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Abstract: Comprehensive carbon chemistry data were measured from the mainstream of Kuroshio,
off eastern Taiwan, in May 2014. Results indicated that variations of pH@25 ◦C, POC, ΩCa, DIC,
pCO2 and RF were closely related to the characteristics of various water types. Phytoplankton
photosynthesis played important roles in DIC variation in Kuroshio Surface Water (KSW), whereas the
DIC variation in Kuroshio Subsurface Water (KSSW) was probably influenced by the external
transport of DIC-enriched water from the South China Sea. Vertical profiles of hydrological parameters
and carbonate species indicated that the Kuroshio Current off eastern Taiwan could intrude into
the ECS shelf as far as 27.9◦ E, 125.5◦ N in spring. What is more, the KSW, KSSW and Kuroshio
Intermediate Water (KIW) could convey DIC into the East China Sea (ECS) with flux of 285, 305 and
112 Tg C/half year (1 Tg = 1012 g), respectively. The relevant flux of POC was 0.16, 2.93 and
0.04 Tg C/half year, respectively. Consequently, the intrusion of Kuroshio could probably exert a
counteracting influence on the potential of CO2 uptake in the ECS, which needs further study.

Keywords: carbon dioxide; dissolved inorganic carbon; continental shelf; east china sea; Kuroshio;
eastern Taiwan

1. Introduction

Human activities have produced a 45% increase of carbon dioxide (CO2) in the atmosphere,
from 280 ppm in 1750 to 405 ppm in 2017. The ocean plays a significant role in uptaking anthropogenic
CO2, since about one-third of anthropogenic CO2 is stored in the ocean [1]. Characteristics of continental
shelves and/or marginal seas in the global carbon budget have been investigated substantially during
recent decades, mainly because of their potential capacity for absorbing the ever-increasing atmospheric
CO2 value and regulating the global CO2 inventory [1–4].

The East China Sea (hereafter referred to as ECS) is known as one of the largest temperate
continental shelf seas in the world, which covers a shelf area (water depth < 200 m) of about
0.5 × 106 km2. Being as the transition zone between the largest continent—Eurasia—and the biggest
ocean—the Pacific—the ECS has always been considered a significant sink for atmospheric CO2 [5–12].
In the 1990s, Japanese scientists first reported the CO2 sink/source terms of ECS, based on their
limited survey conducted in the “PN line” [13,14]. Thereafter, Chinese scientists launched large-scale
field surveys to study the air-sea CO2 exchanging process in ECS [5,7,9,10,15,16]. After entering the
21st century, a series of achievements relating to the CO2 sink/source in ECS have been obtained,
including understanding of the seasonal variation patterns and controlling factors of carbon cycling in

Sustainability 2018, 10, 791; doi:10.3390/su10030791 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
http://dx.doi.org/10.3390/su10030791
http://www.mdpi.com/journal/sustainability


Sustainability 2018, 10, 791 2 of 17

the Changjiang estuary and its adjacent region [17–21], the difference of seawater carbonate conditions
within the Yellow Sea [12,22], the potential evolution trends in ECS under increasing anthropogenic
activities and the relevant influence for air-sea CO2 exchanging flux [7,15,23].

New insights into the air-sea CO2 exchanging process obtained in the ECS are of important guiding
significance for exploring carbon cycling in various continental shelf seas of the world. For example,
a study conducted in ECS in the summer revealed that the reason some heterotrophic marginal seas
could act as significant CO2 sinks was because of high biological productivity and concurrent intensive
seasonal stratification [8,24]. What is more, extrapolating from observations conducted in the ECS,
Tusungai et al. (1999) proposed the concept of “continental shelf pump” to explain why the ECS could
absorb atmospheric CO2 at a very high rate (2.92 mol C/m2/yr1) and suggested the continental shelf
pump would account for a net oceanic uptake of CO2 in the flux of 1.0 Pg C/yr, if the whole global
continental shelf could absorb atmospheric CO2 at the rate they obtained in the ECS [14].

Much research has already proven that the air-sea CO2 exchanging process and the CO2

source/sink pattern of the ECS are affected significantly by terrestrial material [17,25], which enters
into the ECS substantially through the discharge of Changjiang River. The Changjiang River (also
known as the Yangtze River), the world’s fourth largest river, empties into the northwest part of the
ECS and brings abundant fresh water, sediment, nutrient and organic matter into the ECS shelf [26,27].
However, apart from terrestrial material, the ecological environment of the ECS is also regulated
profoundly by geochemical dynamics from the open sea [28]. The Kuroshio Current, the boundary of
subtropical gyre in the western Pacific Ocean, transports a massive amount of warm, saline water and
nutrients (e.g., NO3

−, PO4
3− and SiO3

2−) into the ECS shelf and may serve as a major nutrient source
for primary production in the ECS shelf [29–31]. Numerical studies have already proven that the
nearshore Kuroshio branch current could even reach as far as the nearshore area within the 50m-isobath
near 30.5◦ N and has affected the coastal ecosystem profoundly [31]. What is more, the intrusion of
Kuroshio and its related variations are considered an important inducement for algal blooms and
hypoxia in nearshore region of the ECS [31,32].

Enormous efforts have been made to study the effects of the Kuroshio Current on potential CO2

sequestration in the ECS, on the basis of multidisciplinary projects conducted in the sea surrounding
Taiwan [16,33–35]. The latest study suggests that the northwardly flowing Kuroshio Current could
transport about 6.5 × 1012 g of biologically mediated DIC annually into the ECS [34], which accounted
for about 22% to 50% of the CO2 uptake rate (13~30× 1012 g C/yr) in the ECS [5]. It was estimated that
this input of DIC would lead to an increase of DIC/TA and Revelle factor for 3% and 15.5%, respectively.
Hence, the importing of the Kuroshio Current would exert a counteracting influence on the capacity of
CO2 absorbance in the ECS [34]. However, the DIC flux evaluated in the above-mentioned research
was derived totally in the summertime, when the intrusion of the Kuroshio into the ECS was most
intensive. Yet the temporal variability of Kuroshio in other seasons and the fluxes for other species of
carbonate parameters, such as particulate organic carbon (POC), were not considered [34].

The main purpose of this study is, therefore, to investigate the variations of diverse carbonate
parameters (e.g., pH, pCO2, DIC and POC) and to assess the controlling effects of environmental factors
on them in the mainstream of Kuroshio off eastern Taiwan. Moreover, we also determined the intrusion
pattern of Kuroshio into the ECS shelf during spring time, when the intrusion of Kuroshio just began
to appear [36], based on evidence from carbon chemistry and also estimated the transports of various
carbonate parameters from the Kuroshio off eastern Taiwan into the ECS shelf during that time.

2. Materials and Methods

2.1. Study Area Description

The East China Sea (ECS, 23◦00′–33◦10′ N, 117◦11′–131◦00′ E) is a broad temperate continental
marginal sea surrounded by Mainland China, Taiwan, South Korea, Kyushu and Ryukyu Islands,
an area 66% of which is located on the flat continental shelf (Figure 1). It is one of the largest marginal
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seas located in the western Pacific and is an extremely dynamic sea that is influenced by various
currents, such as the South China Sea (SCS) water passing through the Taiwan Strait (TS), the Yellow Sea
(YS) water from the Yellow Sea Coastal Current (YSCC). The largest river of Asia, the Changjiang River,
flows into the ECS with an annual average water discharge of about 940 km3/yr [37]. Moreover, the East
Asian monsoon generally regulates the seasonal variation of precipitation and temperature of the ECS.

The Kuroshio Current primarily originates in the northward bifurcation of the North Equatorial
Current off the east coast of the Philippines [38]. It enters into the ECS through the channel in the
south of the Ryukyu Islands chain [39]. Influenced by the steep ECS continental slope, the mainstream
of Kuroshio generally runs along the 200 m isobaths at a velocity of about 0.7~1.4 m/s [40] until it
approaches the shoaling northern end of the Okinawa Trough, where it leaves from the shelf and turns
east-southeastward. Finally, the mainstream of Kuroshio leaves from the continental margin around
129◦ E, 30.5◦ N and flows into the Pacific Ocean again through the Tokara Strait [41]. More importantly,
model results indicated that there is a Kuroshio Bottom Branch Current to the northeast of Taiwan
(KBBCNT), which upwells northwestward gradually from 300 m to 60 m in the region northeast of
Taiwan, then turns northeast in the region around 27.5◦ N, 122◦ E and finally reaches 31◦ N off the
Changjiang estuary following about 60 m isobaths, conveying saline, nutrient-rich Kuroshio Subsurface
Water into the ECS shelf and even the Changjiang estuary [39].
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2.2. Sampling and Analytical Methods

Field investigation was carried out in the continental shelf of the ECS and the eastern region
of Taiwan on the R/V Kexue I from 18 May to 13 June 2014. A total of 55 investigation stations
scattered evenly on the continental shelf of ECS and 8 stations located in the eastern of Taiwan,
where the mainstream of Kuroshio flowed through (Figure 1). At each station, the recommended
standard operating procedures described by Dickson et al. (2007) [42] and the methods of Chou et al.
(2009a, 2009b) [7,8], Qu et al. (2017) and Zhai et al. (2014) [12,43] were adopted during the sampling
and analytical processes. Generally, discrete seawater was sampled at seven to thirteen depths,
with intervals of 10–500 m, using a rosette sampler with 10-liter Niskin sampling bottles, according to
the bottom depth of each station. In the ECS, the sampling layers were 2 m (the surface layer), 10 m,
20 m, 30 m, 50m, 75 m, 100 m and 2 m above the seafloor (the bottom layer), while in eastern Taiwan,
the sampling layers were 5 m (the surface layer), 30 m, 50 m, 75 m, 100 m, 150 m, 200 m, 300 m, 500 m,
800 m, 1000 m, 1500 m and 2000 m (the bottom layer).

The temperature (◦C) and salinity (PSU) were recorded at each layer by a conductivity-temperature-
depth (CTD) system (SBE-911 plus, Sea-Bird Electronics Inc., USA). The pH (the total hydrogen
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ion concentration scale) was measured on board at 25 ± 0.1 ◦C using a Orion Star™ and Star
Plus meter (Thermo Electron, USA) with an Orion® Ross combination electrode (Thermo Fisher
Scientific, USA), which was calibrated by buffers (2-amino-2-hydroxymethyl-1,3-propanediol (Tris)
and 2-aminopyridine) prepared at a salinity of 35 [42]. The precision of the pH determination in
this study was better than ±0.005 pH units [7,8] and the overall uncertainty was ±0.01 [43]. TA was
measured using the method of Gran titration by way of an automatic potentiometric titrator (798 MPT
Titrino, Metrohm, Switzerland), with a precision of 0.1–0.3% (±2 to ±6 µmol·kg−1). Certified reference
material from Prof. Dickson was used for calibration and quality control in the TA measurements [42].
The determination of total chlorophyll a (Chl a) concentration was conducted using a Turner Designs
Model 10 fluorometer [44]. Partial pressure of CO2 (pCO2), Revelle Factor (RF) and carbonate saturation
state (ΩCa) were calculated from TA and pH by the CO2SYS program of Lewis and Wallace (1998) [45],
adopting the carbonate dissociation constants proposed by Mehrbach et al. (1973) [46], which was
refitted by Dickson and Millero (1987) [47]. What is more, the pH scale in our calculation process
was adopted as the seawater scale. The value of KS, the dissociation constant for HSO4−, was taken
from Dickson (1990a) [48] and the value of KB (for boric acid) was taken from Dickson (1990b) [49].
The measurement of dissolved oxygen (DO) concentration was performed aboard using the Winkler
titration method with a precision of 7 × 10−5 mg/L [50]. Particulate organic carbon (POC) in filtered
particulate matter was determined with a C/N analyzer (Elementar, vario EL cube, German) after
inorganic carbonate was removed with a precision of ±0.3 µmol/L [51].

3. Results

3.1. Hydrographic Characteristics and Water Types Classification

The spatial distributions of the hydrographic parameter (temperature, salinity and density (ρ)) in
the surface and bottom water of the ECS shelf and the eastern Taiwan are presented in Figure 2. In the
surface layer, low temperature (<22.0 ◦C), low salinity (<30.0 PSU) and low density (<20.5 kg/m3)
water is confined to the nearshore region of the ECS (depth < 50 m). This kind of water is affected
primarily by the Changjiang Diluted Water (CDW), which is created by the abundant freshwater
discharged by Changjiang. The coverage of CDW could represent the impact strength of terrigenous
input, to some extent. With increasing distance from the coastline, high temperature (>24.0 ◦C),
high salinity (>33.0 PSU) and high density (>22.5 kg/m3) began to appear in the offshore shelf of the
ECS (50 m < depth < 200 m) and eastern Taiwan (500 m < depth < 5000 m) (Figure 2). In the bottom
layer, however, the nearshore area was provided with the highest temperature but the lowest salinity
and density and the offshore shelf of the ECS had relatively higher temperature salinity and density.
Bottom seawater in eastern Taiwan possessed the lowest temperature (0< T< 7 ◦C), highest salinity
(about 34.0 PSU) and highest density (about 27 kg/m3) in our study area.

These above-mentioned variations of hydrographic parameters were closely related with the
complicated circulation system of our studied region, which was basically composed of the Changjiang
Diluted Water (CDW), the ECS Coastal Water (ECSCW), the Taiwan Warm Current (TWC) and the
Kuroshio Current (KC) [52]. Based on the dataset of potential temperature (θ), salinity and potential
density anomaly (σ0) we obtained, the water of the ECS and adjacent eastern Taiwan were categorized
into seven water types (Figure 3 and Tables 1 and 2). First of all, waters in the ECS were simply
classified as the ECS Coastal Water (ECSCW), the Taiwan Warm Current (TWC) and the Shelf Mixed
Water (SMW). The ECSCW usually possessed the lowest temperature (18.87 ◦C < T < 23.88 ◦C) and
salinity (S ≤ 31) among the seven water masses because it was strongly affected by riverine fresh water
from Changjiang. The TWC originated from the subtropics water and flowed into the southwest of the
ECS through the Taiwan Strait. This water generally shared the same salinity scope (31.30 < S < 34.50)
with the SMW but it was warmer than the SMW by about 5 ◦C on average (Figure 3 and Table 1).
Waters off the eastern Taiwan were divided into four parts, including the Kuroshio Surface Water (KSW,
water depth 0~100 m, similarly hereinafter) with the highest temperature and high salinity (averaged
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temperature and salinity was 25.68 ◦C and 34.62 respectively, similarly hereinafter), the Kuroshio
Subsurface Water (KSSW, 100~300 m) with relatively lower temperatures and the highest salinity
(19.12 ◦C and 34.75), the Kuroshio Intermediate Water (KIW, 400~800 m) with much lower temperatures
and the lowest salinity (7.65 ◦C and 34.33) and the Kuroshio Deep Water (KDW, 1000~2000 m) with the
lowest temperature and low salinity (2.86 ◦C and 34.53).
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Figure 3. A plot of potential temperature (θ) and salinity of seawater at all stations in ECS shelf and
eastern Taiwan. The dash-dot lines denote the isopycnals of potential density anomaly (σ0). The colorful
rectangles represents different water masses, which include the ECS coastal water (ECSCW), Taiwan
Warm Current (TWC), Shelf Mixed Water (SMW), Kuroshio Surface Water (KSW), Kuroshio Subsurface
Water (KSSW), Kuroshio Intermediate Water (KIW) and Kuroshio Deep Water (KDW). The definitions
of the water masses were based on Chen (2009), Chen and Wang (2006), Ichikawa and Chaen (2000),
Qi et al. (2014) [53–56].
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Table 1. Temperature and salinity variations in the various water types.

Water types Temperature (◦C) Salinity (PSU)

ECSCW 18.87 < T < 23.88 26.34 < S < 31.20
TWC 21.69 < T < 25.83 31.33 < S < 34.28
SMW 16.25 < T < 21.02 31.40 < S < 34.49
KSW 20.39 < T < 27.89 34.34 < S < 34.82

KSSW 14.35 < T < 21.45 34.52 < S < 34.79
KIW 4.99 < T < 12.83 34.23 < S < 34.43
KDW 1.89 < T < 5.40 34.35 < S < 34.62

3.2. Profiles of Hydrological and Carbonate Parameters in Mainstream of Kuroshio off Eastern Taiwan

The continental margin off eastern Taiwan is the mainstream of the Kuroshio Current where
it develops and intensifies to a strong western boundary current after leaving its source area east
of Luzon Island. Due to the intensive island-continent collision, the seafloor topography in eastern
Taiwan usually drops abruptly from the nearshore to more than 2000 m at a distance of only 40 to 50 km.
Consequently, the concentration gradients of carbonate species across the mainstream of Kuroshio
Current might be significantly. In the following paragraphs, we would present the vertical profiles of
DIC (µmol/kg), pH@25 ◦C, DIC/TAlk, DO (mg/L), POC (µmol/L) and the calculated pCO2 (µatm)
and Revelle Factor observed in the two transects of TW-1 and TW-2 (Figure 1). Together with the
typical features of temperature (◦C), salinity (PSU) and density (kg/m3), the carbonate characteristics
in different parts of Kuroshio Current would be demonstrated.

As for the hydrological parameters, temperature, density and salinity ranged 1.88~27.95 ◦C,
22.03~27.68 kg/m3 and 34.24~34.83, respectively (Figures 4a–c and 5a–c). Temperature decreased
gradually with the increasing of water depth when it was shallower than 1000 m and basically held
steady as the water was deeper than 1000 m. The density shown opposite vertical distribution pattern
with temperature, which increased as the depth increased and also remained stable in water deeper
than 1000 m. Salinity initially displayed an increasing trend in the above 150 m and then decreased
in water column of 150~500 m. Furthermore, salinity turned to increase again when the water was
deeper than 500 m.

Figures 4d and 5d presented the profile of pH@25 ◦C (pH values normalized to 25 ◦C) measured
at transect TW-1 and TW-2. Vertical distribution of pH@25 ◦C basically possessed similar pattern
with that of temperature, namely the upper layer had relative high pH values (7.80~8.20) while
the pH values in under layer were relative low (7.50~7.80) (Figures 4d and 5d). In the case of DIC,
DIC/TAlk, pCO2 and Revelle factor, similar vertical distribution structures were found in eastern
Taiwan. In particular, DIC increased gradually from a consistent surface value of about 1860 µmol/kg
to nearly 2400 µmol/kg at the depth of 2000 m (Figures 4e and 5e). Thus, the increase of DIC from
the surface to 2000 m was accompanied by a decrease of temperature and an increase of density.
Our DIC results were comparable to those previous investigations conducted in this area [34,57].
The ratio of DIC/TAlk, which could serve as an indicator for pCO2, varied from 0.81 in the surface
seawater to 0.99 in the bottom water (Figures 4f and 5f). The relatively consistent DIC/TAlk below
500 m (0.97~1.00) indicated the stable inorganic carbonate condition for deep water column off eastern
Taiwan. The calculated pCO2 (µatm) and Revelle Factor also displayed an increasing trend from the
surface seawater to the bottom water. As for the pCO2, it was less than the atmospheric CO2 value
(402 µatm) in the upper 100 m water column (Figures 4g and 5g), accompanied by a relatively low
Revelle Factor (about 8.0~9.0) (Figures 4h and 5h). The difference of pCO2 between the atmosphere
and the surface seawater was usually employed to calculate the air-sea CO2 exchange flux. It ranged
from −182 µatm to −153 µatm with an average of −121 µatm in the surface seawater of stations off
eastern Taiwan (Figures 4g and 5g).

Based on Figures 4i and 5i, the DO averaged about 6.5 mg/L at the surface water and then
decreased rapidly to approximately 4.1 mg/L at 500 m. In the water column of 800~1000 m, there was
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an oxygen minimum zone (OMZ) with DO contents of 2.38~2.81 mg/L. This kind of DO profile in
our study was consistent with those observed in the Atlantic and Pacific Ocean [58–60], implying the
seawater off eastern Taiwan was equipped with specific characteristics of the open sea. Concentrations
of POC in eastern Taiwan generally shared similar vertical profiles, which basically enriched the
surface and upper column of seawater and remained at a relatively low level in the under layer water
(Figures 4j and 5j). Values of POC measured in this article were comparable to those reported in the
northeastern Taiwan [61].
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3.3. Summary for Carbonate Chemistry in the Mainstream of Kuroshio

According to the classification of water types conducted in the mainstream of Kuroshio (please see
details in Section 3.1 and Figure 3), we summarized the average contents of various carbonate species
for KSW, KSSW, KIW and KDW in Table 3. The results briefly indicated that the KSW had the highest
biologically-related parameters such as pH, POC and ΩCa in the four water masses but the lowest
DIC, pCO2 and RF. In particular, the average pCO2 value of this water mass (312 µatm) was lower
than the level of atmospheric CO2 (402 µatm, data source: https://www.co2.earth/monthly-co2),
which demonstrated the KSW could serve as an atmospheric sink during our investigating period.
On account of the fact that the KSW was the only water located above the eutrophic layer, it could
reasonably be deduced that biological activity was probably the important controlling factors for
carbonate system in the KSW. The KIW and KDW possessed quite low contents of pH and ΩCa,
yet high contents of DIC and pCO2. These results suggested the KIW and KDW stored abundant
inorganic carbon and seawater in these two water masses was quite acidic with respect to the surface
water column. As for the KSSW, which could affect the ECS shelf ecosystem through physical processes
such as upwelling, vertical mixing and cyclonic mesoscale, moderate range of carbonate parameters
were found in this water masses. For the sake of exploring internal influence of Kuroshio on the CO2

source/sink of adjacent continental shelf, the relationships between carbonate parameters and related
controlling factors and the cross-shelf transport of various carbonate species were presented in the
following paragraphs.

Table 2. Contents of hydrological and ecological-related parameters (mean ± standard deviation) in
different water masses of mainstream of Kuroshio off eastern Taiwan (KSW, KSSW, KIW, KDW).

T (◦C) Salinity ρ (kg/m3) Chl a (µg/L) DO (mg/L)

KSW 27.74 ± 2.26 34.68 ± 0.13 23.16 ± 0.76 025 ± 0.25 6.7 ± 0.2
KSSW 17.92 ± 2.29 34.69 ± 0.10 25.04 ± 0.49 0.04 ± 0.03 6.2 ± 0.3
KIW 8.01 ± 2.63 34.33 ± 0.05 26.71 ± 0.39 not detected 3.6 ± 1.0
KDW 2.99 ± 0.99 34.52 ± 0.08 27.50 ± 0.16 not detected 3.3 ± 0.6

Note: The definitions of water masses were conducted in Section 3.1.
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Table 3. Contents of various carbonate species (mean ± standard deviation) in different water masses
of mainstream of Kuroshio off eastern Taiwan (KSW, KSSW, KIW and KDW).

KSW KSSW KIW KDW

pH@25 ◦C 8.141 ± 0.05 8.013 ± 0.069 7.692 ± 0.135 7.606 ± 0.043
DIC (µmol/kg) 1930 ± 51 2064 ± 46 2274 ± 63 2389 ± 16
DIC/TAlk 0.84 ± 0.02 0.90 ± 0.02 0.98 ± 0.02 0.99 ± 0.01
pCO2 (µatm) 312 ± 68 597 ± 156 1869 ± 568 2401 ± 216
RF 8.74 ± 0.59 11.07 ± 1.17 15.98 ± 1.10 16.80 ± 0.10
POC (µmol/L) 2.5 ± 1.0 1.1 ± 0.7 0.9 ± 0.3 0.9 ± 0.2
ΩCa 6.1 ± 0.7 4.0 ± 0.7 1.6 ± 0.5 1.1 ± 0.1

Note: The definitions of water masses were conducted in Section 3.1.

4. Discussion

4.1. Relationships between Carbonate Parameters and Environmental Factors in Kuroshio

The relationships between pCO2, DIC and environmental parameters (e.g., temperature, salinity,
DO) will be discussed in this section. To be specific, there were strong negative correlations between
pCO2 and temperature in the KSW (r = −0.707, p < 0.01, n = 41) and the KSSW (r = −0.861, p < 0.01,
n = 21) (Figure 6). Normally, temperature was supposed to show a positive correlation with pCO2 in the
perspective of thermodynamic [62,63]. However, external import of CO2-rich cold water and biological
activity were considered to be the most two important causations for this negative correlation [11].
Similar negative correlations were also observed in a cold-core cyclonic eddy in Hawaiian Islands [64],
the offshore region of south Yellow Sea in the winter and summer [65] and the inner and middle shelf
of ECS in winter [9].

In order to explore the internal controlling effects of environmental factors in KSW, we provided
that a water with a constant TAlk of 2291 µmol/kg (the average TAlk for KSW) is in equilibrium with
an atmospheric pCO2 of 402 µatm (the average of the atmospheric pCO2 measurements off eastern
Taiwan). The temperature dependence of DIC in this hypothetical water parcel can be calculated as
−7.6 µmol kg/◦C (blue line in Figure 7a). This value was less than the observed slope of the DIC
vs. temperature relationship (slope = −17.3 µmol kg/◦C, red line in Figure 7a). What is more, we found
a negative correlation between measured DIC and DO (r = −0.326, p < 0.05, n = 41) and a positive
correlation between DIC difference (DIC calculated minus DIC measured) and DO contents in KSW (r = 0.423,
p < 0.01, n = 39) (Figure 7b). Therefore, this kind of discrepancy between calculated DIC (blue symbols
in Figure 7a) and measured DIC (red symbols in Figure 7a) should be attributed to an additional DIC
“sequestration” process which generally derived from phytoplankton photosynthesis. Namely, biological
activity actually affected the carbonate system of KSW profoundly. However, there was no significant
correlation between DIC and Chl a. The reason for the deviation in Chl a content from primary production
was most likely the result of grazing pressure exerted by zooplankton [44].

We also compared the measured DIC and calculated DIC in the KSSW, based on the same
assumptions carried out in KSW. The results demonstrated that the interrelation between DIC

calculated and DIC measured showed two opposing trends: DIC measured was higher than DIC calculated
for water with temperature <19.4 ◦C, whereas DIC measured was lower than the DIC calculated for
water with temperature >19.4 ◦C (Figure 8a). The positive differences between DIC measured and DIC

calculated when temperature >19.4 ◦C was similar with the situation of KSW, indicating the regulating
effects of biological activity on DIC variation still occurred in the relative warmer layer of KSSW.
However, the negative difference between DIC measured and DIC calculated when temperature <19.4 ◦C
was very likely related to the external transport of DIC-enriched water, which was probably from the
South China Sea (SCS). A study conducted in the Luzon Strait and eastern Taiwan demonstrated that
the SCS subsurface water that was rich in biological fixed carbon could significantly modify the carbon
chemistry of the subsurface water of the Kuroshio Current in regions off southeast Taiwan [33,35].
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Accordingly, we plotted the DIC vs. salinity and DIC vs. density in KSSW and found that the DIC
in KSSW was negatively related to salinity (r = −0.811, p < 0.01, n = 41) and positively related to
density (r = 0.838, p < 0.01, n = 41) (Figure 8b). These findings suggested that DIC was likely to be
enriched in the saline and dense endmember of KSSW, which was probably derived from the SCS.
Nevertheless, the potential influence of external DIC transportation on the carbon chemistry of KSSW
was far from resolved and further study was needed.
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4.2. Intrusion of Kuroshio off Eastern Taiwan into the ECS Shelf: Evidence from Carbon Chemistry Parameters

The distribution patterns of the hydrographic data and the carbonate parameters in transect
DH-9, which is the nearest transect to northeast of Taiwan, are shown in Figure 9. The temperature,
salinity, density in transect DH-9 showed typical slanted isoclines toward the west/shelf (Figure 6a–c).
In detail, a mass of water with low temperature (T < 20.0 ◦C), high salinity (S > 36.5) and density
(ρ > 24.5 kg/m3) occupied the bottom layer of this transect (Figure 9a–c), implying the upwelling
of the northwardly flowing Kuroshio waters. Correspondingly, we found that this water mass in
transect DH-9 (marked in Figure 9 by an arrow symbol) possessed a relatively high concentration of
DIC, DIC/TAlk, pCO2 and Revelle Factor (RF) but low pH and ΩCa (Figure 9d–i). In other words,
the upwelling of Kuroshio water off northeastern Taiwan could not only transport cold, saline and
dense water mass into the southern ECS shelf but also could convey water mass with a high content of
DIC, DIC/TAlk and RF, low pH and ΩCa into the southern ECS shelf.

It had already been found that the cold, nutrient-rich KSSW intruded into the southern ECS
shelf and was a major nutrient source to maintain high productivity [30,35]. However, the influence
scope of KSSW on ECS is still in debate. It had been reported that the KSSW in eastern Taiwan could
intrude into the ECS as far as its nearshore region by a Nearshore Kuroshio Branch Current (NKBC),
which linked the nutrient-rich KSSW with the ECS shelf [31,39,66]. In this paper, we supplemented the
vertical profiles of temperature, salinity, density, DIC, DIC/TAlk, pH@25 ◦C, pCO2, Revelle Factor and
ΩCa in transect DH-5, which was located near the Changjiang estuary, in order to verify whether the
water mass with a high content of DIC observed in transect DH-9 could appeared in transect DH-5
(Figure 10). Our findings demonstrated that, in the outer endmember of transect DH-5, water mass
that had a relatively high concentration of DIC, DIC/TAlk, pCO2 and Revelle Factor (RF), low pH and
ΩCa was also observed just like the situation in transect DH-9 (Figure 10d–i). Consequently, it could be
inferred that the Kuroshio Current off eastern Taiwan could exactly intrude into the ECS shelf as far as
27.9◦ E, 125.5◦ N (the outer endmember of transect DH-5), basing on the evidence of carbon chemistry.Sustainability 2018, 10, x FOR PEER REVIEW  12 of 17 
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4.3. Estimates of Carbon Transport from Kuroshio into the ECS Shelf

As discussed in Section 4.2, the Kuroshio upwelled waters were characterized by high DIC/TA
ratio and Revelle factor. As these upwelled waters flowed northwardly and entered into the ECS shelf
finally, they would profoundly change the carbonate properties and CO2 absorption capacity in the
ECS, which was probably the most important oceanic atmospheric CO2 sink for China [67]. In the
following paragraphs, we tried to evaluate the impact of the intruded Kuroshio water to the DIC pool
in the ECS shelf. The water fluxes budget for the ECS in rainy season (May to October), which was
evaluated by Zuo et al. (2016) based upon a simple box model about water and salt, was adopted in
the estimation of DIC transport [68] (Figure 11). This water flux budget was in good agreement with
the latest research results [39,69]. As for the estimation of carbon transport, the following formulation
was adopted: F = C × Q, where F represented the transport flux (Tg C, 1 Tg = 1012 g), C was the
average concentration for various carbon parameters (µmol/L) and Q stood for the water flux (Sv,
1 Sv = 106 m3/s).

Results of all these transport fluxes are summarized in Table 4. As a result, the KSW, KSSW
and KIW could convey DIC into the ECS shelf with a flux of 285, 305 and 112 Tg C/half year
(1 Tg = 1012 g), respectively (Table 4). And the relevant flux of POC for KSW, KSSW and KIW
was 0.16, 2.93 and 0.04 Tg C/half year, respectively (Table 4). The results indicated that the total
influx of DIC (702 Tg C/half year) from the Kuroshio was much larger than the CO2 uptake rate
(13~30 Tg C/yr) in ECS through air-sea CO2 exchanging process [5]. This great difference should be
attributed to the fact that some of the Kuroshio water might only stay a short time in the ECS, thus will
not remain in the ECS for a long time. In particular, since carbonate species transport fluxes estimated
in the present study were derived basically from their depth profiles in spring time, seasonal variability
and related changes in upwelling that may vary obviously were not considered.
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Table 4. Water fluxes and estimates of various carbonate species transport from Kuroshio into the
ECS shelf.

Water Flux DIC Input (1012 g) POC Input (1012 g)

KSW 0.781 285 0.37
KSSW 0.781 305 0.16
KIW 0.260 112 0.04
total 1.82 702 0.57

5. Conclusions

The Kuroshio Current, as the famous western boundary of the subtropical gyre in the North
Pacific Ocean, transports an abundant amount of warm saline water and nutrients (e.g., nitrate,
phosphate, silicate) into the ECS shelf and serves as a major nutrients source for primary production in
the southern ECS. Moreover, the transport of excess dissolved inorganic carbon (DIC) could restrain
the ability of CO2 sequestration in marginal seas. In this study, comprehensive carbon chemistry
data including pH@25 ◦C, dissolved inorganic carbon (DIC), ratio of dissolved inorganic carbon and
total alkalinity (DIC/TAlk), partial pressure of CO2 (pCO2), particulate organic carbon (POC), Revelle
Factor (RF) and carbonate saturation state (ΩCa) were measured in the mainstream of Kuroshio off
eastern Taiwan in May 2014.

The results indicated that the vertical variations of these carbonate species were closely related
the characteristics of various water masses in the Kuroshio Current. Kuroshio Surface Water (KSW)
had the highest biological-related parameters such as pH@25 ◦C, POC and ΩCa but the lowest DIC,
pCO2 and RF, which consistently demonstrated that this water could serve as an atmospheric CO2

sink. However, low pH@25 ◦C, POC and ΩCa and high DIC, pCO2 and RF were found in the Kuroshio
Intermediate Water (KIW) and Kuroshio Deep Water (KDW). The Kuroshio Subsurface Water (KSSW),
which is traditionally considered an important nutrient source for ECS shelf, possessed the moderate
level of carbonate parameters.

Relationships interpretations among pCO2, DIC, temperature and dissolved oxygen (DO)
demonstrated phytoplankton photosynthesis played important controlling roles on DIC variation in
KSW, whereas the DIC variation in KSSW was controlled not only by the above-mentioned biological
activity but the external transport of DIC-enriched water from the South China Sea (SCS). In this article,
we found the Kuroshio Current in eastern Taiwan could exactly intrude into the ECS shelf as far as
27.9◦ E, 125.5◦ N, basing on the evidence of carbon chemistry obtained in transects DH-9 and DH-5.
This study also tried to evaluate the impact of the intruded Kuroshio water to the carbon pool in the
ECS shelf. In general, the KSW, KSSW and KIW could convey DIC into the ECS shelf with flux of 285,
305 and 112 Tg C/half year (1 Tg = 1012 g), respectively. And the relevant flux of POC for KSW, KSSW
and KIW was 0.16, 2.93 and 0.04 Tg C/half year, respectively. Although carbonate species estimated in
this study were derived exclusively from the spring time and seasonal variability and possible changes
in upwelling intensity that may vary obviously were not considered, the transportation of carbon
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from the Kuroshio to the ECS shelf might further exert a counteracting influence on the potential of
atmospheric CO2 absorption in the ECS, which needed intensive study in the future.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/10/3/791/s1.
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