end

10 Get a random value P in [0, 1];
11 if P < Pb then
12 Start searching with a fraction Pd of astute cuckoo ;
13 Get a cuckoo randomly;
14 Replace its current nest (say, k) by the new nest it found (say, l)
15 end
16 A fraction Pa of worse nests are abandoned and new nests are built;
17 Rank the solutions and find the current best;
18 end

5.1. Fitness Evaluation

In ICS, the CS algorithm proposed in this study, a solution is firstly encoded as a giant tour,
i.e., a tour without tip delimiters. Then, the giant tour is optimally split into a set of trips with Split
procedure proposed in [17]. In the Split procedure, copies of the depot node (Node 0) are inserted into
the giant tour as trip delimiters. This kind of thought was inspired by the route-first, cluster-second
heuristic algorithm put forward [43]. Below is an example for better understanding: the optimal route
of the instance “P-n19-k2” [38] contains two trips (Trip1: 0 4 11 14 12 3 17 16 8 6 0; Trip2: 0 18 5 13 15 9 7
2 10 1 0). In ICS, the optimal route of “P-n19-k2" is firstly encoded as a giant tour: 4 11 14 12 3 17 16
8 6 18 5 13 15 9 7 2 10 1. Then, the Split procedure loops each subsequence (Ti, Ti+1, . . . , Tj) of the
given giant tour T = (T1, T2, . . . , Tm) to evaluate whether the trip (0 Ti, Ti+1, . . . , Tj 0) is feasible (not
exceeding vehicle capacity Q) or not. Every feasible trip is denoted as one arc (i − 1, j) with route cost
in order to get the optimal splitting from T1 to Tm. Therefore, the fitness of a solution is defined as the
total travel cost of all trips constructing the corresponding route.

5.2. Host Nest Initialization

To generate a set of initial solutions (nests), one of the most common heuristic algorithms is the
saving method [44]. Prins [45] used Greedy Randomized Adaptive Search Procedure (GRASP) [46]
and its hybrids using a randomized version of the nearest neighbour heuristic which called RNNH.
The initial individuals generated by heuristic methods are expected to evolve to high-quality solutions
in a relatively small number of generations of meta-heuristic algorithms [45].

Sustainability 2018, 10, 793 8 of 19

In this study, the initial solutions (host nests) are generated as follows:

- First, generate ten initial solutions with well-known heuristics: two from the savings method
(sequential version and parallel version) and eight from RNNH.

- Second, the initial individuals received from the heuristic methods are applied to a 3-opt local
search, because Laporte et al. [10] concluded that fairly good solutions can be obtained by adding
a 3-opt local search as post-optimization.

- Afterwards, solutions obtained by 3-opt local search are accepted to be part of the initial
population.

- Finally, randomly generate the rest individuals of the initial population as giant tours.

6. Numerical Study

To assess the performance of ICS algorithm, three numerical experiments were designed with
benchmark problems extracted from site http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-
instances/. ICS algorithm and CS-Quaarab algorithm were both coded with MATLAB 8.6 and executed
on a laptop with Core i7 CPU 2.80 GHz.

6.1. Analyses on the Effect of Parameter Pd and Pb

Besides the parameters that adopted from the proposition in [9], it is necessary to tune the value of
parameters Pd and Pb which are newly introduced in ICS when developing a new category of cuckoos
to improve the quality of initial population. As stated above, the parameters Pd and Pb may have
a significant effect over the performance of ICS because the parameter Pb will help to avoid getting
trapped in local optima while parameter Pd represents the portion of astute cuckoos in the population.

The tests of parameters are organized in two steps:

Step 1: Evaluation of parameter Pd

Suppose that astute cuckoos appear in every iteration, i.e., ICS with six different values of Pd: 0,
0.05, 0.1, 0.15, 0.2, 0.25, are tested on a eight benchmark problems (2 instances from each A, B, P, E sets)
for 500 iterations.

According the experimental results (as shown in Table 3), it was observed that the bigger the value
of Pd is, the more execution time is required by the algorithm. With a further analyses of deviation of
solutions obtained by ICS with different values of Pd to BKS, i.e., The best known solution (as shown in
Figures 2 and 3), it can be concluded that Pd = 0.05 generally has a better performance than the other
values over the test instances.

Step 2: Evaluation of Parameter Pb

According to the results in Step 1, Pd is set as 0.05 to obtain a better output of ICS. Similar
experiments are designed to evaluate the performance of ICS with four different values of Pb: 0.25,
0.5, 0.75 and 1. According to the experimental results (as shown in Table 3 and 4, Figures 4 and 5),
it is obvious that it is better to set Pb = 0.25 to get a better balance between the solution quality (both
%Dev(Best) and %Dev(Ave)) and the computational time (show in Figure 6).

Table 3. Results for preliminary experiments done for determining the value of Pd (500 Generations).

Problem BKS

Results without Pd Results with Pd

Pd = 0.05 Pd = 0.1 Pd = 0.15 Pd = 0.2 Pd = 0.25
Best Time (s) Best Time (s) Best Time (s) Best Time (s) Best Time (s) Best Time (s)

P-n16-k8 450 450 1.72 450 2.10 450 2.65 450 3.24 450 3.58 450 4.04
P-n23-k8 529 535 2.21 534 3.16 534 4.12 535 5.09 534 5.79 534 6.64
B-n35-k5 955 967 3.28 960 5.07 963 6.70 962 8.42 967 9.89 962 11.59
B-n43-k6 742 749 4.26 742 6.86 749 9.26 743 11.69 743 14.05 743 16.51
A-n55-k9 1073 1109 6.67 1087 10.98 1090 15.01 1090 18.50 1088 22.96 1090 27.08
A-n69-k9 1174 1191 9.33 1188 15.53 1188 22.14 1188 28.18 1188 33.85 1188 40.60
E-n76-k7 682 717 10.62 715 18.18 717 25.76 717 33.42 717 40.03 717 47.59
E-n76-k8 735 782 10.64 771 18.15 783 25.60 788 33.34 765 39.36 772 46.30

http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/
http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/

Sustainability 2018, 10, 793 9 of 19

Figure 2. Percentage deviations of best results from the best-known solutions according to different Pd values.

Figure 3. Computational time variations according to different Pd values.

Table 4. Results for preliminary experiments done for determining the value of Pb (500 Generations).

Problem BKS
Pb = 0.25 Pb = 0.5 Pb = 0.75 Pb = 1

Best Average Time (s) Best Average Time (s) Best Average Time (s) Best Average Time (s)

P-n16-k8 450 450 450.00 1.72 450 450.00 1.84 450 450.00 1.98 450 451.00 2.11
P-n23-k8 529 534 535.20 2.50 535 536.20 2.69 534 536.40 2.90 534 535.80 3.16
B-n35-k5 955 962 965.00 3.65 962 966.20 4.06 963 964.80 4.51 960 966.40 5.07
B-n43-k6 742 742 746.40 4.94 749 750.20 5.54 742 748.00 6.17 742 749.20 6.86
A-n55-k9 1073 1087 1093.20 7.67 1090 1101.40 8.49 1105 1108.20 9.52 1087 1101.20 10.98
A-n69-k9 1174 1185 1187.40 10.73 1187 1187.80 12.14 1188 1188.60 13.79 1188 1188.00 15.53
E-n76-k7 682 710 718.80 12.95 717 722.00 14.19 718 719.00 15.98 715 721.40 18.18
E-n76-k8 735 757 773.80 12.87 788 788.60 14.29 779 783.00 15.90 771 782.00 18.15

Sustainability 2018, 10, 793 10 of 19

Figure 4. Percentage deviations of best results from the best-known solutions according to different Pb values.

Figure 5. Percentage deviations of average results from the best-known solutions according to different
Pb values.

Figure 6. Computational time variations according to different Pb values.

Sustainability 2018, 10, 793 11 of 19

6.2. Comparison between CS-Quaarab and ICS

In this subsection, numerical experiments were performed to make a comparison between
the CS-Quarrab algorithm and the proposed ICS on eighty-two well-known CVRP instances,
which includes full seventy-four instances from A, B, P sets [38] and eight instances from set E [47].
All the above-mentioned instances have already been optimality solved and the BKS values were
derived from [48]. Each instance was executed for 30 runs with parameters given in Table 5.

Table 5. Parameter settings for both algorithms, CS-Ouaarab and ICS.

Parameter Value Meaning

n 20 Population size
Pa 0.2 Portion of bad solutions
Pc 0.6 Portion of cuckoos performing Lévy flights
Pd 0.05 Portion of astute cuckoos (only for the improved CS)
Pb 0.25 Probability of astute cuckoos (only for the improved CS)
MaxGeneration 5000 Maximum number of iterations
Stop criterion 1000 Attempt limit of successive iterations

According to the results shown in Tables 6–9, it can be observed that ICS outperforms CS-Quaarab
for all instances regarding solution quality. It is worth mentioning that ICS attains BKS for 22 instances
(about 27%) while CS-Quarrab just attained BKS for 4 instances (about 4.9%). Although it can be
observed that ICS consumes more CPU than CS-Quaarab, however, ICS can obtain the solution within
1 min for most of the instances which means that all instances can be solved in reasonable execution
time. The results are quite encouraging.

Table 6. Comparison of both algorithms, the CS-Ouaarab and the ICS on problem set A.

Problem BKS

CS-Ouaarab ICS

Best Average Worst %Dev() Time(s) Best Average Worst %Dev() Time(s)
Best Average Best Average

A-n32-k5 784 798 823.03 917 1.79 4.98 6.19 784 787.96 796 0.00 0.51 12.86
A-n33-k5 661 674 710.90 738 1.97 7.55 6.14 661 662.93 677 0.00 0.29 11.98
A-n33-k6 742 756 772.43 805 1.89 4.10 7.82 742 746.43 755 0.00 0.60 14.62
A-n34-k5 778 805 833.60 896 3.47 7.15 6.76 778 784.53 789 0.00 0.84 9.28
A-n36-k5 799 830 865.90 945 3.88 8.37 7.03 799 809.50 815 0.00 1.31 10.52
A-n37-k5 669 695 734.83 780 3.89 9.84 7.39 670 680.26 702 0.15 1.68 14.63
A-n37-k6 949 975 1020.70 1059 2.74 7.56 8.79 958 970.86 977 0.95 2.30 11.99
A-n38-k5 730 744 776.76 823 1.92 6.41 7.26 732 740.00 748 0.27 1.37 13.62
A-n39-k5 822 863 907.70 980 4.99 10.43 8.50 822 833.73 868 0.00 1.43 22.84
A-n39-k6 831 861 887.16 928 3.61 6.76 7.88 834 846.80 857 0.36 1.90 12.56
A-n44-k6 937 978 1039.50 1097 4.38 10.94 9.05 948 955.60 963 1.17 1.99 15.11
A-n45-k6 944 985 1020.20 1114 4.34 8.07 9.90 961 974.06 993 1.80 3.18 20.95
A-n45-k7 1146 1211 1249.10 1299 5.67 9.00 8.42 1161 1194.70 1198 1.31 4.25 12.17
A-n46-k7 914 928 1023.70 1066 1.53 12.00 9.82 915 925.50 939 0.11 1.26 18.82
A-n48-k7 1073 1135 1181.20 1221 5.78 10.08 10.48 1089 1099.60 1110 1.49 2.48 16.89
A-n53-k7 1010 1069 1120.90 1200 5.84 10.98 11.53 1033 1057.50 1098 2.28 4.70 26.61
A-n54-k7 1167 1222 1292.90 1352 4.71 10.79 10.62 1186 1200.70 1209 1.63 2.89 15.51
A-n55-k9 1073 1142 1167.90 1221 6.43 8.84 12.20 1075 1089.80 1109 0.19 1.57 24.94
A-n60-k9 1354 1450 1500.70 1541 7.09 10.83 16.02 1365 1365.00 1365 0.81 0.81 17.21
A-n61-k9 1034 1080 1130.80 1202 4.45 9.36 13.28 1047 1061.10 1072 1.26 2.62 31.62
A-n62-k8 1288 1346 1406.80 1469 4.50 9.22 11.93 1324 1332.70 1341 2.80 3.47 21.21
A-n63-k9 1616 1709 1779.40 1841 5.75 10.11 13.32 1654 1654.80 1655 2.35 2.40 19.42
A-n63-k10 1314 1391 1445.00 1494 5.86 9.97 13.68 1332 1347.50 1348 1.37 2.55 19.24
A-n64-k9 1401 1491 1536.50 1585 6.42 9.67 12.03 1446 1452.40 1455 3.21 3.67 21.68
A-n65-k9 1174 1258 1304.90 1362 7.16 11.15 12.54 1199 1230.00 1265 2.13 4.77 45.05
A-n69-k9 1159 1252 1297.80 1397 8.02 11.98 14.19 1181 1187.10 1188 1.90 2.42 23.99
A-n80-k10 1763 1875 1973.50 2062 6.35 11.94 17.02 1832 1837.70 1840 3.91 4.24 27.33
Average 4.61 9.19 10.36 1.16 2.28 18.99

Sustainability 2018, 10, 793 12 of 19

Table 7. Comparison of both algorithms, the CS-Ouaarab and the ICS on problem set B.

Problem BKS

CS-Ouaarab ICS

Best Average Worst %Dev() Time(s) Best Average Worst %Dev() Time(s)
Best Average Best Average

B-n31-k5 672 675 683.36 701 0.45 1.69 5.41 672 672.66 677 0.00 0.10 8.93
B-n34-k5 788 795 826.96 889 0.89 4.94 9.35 789 791.86 793 0.13 0.49 8.18
B-n35-k5 955 973 983.60 1003 1.88 2.99 8.36 958 963.00 967 0.31 0.84 10.74
B-n38-k6 805 822 834.46 848 2.11 3.66 7.88 807 815.03 822 0.25 1.25 16.31
B-n39-k5 549 571 604.33 667 4.01 10.08 9.43 557 562.53 565 1.46 2.46 8.98
B-n41-k6 829 841 866.43 895 1.45 4.52 9.92 831 839.43 858 0.24 1.26 20.29
B-n43-k6 742 748 759.26 796 0.81 2.33 8.02 742 744.86 751 0.00 0.39 17.12
B-n44-k7 909 936 969.46 1003 2.97 6.65 10.57 910 921.26 934 0.11 1.35 15.29
B-n45-k5 751 785 803.63 852 4.53 7.01 9.79 752 752.00 752 0.13 0.13 10.46
B-n45-k6 678 722 739.46 760 6.49 9.06 8.45 690 713.60 715 1.77 5.25 10.76
B-n50-k7 741 760 777.23 819 2.56 4.89 10.42 741 744.60 745 0.00 0.49 13.03
B-n50-k8 1312 1356 1388.70 1431 3.35 5.85 12.08 1331 1344.50 1356 1.45 2.48 21.77
B-n51-k7 1016 1022 1048.80 1103 0.59 3.23 11.12 1016 1018.50 1025 0.00 0.25 26.16
B-n52-k7 747 761 778.40 809 1.87 4.20 10.72 754 755.63 757 0.94 1.16 15.25
B-n56-k7 707 742 760.26 795 4.95 7.53 12.30 720 725.30 728 1.84 2.59 17.58
B-n57-k7 1144 1161 1212.40 1308 1.49 5.98 14.43 1144 1148.30 1164 0.00 0.38 34.46
B-n57-k9 1598 1646 1685.70 1734 3.00 5.49 13.93 1611 1635.20 1650 0.81 2.33 26.35
B-n63-k10 1496 1586 1639.80 1694 6.02 9.61 13.52 1554 1567.40 1582 3.88 4.78 27.47
B-n64-k9 861 917 935.50 963 6.50 8.65 12.32 894 903.30 915 3.83 4.91 30.69
B-n66-k9 1316 1378 1418.70 1464 4.71 7.80 13.90 1331 1350.40 1391 1.14 2.61 42.43
B-n67-k10 1032 1099 1118.00 1179 6.39 8.23 14.27 1073 1084.70 1097 3.87 5.00 42.84
B-n68-k9 1272 1322 1352.30 1416 3.93 6.31 16.79 1288 1302.40 1310 1.26 2.39 31.98
B-n78-k10 1221 1296 1331.50 1387 6.14 9.05 20.68 1257 1261.30 1262 2.95 3.30 26.66
Average 3.35 6.08 11.46 1.15 2.01 21.03

Table 8. Comparison of both algorithms, the CS-Ouaarab and the ICS on problem set E.

Problem BKS

CS-Ouaarab ICS

Best Average Worst %Dev() Time(s) Best Average Worst %Dev() Time(s)
Best Average Best Average

E-n22-k4 375 377 390.63 414 0.53 4.17 5.18 375 375.00 375 0.00 0.00 7.15
E-n23-k3 569 570 578.70 623 0.18 1.70 4.20 569 569.50 574 0.00 0.09 6.33
E-n30-k4 503 506 525.56 573 0.60 4.49 6.07 503 504.40 510 0.00 0.28 11.08
E-n33-k4 835 853 887.10 934 2.16 6.24 7.95 837 839.86 841 0.24 0.58 6.95
E-n76-k7 682 742 778.73 812 8.80 14.18 16.84 710 715.36 724 4.11 4.89 40.12
E-n76-k8 735 800 842.73 870 8.84 14.66 13.56 751 765.76 788 2.18 4.19 55.07

E-n76-k14 1021 1100 1130.00 1156 8.84 14.66 13.56 1045 1046.90 1047 2.35 2.54 26.09
E-n101-k14 1067 1197 1230.20 1274 12.18 15.30 22.38 1109 1110.50 1112 3.94 4.08 45.71

Average 5.13 8.93 11.74 1.60 2.08 24.81

Table 9. Comparison of both algorithms, the CS-Ouaarab and the ICS on problem set P.

Problem BKS

CS-Ouaarab ICS

Best Average Worst %Dev() Time(s) Best Average Worst %Dev() Time(s)
Best Average Best Average

P-n16-k8 450 450 450.00 450 0.00 0.00 4.53 450 450.00 450 0.00 0.00 4.23
P-n19-k2 212 212 224.36 239 0.00 5.83 3.76 212 212.00 212 0.00 0.00 4.14
P-n20-k2 216 218 228.80 246 0.93 5.93 4.06 216 216.00 216 0.00 0.00 6.06
P-n21-k2 211 219 226.86 257 3.79 7.52 3.74 211 211.41 212 0.00 0.19 5.76
P-n22-k2 216 217 231.33 264 0.46 7.10 3.97 216 216.00 216 0.00 0.00 6.37
P-n22-k8 590 590 594.27 611 0.00 0.72 8.13 590 590.00 590 0.00 0.00 4.56
P-n23-k8 529 529 538.66 550 0.00 1.83 9.74 529 532.41 534 0.00 0.64 7.39
P-n40-k5 458 481 510.06 559 5.02 11.37 7.96 458 458.79 461 0.00 0.17 24.96
P-n45-k5 510 540 565.46 587 5.88 10.87 8.04 512 522.03 528 0.39 2.36 16.66
P-n50-k7 554 578 613.90 644 4.33 10.81 12.08 568 569.96 573 2.53 2.88 25.17
P-n50-k8 631 664 685.66 723 5.23 8.66 12.30 635 642.75 647 0.63 1.86 21.25

P-n50-k10 696 738 756.63 777 6.03 8.71 11.41 712 717.89 721 2.30 3.15 25.50
P-n51-k10 741 786 810.43 840 6.07 9.37 13.72 751 754.37 757 1.35 1.80 26.02
P-n55-k7 568 600 628.96 673 5.63 10.73 12.41 577 582.17 583 1.58 2.49 37.64
P-n55-k8 588 621 640.30 665 7.81 11.16 12.24 584 596.44 599 1.39 3.55 40.15

P-n55-k10 694 729 752.53 775 5.04 8.43 12.98 708 719.27 726 2.02 3.64 23.44
P-n55-k15 945 975 1007.90 1040 3.17 6.66 14.23 955 956.65 957 1.06 1.23 25.09
P-n60-k10 744 807 826.46 841 8.47 11.08 13.18 774 779.82 784 4.03 4.81 35.03
P-n60-k15 968 1013 1051.30 1074 4.65 8.61 16.73 993 1011.40 1014 4.48 4.48 22.46
P-n65-k10 792 862 889.70 923 8.84 12.34 14.08 826 833.44 837 4.29 5.23 24.35
P-n70-k10 827 889 928.60 966 7.50 12.29 14.09 840 851.68 856 1.57 2.98 46.41
P-n76-k4 593 652 684.13 711 9.95 15.37 15.69 618 623.27 627 4.22 5.10 56.43
P-n76-k5 627 667 725.00 765 6.38 15.63 14.29 652 658.31 660 3.99 4.99 68.13

P-n101-k4 681 756 787.30 838 11.01 15.61 21.00 690 711.48 722 1.32 4.48 114.13
Average 4.84 9.03 11.02 1.47 2.34 27.97

Sustainability 2018, 10, 793 13 of 19

6.3. Comparison between ICS and Some Other Recently Published Methods Tackling CVRP

In order to further evaluate the performance of ICS, with the output of ICS is compared with
some other recently published methods that tackle CVRPs. Mohammed et al. [49] lately applied
K-Nearest Neighbor Algorithm (KNNA) for solving CVRP and show the results of several instances.
Although they did not indicate the experimental environment, their results are still listed for the
comparison of solution quality. In this paper, three complete benchmarks are selected: Unsupervised
Fuzzy Clustering approach (UFC) [50], large Neighbourhood Search algorithm by accepting only the
improving solutions (LNSi) [51] and a hybrid algorithm that executes Large Neighbourhood Search
algorithm in combination with the solution construction mechanism of the Ant Colony Optimization
algorithm (LNS-ACO) [51]. The author indicated that although LNS-ACO outperforms LNSi in
solution quality yet LNSi was much faster than LNS-ACO.

These algorithms are chosen for comparison mainly because they are most recently published
methods that also reported results for CVRP instances sets A, B, P [38] and E [47]. Moreover, LNSi and
LNS-ACO were also coded in Matlab and run the algorithms on a personal computer with Core i7
CPU 2.80 GHz [51]. With parameters given in Table 5, the comparison between the output of ICS and
the results of the other algorithms are shown in Tables 10–13 where BKSs are referred to [48].

Table 10. Computational results for the problem set A.

Problem BKS

KNNA UFC LNSi LNS-ACO ICS

%Dev() %Dev() %Dev() %Dev() %Dev()

Worst Best Worst Best Worst Best Worst Best

A-n32-k5 784 1.66 6.1 3.6 0.00 0.00 0.00 0.00 1.53 0.00
A-n33-k5 661 21.79 4.2 2.9 0.61 0.00 0.00 0.00 2.42 0.00
A-n33-k6 742 17.12 3.0 2.0 0.54 0.00 0.00 0.00 1.75 0.00
A-n34-k5 778 - 2.4 1.5 1.54 0.77 0.00 0.00 1.41 0.00
A-n36-k5 799 - 2.2 2.2 1.13 0.75 0.00 0.00 2.00 0.00
A-n37-k5 669 31.99 7.9 3.6 2.09 1.20 0.00 0.00 4.93 0.15
A-n37-k6 949 6.90 3.3 2.9 1.26 0.42 0.00 0.00 2.95 0.95
A-n38-k5 730 - 8.2 2.4 2.33 1.37 0.00 0.00 2.47 0.27
A-n39-k5 822 - 7.2 3.3 2.55 1.70 0.00 0.00 5.60 0.00
A-n39-k6 831 17.57 4.4 1.7 2.17 1.44 0.24 0.00 3.13 0.36
A-n44-k6 937 21.34 5.9 2.9 2.67 1.49 0.53 0.00 2.77 1.17
A-n45-k6 944 19.60 7.1 1.3 4.34 3.07 2.01 1.48 5.19 1.80
A-n45-k7 1146 - 6.6 4.6 3.05 2.36 0.52 0.00 4.54 1.31
A-n46-k7 914 26.26 5.4 2.4 3.17 1.75 0.33 0.00 2.74 0.11
A-n48-k7 1073 12.12 4.3 2.3 3.17 2.24 1.03 1.03 3.45 1.49
A-n53-k7 1010 20.20 13.7 8.3 3.56 2.38 0.69 0.00 8.71 2.28
A-n54-k7 1167 4.46 6.7 2.7 2.31 1.71 0.60 0.00 3.60 1.63
A-n55-k9 1073 29.26 6.4 3.7 3.08 2.05 0.09 0.00 3.36 0.19
A-n60-k9 1354 6.06 6.3 3.6 2.81 1.92 0.37 0.00 0.81 0.81
A-n61-k9 1034 - 11.9 7.3 6.19 4.93 4.06 3.19 3.68 1.26
A-n62-k8 1288 6.13 8.4 4.5 4.58 3.34 1.94 1.55 4.11 2.80
A-n63-k9 1616 - 7.6 4.1 4.21 2.85 2.35 2.04 2.41 2.35

A-n63-k10 1314 15.00 6.4 2.6 4.72 3.65 1.75 1.14 2.59 1.37
A-n64-k9 1401 - 7.3 4.2 4.07 3.00 1.50 1.00 3.85 3.21
A-n65-k9 1174 25.30 9.6 4.8 4.77 3.24 1.45 0.94 7.75 2.13
A-n69-k9 1159 33.91 8.0 4.4 4.31 3.02 1.64 0.95 2.50 1.90

A-n80-k10 1763 - 8.9 6.5 5.67 4.71 3.35 2.95 4.37 3.91

As show in Table 10, the experimental results of the comparison between ICS and KNNA are
given. It can be seen from this table that the solutions obtained by ICS are always much better than
those of KNNA. In the best case (A-n37-k5), the gaps between approximate solutions and BKS have
been reduced from 31.99% to 0.15%. On average, the gaps have been reduced from 17.59% to 1.06%.
According to the summary shown in Table 14, the effectiveness of the proposed ICS has been shown,
since it was able to produce best-known results for 22 instances out of 81 and ICS is superior to
both UFC and LNSi with higher success rate (SR) for nearly all the testing instance sets A (Table 10),

Sustainability 2018, 10, 793 14 of 19

B (Table 11), E (Table 12), P (Table 13). Based on the detailed information shown in Tables 10–13, it was
obvious that the stability of ICS is much better than UFC and LNSi as well. As for LNS-ACO, although
it shows better performances in general case in terms of solution quality, ICS is still comparable to
LNS-ACO: for about 30.9% (25/81) instances, the solutions obtained by ICS are equal to or better than
those obtained by LNS-ACO, where ICS outperforms LNS-ACO in three instances (A-n61-k9, P-n50-k8
and B-n68-k9). For the other instances, the gaps between solutions obtained by these two methods are
always less than 3.3%. On the other hand, ICS is the most efficient among all the algorithms. As shown
in Table 15, ratios of ICS’s computational time to that of LNSi varied from 0.40% to 2.15%. The ratios
of ICS to LNS-ACO are even smaller (0.38–2.08%)!

Table 11. Computational results for the problem set B.

Problem BKS

UFC LNSi LNS-ACO ICS

%Dev() %Dev() %Dev() %Dev()

Worst Best Worst Best Worst Best Worst Best

B-n31-k5 672 1.4 0.6 0.00 0.00 0.00 0.00 0.74 0.00
B-n34-k5 788 3.6 1.8 0.00 0.00 0.00 0.00 0.63 0.13
B-n35-k5 955 3.5 2.7 0.00 0.00 0.00 0.00 1.26 0.31
B-n38-k6 805 6.7 3.8 0.00 0.00 0.00 0.00 2.11 0.25
B-n39-k5 549 8.5 3.5 4.19 2.19 0.00 0.00 2.91 1.46
B-n41-k6 829 3.6 2.7 2.41 1.33 0.24 0.00 3.50 0.24
B-n43-k6 742 6.0 3.4 2.96 1.48 0.40 0.00 1.21 0.00
B-n44-k7 909 2.6 2.2 2.09 1.10 0.00 0.00 2.75 0.11
B-n45-k5 751 5.4 3.0 3.33 1.60 0.00 0.00 0.13 0.13
B-n45-k7 678 8.9 4.6 3.98 2.36 0.29 0.00 5.46 1.77
B-n50-k7 741 7.3 7.2 3.78 2.16 0.00 0.00 0.54 0.00
B-n50-k8 1312 5.1 4.0 2.67 1.75 0.53 0.00 3.35 1.45
B-n51-k8 1016 3.0 2.6 2.36 1.28 0.20 0.00 0.89 0.00
B-n52-k8 747 6.8 2.7 3.35 1.47 0.13 0.00 1.34 0.94
B-n56-k7 707 4.8 2.1 3.54 1.98 0.00 0.00 2.97 1.84
B-n57-k8 1140 9.5 6.3 2.54 1.49 0.00 0.00 1.75 0.00
B-n57-k9 1598 5.0 3.5 2.25 1.13 0.31 0.00 3.25 0.81
B-n63-k10 1496 5.6 4.7 3.68 2.41 1.20 1.20 5.75 3.88
B-n64-k9 861 8.2 5.4 5.92 3.60 2.09 1.51 6.27 3.83
B-n66-k9 1316 3.9 2.2 3.65 2.43 1.52 1.06 5.70 1.14
B-n67-k10 1032 8.9 3.9 5.23 3.59 2.52 1.74 6.20 3.87
B-n68-k9 1272 6.1 3.5 4.09 2.83 1.97 1.42 2.99 1.26
B-n78-k10 1221 7.3 0.0 3.11 1.64 1.23 0.57 3.36 2.95

Table 12. Computational results for the problem set E.

Problem BKS

UFC LNSi LNS-ACO ICS

%Dev() %Dev() %Dev() %Dev()

Worst Best Worst Best Worst Best Worst Best

E-n22-k4 375 0.1 0.1 0.80 0.00 0.00 0.00 0.00 0.00
E-n23-k3 569 0.3 0.1 0.88 0.00 0.00 0.00 0.88 0.00
E-n30-k4 503 - - 1.79 0.00 0.00 0.00 1.39 0.00
E-n33-k4 835 2.2 1.2 1.68 0.36 0.00 0.00 0.72 0.24
E-n76-k7 682 8.7 5.8 6.74 4.99 1.91 1.91 6.16 4.11
E-n76-k8 735 7.6 5.4 6.26 4.22 3.13 1.22 7.21 2.18
E-n76-k14 1021 13.6 7.6 5.29 4.21 4.21 0.88 2.55 2.35

E-n101-k14 1067 14.1 10.2 5.25 3.47 1.41 1.41 4.22 3.94

Sustainability 2018, 10, 793 15 of 19

Table 13. Computational results for the problem set P.

Problem BKS

UFC LNSi LNS-ACO ICS

%Dev() %Dev() %Dev() %Dev()

Worst Best Worst Best Worst Best Worst Best

P-n16-k8 450 1.6 0.2 0.00 0.00 0.00 0.00 0.00 0.00
P-n19-k2 212 3.7 3.7 0.00 0.00 0.00 0.00 0.00 0.00
P-n20-k2 216 1.1 1.1 0.00 0.00 0.00 0.00 0.00 0.00
P-n21-k2 211 14.5 4.3 0.00 0.00 0.00 0.00 0.47 0.00
P-n22-k2 216 0.9 0.9 0.00 0.00 0.00 0.00 0.00 0.00
P-n22-k8 590 12.3 4.6 1.19 0.00 0.00 0.00 0.00 0.00
P-n23-k8 529 - - 1.70 0.00 0.00 0.00 0.95 0.00
P-n40-k5 458 4.4 2.3 5.02 3.28 0.00 0.00 0.66 0.00
P-n45-k5 510 0.7 0.5 4.51 2.75 0.00 0.00 3.53 0.39
P-n50-k7 554 6.6 4.5 4.87 2.71 0.90 0.00 3.43 2.53
P-n50-k8 631 - - 5.86 4.28 2.85 1.90 2.54 0.63

P-n50-k10 696 7.9 5.1 3.45 1.87 0.57 0.00 3.59 2.30
P-n51-k10 741 9.5 6.0 4.32 2.70 1.48 0.81 2.16 1.35
P-n55-k7 568 15.0 12.5 4.93 2.11 0.00 0.00 2.64 1.58
P-n55-k8 588 5.7 3.3 3.91 2.04 0.17 0.00 3.99 1.39

P-n55-k10 694 10.9 7.2 2.88 2.02 0.72 0.00 4.61 2.02
P-n55-k15 989 - - 2.22 1.31 0.00 0.00 1.27 1.06
P-n60-k10 744 14.1 10.2 5.91 3.76 2.15 1.48 5.38 4.03
P-n60-k15 968 16.8 12.3 3.82 2.69 1.55 0.93 4.75 2.58
P-n65-k10 792 8.2 4.1 3.79 2.65 1.77 1.01 5.68 4.29
P-n70-k10 827 11.5 5.9 5.20 2.90 2.06 1.21 3.51 1.57
P-n76-k4 593 5.6 2.8 6.75 3.54 1.69 0.84 5.73 4.22
P-n76-k5 627 4.3 1.6 7.50 4.78 3.67 2.87 5.26 3.99

Table 14. Summary of optimum achievements.

Problem Set

Algorithm

UFC LNSi LNS-ACO ICS

OA NI SR OA NI SR OA NI SR OA NI SR

A 0 27 0% 3 27 11% 17 27 63% 6 27 22%
B 1 23 4% 4 23 17% 16 23 70% 5 23 22%
E 0 7 0% 3 8 38% 4 8 50% 3 8 38%
P 0 20 0% 7 23 30% 15 23 65% 8 23 35%

Overall 1 77 1% 17 81 21% 52 81 64% 22 81 27%

OA: Number of optimum achievements; NI: Number of instances; SR: Success rate (OA/NI).

Table 15. Computational Time Comparison of : LNSi, LNS-ACO and ICS.

Problem
Time(s)

Problem
Time(s)

LNSi LNS-ACO ICS LNSi LNS-ACO ICS

A-n32-k5 834.81 856.21 12.86 B-n56-k7 2669.15 2709.80 17.58
A-n33-k5 877.56 900.06 11.98 B-n57-k8 2801.73 2844.40 34.46
A-n33-k6 924.16 947.86 14.62 B-n57-k9 3009.96 3055.80 26.35
A-n34-k5 886.31 909.04 9.28 B-n63-k10 3694.64 3750.90 27.47
A-n36-k5 1029.21 1055.60 10.52 B-n64-k9 3777.08 3834.60 30.69
A-n37-k5 1076.11 1103.70 14.63 B-n66-k9 4178.96 4242.60 42.43
A-n37-k6 1085.37 1113.40 11.99 B-n67-k10 4455.16 4523.00 42.84
A-n38-k5 1110.72 1139.20 13.62 B-n68-k9 4329.27 4395.20 31.98
A-n39-k5 1172.73 1202.80 22.84 B-n78-k10 5958.46 6049.20 26.66
A-n39-k6 1234.35 1266.00 12.56 E-n22-k4 425.02 447.39 7.15
A-n44-k6 1528.61 1567.80 15.11 E-n23-k3 373.42 393.08 6.33

Sustainability 2018, 10, 793 16 of 19

Table 15. Cont.

Problem
Time(s)

Problem
Time(s)

LNSi LNS-ACO ICS LNSi LNS-ACO ICS

A-n45-k6 1648.90 1728.10 20.95 E-n30-k4 664.03 698.98 11.08
A-n45-k7 1698.16 1741.70 12.17 E-n33-k4 777.13 818.03 6.95
A-n46-k7 1759.39 1804.50 18.82 E-n76-k7 4926.35 5186.30 40.12
A-n48-k7 1929.14 1978.60 16.89 E-n76-k8 5025.22 5289.70 55.07
A-n53-k7 2265.61 2323.70 26.61 E-n76-k14 5881.17 6190.70 26.09
A-n54-k7 2434.97 2497.40 15.51 E-n101-k14 11,437.05 12,039.00 45.71
A-n55-k9 2701.73 2771.00 24.94 P-n16-k8 711.49 737.30 4.23
A-n60-k9 3261.77 3345.40 17.21 P-n19-k2 351.16 363.90 4.14
A-n61-k9 3271.81 3355.70 31.62 P-n20-k2 340.68 353.04 6.06
A-n62-k8 3279.22 3363.30 21.21 P-n21-k2 385.89 399.88 5.76
A-n63-k9 3559.92 3651.20 19.42 P-n22-k2 398.66 413.22 6.37
A-n63-k10 3705.10 3800.10 19.24 P-n22-k8 543.12 562.84 4.56
A-n64-k9 3736.01 3831.80 21.68 P-n23-k8 593.98 615.53 7.39
A-n65-k9 3757.85 3854.20 45.05 P-n40-k5 1184.54 1227.50 24.96
A-n69-k9 4349.38 4460.90 23.99 P-n45-k5 1514.47 1569.40 16.66
A-n80-k10 6331.26 6493.60 27.33 P-n50-k7 1954.70 2025.60 25.17
B-n31-k5 815.78 828.20 8.93 P-n50-k8 2067.32 2078.03 21.25
B-n34-k5 894.88 908.51 8.13 P-n50-k10 2265.63 2347.80 25.50
B-n35-k5 953.95 998.94 10.74 P-n51-k10 2363.38 2449.10 26.02
B-n38-k6 1201.60 1219.90 16.31 P-n55-k7 2444.25 2532.90 37.64
B-n39-k5 1222.39 1241.00 8.98 P-n55-k8 2556.14 2648.85 40.15
B-n41-k6 1371.22 1392.10 20.29 P-n55-k10 2775.92 2876.60 23.44
B-n43-k6 1479.47 1502.00 17.12 P-n55-k15 2946.63 3053.50 25.09
B-n44-k7 1598.95 1623.30 15.29 P-n60-k10 3273.96 3392.70 35.03
B-n45-k5 1597.37 1621.70 10.46 P-n60-k15 3857.30 3997.20 22.46
B-n45-k7 1623.83 1657.70 10.76 P-n65-k10 3747.10 3883.00 24.35
B-n50-k7 2142.18 2174.80 13.03 P-n70-k10 4478.18 4640.60 46.41
B-n50-k8 2136.66 2169.20 21.77 P-n76-k4 4877.79 5054.70 56.43
B-n51-k8 2195.07 2228.50 26.16 P-n76-k5 4767.10 4940.00 68.13
B-n52-k8 2254.96 2289.30 15.25

To sum up, as shown in Table 16, it can be concluded that ICS can result in a better balance
between solution quality and algorithm efficiency than all the other algorithms.

Table 16. Summary of the performance evaluation.

Problem Set Algorithm

UFC LNSi LNS-ACO ICS
%Dev() Worst Best Worst Best Time(s) Worst Best Time(s) Worst Best Time(s)

A 6.64 3.57 3.00 2.05 2277.27 1.52 0.84 2288.95 3.50 1.16 18.99
B 5.73 3.32 2.83 1.64 2452.25 0.55 0.35 2489.59 2.83 1.15 21.03
E 6.63 4.34 3.59 2.16 3688.75 1.33 0.68 3882.90 2.89 1.60 24.81
P 7.26 4.66 3.38 1.97 2191.28 0.85 0.48 2270.75 2.62 1.48 24.23

7. Conclusions and Perspectives

This study aimed at developing a novel improved Cuckoo Search (ICS) algorithm by introducing
a new cuckoo category which is more intelligent for reducing transport emissions in patient
transportation. The capacitated vehicle routing problem (CVRP) is implemented in the research
problem and numerical experiments were executed on CVRP instances to validate the effectiveness of
the proposed ICS.

Main idea of the new cuckoo category was to enhance the search capability of the Cuckoo Search
for the vehicle routing problem. Moreover, two heuristic methods (savings method and randomize

Sustainability 2018, 10, 793 17 of 19

nearest neighbour heuristic) were embedded in host nest initialization and the nearest neighbour
heuristic was merged for generating part of the new individuals. The comparison between CS-Ouaarab
and ICS in terms of solution quality proved that the new cuckoo category and the heuristic solution
construction mechanism brought better intensification to CS. Besides, the performance of the improved
CS (ICS) has been tested on a set of classical instances against three recently published methods that
deal with CVRP: UFC, LNSi and LNS-ACO. Computational results indicate that the improved CS
outperforms both UFC and LNSi in terms of not only solution quality but also algorithm efficiency.
As for LNS-ACO, the experimental results show that although LNS-ACO can obtain better solutions
than ICS in general case but the gaps are not significant. In some instances, ICS can result in better
solutions than LNS-ACO as well. Furthermore, the ICS is much more efficiency than both LNSi and
LNS-ACO for all the testing instances.

To sum up, it can be concluded that the management of intensification and diversification through
Lévy flights and the new cuckoo category can greatly improve the intensification of algorithm to obtain
a better balance between solution quality and algorithm efficiency. The results are quite encouraging.

The next following work can be extended in two different directions. First of all, we will
concentrate on the patient transportation problem with transport emissions of real traffic condition.
It is known that such emission varies under different traffic conditions, in consequence the uncertainty
of real traffic condition makes reducing emissions becoming an interesting and challenging task.
Also, future researches will focus on implementing the proposed improved CS algorithm to different
combinatorial optimization problems such as different types of vehicle routing problems.

Acknowledgments: This study is partly funded by Shanghai PuJiang Program 13PJC061. Also, the first author
thanks the China Scholarship Council for financial support gratefully (contract No. 201504490059).

Author Contributions: Mahjoub Dridi, Amir Hajjam-El-Hassani and Wanlong Lin conceptualized the study.
Liyang Xiao developed the algorithm and drafted the manuscript. Hongying FEI designed the experiments and
revised the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Gulliver, J.; Morley, D.; Vienneau, D.; Fabbri, F.; Bell, M.; Goodman, P.; Beevers, S.; Dajnak, D.;
Kelly, F.J.; Fecht, D. Development of an open-source road traffic noise model for exposure assessment.
Environ. Model. Softw. 2015, 74, 183–193.

2. Environmental Protection Agency. Inventory of US Greenhouse Gas Emissions and Sinks: 1990–2015;
Environmental Protection Agency: Washington, DC, USA, 2017.

3. Toth, P.; Vigo, D. Vehicle Routing: Problems, Methods, and Applications; SIAM: Philadelphia, PA, USA, 2014.
4. Golden, B.L.; Raghavan, S.; Wasil, E.A. The Vehicle Routing Problem: Latest Advances and New Challenges;

Springer Science & Business Media: Berlin, Germany, 2008; Volume 43.
5. Kuznietsov, K.A.; Gromov, V.A.; Skorohod, V.A. Cluster-based supply chain logistics: A case study of

a Ukrainian food distributor. IMA J. Manag. Math. 2017, 28, 553–578.
6. Zhen, L.; Sheng, S.; Xie, Z.; Wang, K. Decision rules for ambulance scheduling decision support systems.

Appl. Soft Comput. 2015, 26, 350–356.
7. Zhou, Y.; Lee, G.M. A Lagrangian Relaxation-Based Solution Method for a Green Vehicle Routing Problem

to Minimize Greenhouse Gas Emissions. Sustainability 2017, 9, 776.
8. Zhang, Z.; Liu, M.; Lim, A. A memetic algorithm for the patient transportation problem. Omega 2015,

54, 60–71.
9. Ouaarab, A.; Ahiod, B.; Yang, X.S. Discrete cuckoo search algorithm for the travelling salesman problem.

Neural Comput. Appl. 2014, 24, 1659–1669.
10. Laporte, G.; Gendreau, M.; Potvin, J.Y.; Semet, F. Classical and modern heuristics for the vehicle routing

problem. Int. Trans. Oper. Res. 2000, 7, 285–300.
11. Zhen, L.; Xu, Z.; Wang, K.; Ding, Y. Multi-period yard template planning in container terminals. Transp. Res.

Part B 2016, 93, 700–719.

Sustainability 2018, 10, 793 18 of 19

12. Zhen, L.; Yu, S.; Wang, S.; Sun, Z. Scheduling quay cranes and yard trucks for unloading operations in
container ports. Ann. Oper. Res. 2016, 1–24, doi:10.1007/s10479-016-2335-9.

13. Gendreau, M.; Hertz, A.; Laporte, G. A tabu search heuristic for the vehicle routing problem. Manag. Sci.
1994, 40, 1276–1290.

14. Toth, P.; Vigo, D. The granular tabu search and its application to the vehicle-routing problem. Inf. J. Comput.
2003, 15, 333–346.

15. Osman, I.H. Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem.
Ann. Oper. Res. 1993, 41, 421–451.

16. Baker, B.M.; Ayechew, M. A genetic algorithm for the vehicle routing problem. Comput. Oper. Res. 2003,
30, 787–800.

17. Prins, C. A simple and effective evolutionary algorithm for the vehicle routing problem. Comput. Oper. Res.
2004, 31, 1985–2002.

18. Shi, Y.; Boudouh, T.; Grunder, O. A hybrid genetic algorithm for a home health care routing problem with
time window and fuzzy demand. Expert Syst. Appl. 2017, 72, 160–176.

19. Zhen, L. Tactical berth allocation under uncertainty. Eur. J. Oper. Res. 2015, 247, 928–944.
20. Zhen, L. Modeling of yard congestion and optimization of yard template in container ports. Transp. Res.

Part B 2016, 90, 80–104.
21. Cordeau, J.F.; Gendreau, M.; Laporte, G.; Potvin, J.Y.; Semet, F. A guide to vehicle routing heuristics.

J. Oper. Res. Soc. 2002, 53, 512–522.
22. Cordeau, J.F.; Laporte, G.; Savelsbergh, M.W.; Vigo, D. Vehicle routing. Handb. Oper. Res. Manag. Sci. 2007,

14, 367–428.
23. Gendreau, M.; Potvin, J.Y.; Bräumlaysy, O.; Hasle, G.; Løkketangen, A. Metaheuristics for the vehicle

routing problem and its extensions: A categorized bibliography. In The Vehicle Routing Problem: Latest
Advances and New Challenges; Springer: Berlin, Germany, 2008; pp. 143–169.

24. Yesodha, R.; Amudha, T. A study on bio-inspired metaheuristics for solving vehicle routing problem.
Indian J. Sci. Technol. 2015, 8, 1.

25. Thangiah, S.R.; Nygard, K.E.; Juell, P.L. Gideon: A genetic algorithm system for vehicle routing with
time windows. In Proceedings of the Seventh IEEE Conference onArtificial Intelligence Applications,
Miami Beach, FL, USA, 24–28 Feburary 1991; pp. 322–328.

26. Pereira, F.B.; Tavares, J. Bio-Inspired Algorithms for the Vehicle Routing Problem; Springer: Berlin, Germany,
2008; Volume 161.

27. Yu, B.; Yang, Z.Z. An ant colony optimization model: The period vehicle routing problem with time
windows. Transp. Res. Part E 2011, 47, 166–181.

28. Zhou, Y.; Luo, Q.; Xie, J.; Zheng, H. A Hybrid Bat Algorithm with Path Relinking for the Capacitated
Vehicle Routing Problem. In Metaheuristics and Optimization in Civil Engineering; Springer: Berlin, Germany,
2016; pp. 255–276.

29. Osaba, E.; Carballedo, R.; Yang, X.S.; Diaz, F. An Evolutionary Discrete Firefly Algorithm with Novel
Operators for Solving the Vehicle Routing Problem with Time Windows. In Nature-Inspired Computation in
Engineering; Springer: Berlin, Germany, 2016; pp. 21–41.

30. Tan, L.; Lin, F.; Wang, H. Adaptive comprehensive learning bacterial foraging optimization and its
application on vehicle routing problem with time windows. Neurocomputing 2015, 151, 1208–1215.

31. Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the NaBIC 2009 World Congress on
Nature & Biologically Inspired Computing, Coimbatore, India, 9–11 December 2009; pp. 210–214.

32. Yang, X.S.; Deb, S. Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 2010,
1, 330–343.

33. Yildiz, A.R. Cuckoo search algorithm for the selection of optimal machining parameters in milling
operations. Int. J. Adv. Manuf. Technol. 2013, 64, 55–61.

34. Smit, R.; Ntziachristos, L.; Boulter, P. Validation of road vehicle and traffic emission models—A review
and meta-analysis. Atmos. Environ. 2010, 44, 2943–2953.

35. Hausberger, S.; Rexeis, M.; Zallinger, M.; Luz, R. Emission Factors from the Model PHEM for the
HBEFA Version 3; Report Nr. I-20/2009 Haus-Em; Graz University Technology: Graz, Austria, 2009;
Volume 33, p. 679.

Sustainability 2018, 10, 793 19 of 19

36. Knörr, W.; Heidt, C.; Schacht, A. Aktualisierung? Daten-und Rechenmodell: Energieverbrauch und
Schadstoffemissionen des Motorisierten Verkehrs in Deutschland 1960–2030?(TREMOD, Version 5.3) für
die Emissionsberichtserstattung 2013 (Berichtsperiode 1990–2011); Endbericht, Ifeu Institut: Heidelberg,
Germany, 2012.

37. Shang, J.; Zheng, Y.; Tong, W.; Chang, E.; Yu, Y. Inferring gas consumption and pollution emission
of vehicles throughout a city. In Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 1027–1036.

38. Augerat, P.; Belenguer, J.; Benavent, E.; Corberán, A.; Naddef, D.; Rinaldi, G. Computational Results
with a Branch and Cut Code for the Capacitated Vehicle Routing Problem; Rapport de Recherche- IMAG;
Istituto di Analisi dei Sistemi ed Informatica, CNR: ROMA, Italy, 1995.

39. Payne, R.B.; Sorensen, M.D. The Cuckoos; Oxford University Press: Oxford, UK, 2005.
40. Croes, G.A. A method for solving traveling-salesman problems. Oper. Res. 1958, 6, 791–812.
41. Martin, O.; Otto, S.W.; Felten, E.W. Large-step Markov chains for the traveling salesman problem.

Complex Syst. 1991, 5, 299–326.
42. Bräysy, O.; Gendreau, M. Vehicle routing problem with time windows, Part I: Route construction and local

search algorithms. Transp. Sci. 2005, 39, 104–118.
43. Beasley, J.E. Route first—Cluster second methods for vehicle routing. Omega 1983, 11, 403–408.
44. Clarke, G.; Wright, J.W. Scheduling of vehicles from a central depot to a number of delivery points.

Oper. Res. 1964, 12, 568–581.
45. Prins, C. A GRASP× evolutionary local search hybrid for the vehicle routing problem. In Bio-Inspired

Algorithms for the Vehicle Routing Problem; Springer: Berlin, Germany, 2009; pp. 35–53.
46. Feo, T.A.; Bard, J.F. Flight scheduling and maintenance base planning. Manag. Sci. 1989, 35, 1415–1432.
47. Christofides, N.; Eilon, S. An algorithm for the vehicle-dispatching problem. J. Oper. Res. Soc. 1969, 20, 309–318.
48. Stanojević, M.; Stanojević, B.; Vujošević, M. Enhanced savings calculation and its applications for solving

capacitated vehicle routing problem. Appl. Math. Comput. 2013, 219, 10302–10312.
49. Mohammed, M.A.; Ghani, M.K.A.; Hamed, R.I.; Mostafa, S.A.; Ibrahim, D.A.; Jameel, H.K.; Alallah, A.H.

Solving vehicle routing problem by using improved K-nearest neighbor algorithm for best solution.
J. Comput. Sci. 2017, 21, 232–240.

50. Ewbank, H.; Wanke, P.; Hadi-Vencheh, A. An unsupervised fuzzy clustering approach to the capacitated
vehicle routing problem. Neural Comput. Appl. 2016, 27, 857–867.

51. Akpinar, S. Hybrid large neighbourhood search algorithm for capacitated vehicle routing problem.
Expert Syst. Appl. 2016, 61, 28–38.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Problem Description
	Development of the Improved Cuckoo Search
	Standard Cuckoo Search
	CS-Ouaarab Algorithm

	Improved Cuckoo Search Algorithm
	Fitness Evaluation
	Host Nest Initialization

	Numerical Study
	Analyses on the Effect of Parameter Pd and Pb
	Comparison between CS-Quaarab and ICS
	Comparison between ICS and Some Other Recently Published Methods Tackling CVRP

	Conclusions and Perspectives

