Supplementary Information

Reference Na	nomaterial	Carbon emissions, energy payback time	Compare to alternative	Key drivers for carbon emissions and energy	Overall assessment
(Roes et Nan al., 2009) pol glas sub	anoscale layers on lymer PVs with ass and flexible bstrate	Carbon emissions per watt-peakPolymer PV on glass substrate results in819 gCO2-eq.mc-silicon PV results in 1559 gCO2-eq.Minimum lifetime for the two systems tobreak even for global warming potentialis 13 years.Polymer PV on flexible substrate resultsin 132gCO2-eq.mc-silicon PV results in 1293 gCO2-eq.Minimum lifetime for the two systems tobreak even for global warming potentialis 2.4 years.Energy payback time (EPBT) per watt-peak1.26 years for glass-based polymer PVs.2.33 years for mc-silicon PVs.0.19 years for flexible-based polymerPVs.1.95 years for mc-silicon PVs	Polymer PVs on glass or flexible substrate are compared to multi- crystalline silicon PVs, CdTe (cadmium telluride), CIS (copper, indium, selenide or sulphide), silicon and DSC (dye-sensitized)	Carbon emissions For Polymer PV on glass substrate: Production of glass, sputtering of ITO (indium, tin, oxide) on the top of glass, lamination, framing and balance-of-system (BOS) For Polymer PV on flexible substrate: Sputtering and lamination	Carbon emissions per watt-peak: For Polymer PV on glass substrate: 48% less emissions than mc-silicon Also less emissions than CdTe, CIS, silicon Higher emissions than DSC For Polymer PV on flexible substrate: 90% less emissions than mc-silicon Also less emissions than CdTe, CIS, silicon, DSC
(Greijer et Nar al., 2001) sen (ncl	nnocrystalline dye nsitized solar cells cDSC)	Carbon emissions Nanocrystalline dye sensitized solar cell <u>system:</u> 19 to 47 gCO2-eq/KWh <u>Amorphous silicon solar cell system:</u> 42gCO2-eq/KWh <u>Natural gas power plant:</u> 450gCO2-eq/KWh	Nanocrystalline dye sensitized solar cell system is compared to amorphous silicon solar cell system and a natural gas power plant	<u>Carbon emissions</u> Production of solar cell module (deposition and sintering of the porous layers on the top of the substrate), substrate glass, frame and junction box	Carbon emissions Nanocrystalline dye sensitized solar cell system: Comparable emissions to amorphous solar cell system. 90% less emissions than natural gas power plant.
(Tsang et Org	ganic PV (OPV)	Carbon emissions:	Compared to multi-	The biggest contributor in carbon emissions is	Carbon emissions per

Table S1. LCA studies on nanomaterials in the solar sector.

	derivative phenyl-C61- butyric ester (PCBM)	a-Si, mc-silicon: n.d. ¹ <u>EPBT per watt-peak:</u> OPV: 0.21 years a-Si: 2.18 years mc-silicon: 2.72 years	amorphous silicon (a- Si) solar cells	oxide (FTO) film used as a transparent front electrode. It is followed by annealing and the PCBM production.	<u>OPV:</u> about 70% lower emissions compared to a-Si solar cells about 90% lower emissions compared to mc-silicon cells
(Mohr et al., 2013)	Amorphous- silicon/nanocrystalline- silicon	Carbon emissions Energy Payback time (EPBT) 2.3 years for a-Si/nc-Si solar cell system 3.4 years for multi-silicon solar cell system <u>Cumulative Energy Demand</u> 1.4MJ/KWh for both systems	Amorphous- silicon/nanocrystalline- silicon solar cell systems are compared to multi-silicon solar cell systems	Carbon emissionsEncapsulation (emissions of chlorofluoro in production of encapsulated foil).Integrated roof construction (production of aluminum).Plasma enhanced chemical vapor deposition (PECVD).Removal of aluminum temporary carrier.Balance-of-system (BOS) components.Energy demand Integrated slanted roof construction (production of aluminum).Deposition of silicon (PECVD).Removal of aluminum temporary carrier (wet etching).BOS integration (mainly from the inventers)	<u>Carbon emissions</u> <u>a-Si/nc-Si:</u> About 25% higher emissions than multi- silicon PVs
(van der Meulen and Alsema, 2011)	Amorphous- silicon/nanocrystalline- silicon	<u>Most likely scenario:</u> <u>Carbon emissions</u> a-Si/nc-Si: about 42 to 55 gCO2-eq/KWh a-Si: about 30 gCO2-eq/KWh <u>Energy demand</u> a-Si/nc-Si: 1219 to 1242 MJ/m2 module area a-Si: 836 to 838 MJ/m2 module area	Amorphous silicon/nano-crystalline silicon (micromorph) are compared to amorphous silicon PV systems	Carbon emissions <u>a-Si/nc-Si:</u> Increase in material (SF6, NF3, H2, SiH4, O2). Increase in energy (module processing, capital equipment, feedstock material) requirements. Increased Fluor-gases usage in deposition process <u>Energy demand</u> Module processing. Fabrication of the thin-film (extended deposition time due to energy intensive	Most likely scenario: Carbon emissions a-Si/nc-Si: About 29% to 46% higher emissions than a-Si Energy demand About 31 to 33% higher energy requirements than a-Si

¹ n.d.: not determined

plasma enhanced chemical vapor deposition process)

(Kim and	Amorphous-	<u>Energy Payback time (EPBT)</u>	Amorphous-	Energy demand	Energy demand
Fthenakis,	silicon/nanocrystalline-	a-Si/nc-Si: 0.7 to 0.9 years	silicon/nanocrystalline-	<u>a-Si/nc-Si:</u>	<u>a-Si/nc-Si:</u>
2011)	silicon	a-Si: 0.8 years	silicon PVs are	Prolonged deposition time.	About 40% higher
		Energy demand	compared with triple-	Increased use of precursor gases.	energy requirements
		a-Si/nc-Si: 1300 MJ/m2	junction amorphous		than a-Si PVs
		a-Si: 930 MJ/m2	silicon PVs		
(Şengül	quantum dot	Carbon emissions	Quantum dot	Carbon emissions	Carbon emissions
and	photovoltaics (QDPV)	quantum dot photovoltaics (QDPV):	photovoltaics (QDPV)	<u>QDPV:</u>	<u>QDPV:</u>
Theis,		25 gCO2-eq/m2 or 5 gCO2-eq/KWh	are compared with	Production of the quantum dot solar cells	about 72 to 81% less
2011)		<u>silicon PVs:</u>	other types of PVs:	(electricity, aluminum foil and methanol).	emissions than silicon
		about 18 to 27 gCO2-eq/KWh	silicon PVs (ribbon	Production of the module.	PVs
		thin film PVs	multi-crystalline		about 67 to 93% less
		about 15 to 68 gCO2-eq/KWh	silicon, multi-		emissions than thin
		other nano PVs	crystalline silicon and		film PVs
		about 58 gCO2-eq/KWh	mono-crystalline		about 91% less
			silicon), thin film PVs		emissions than other
			(cadmium telluride		nano PVs
			and copper-indium-		
			selenide) and Nano		
			PVs (dye sensitized).		
			They are also		
			compared to other type		
			of energy sources coal,		
			oil, lignite, natural gas,		
			diesel, nuclear, wind		
			and hydropower		

Referenc	Nanomaterial	Carbon emissions and energy	Compare to alternative	Key drivers for carbon emissions and	Overall Assessment
e			-	energy	
(Khanna and Bakshi, 2009)	Carbon nanofiber (CNF) reinforced polymer nanocomposites (PNC)	<u>Carbon emissions</u> <u>1st level - production phase:</u> Polypropylene - CNF (15% Vol) results in about 45 Giga Joules per component Polypropylene - Glass Fiber - CNF (0.6% Vol) results in about 6 Giga Joules per component Steel results in about 3 Giga Joules per component	Polypropylene (PP) and unsaturated polyester resin (UPR) carbon nanofibers(CNFs) with and without glass-fiber (GF) are compared to steel for production phase (1st level) and for production and use phase with an application to vehicle body panels (2nd level)	Energy demand Synthesis of carbon nanofibers (CNFs) requires enormous energy input. In the case of application in body panels for vehicles, CNF-PNCs contribute to weight reduction and thus fuel gasoline savings	<u>1st level - production phase</u> CNF polymer nanocomposites result in 1.6 to 12 times higher energy demand compared to steel <u>2nd level - production and use</u> <u>phase (application to vehicle body</u> <u>panels)</u> CNF polymer nanocomposites result in 1.4 to 10% fuel gasoline savings for vehicles compared to steel. That leads to offset and net energy savings of the different CNF-PNCs relative to steel for car applications
(Hervy et al., 2015)	Nanofifibrillated cellulose (NFC) reinforced epoxy composites	Carbon emissions Production phase: BC reinforced epoxy composites results in 13.8 Kg CO2 eq. NFC reinforced epoxy composites results in 8.6 Kg Co2 eq. Production, use and EOL treatment phase (application to composite automotive part): BC reinforced epoxy composites results in about 27 Kg CO2 eq. NFC reinforced epoxy composites results in about 18 Kg Co2 eq.	Bacterial cellulose (BC) and nanofifibrillated cellulose (NFC) reinforced epoxy composites are compared to two benchmark materials: 30wt% randomly oriented glass fibre-reinforced polypropylene (GF/PP) composites and neat polylactide (PLA). Firstly the production phase and secondly the production, use and EOL treatment phase with an application to composite automotive part	Carbon emissions Production phase Reinforcement production (NFC from wood pulp and BC biosynthesis from low molecular weight sugars), VARI (porous flow medium production) and polymer matrix production Production, use and EOL treatment phase (application to composite automotive part) The application of NFC and BC reinforced epoxy composites to vehicles contribute to weight reduction and thus fuel savings	Carbon emissions Production phase BC reinforced epoxy result in about 194% higher carbon emissions compared to neat PLA NFC reinforced epoxy result in about 83% higher carbon emissions compared to neat PLA Production, use and EOL treatment phase (application to vehicles) BC and NFC epoxy composites almost balance of compared to neat PLA and GF/PP composites

Table S2. LCA studies on nanomaterials in the polymer sector.

(Pietrini	Nanoscaled	Carbon emissions	Nanoscaled organophilic	NREU contribution - Analogous	Carbon emissions
et al.,	organophilic	Cathode ray tube (CRT) monitor	montmorillonite (OMMT)	considerations can be made for carbon	Cathode ray tube (CRT) monitor -
2007)	montmorillonite	- housing	and sugar cane bagasse	emissions	housing
,	(OMMT) used as	best case: PHB1 – 50MMT	(SCB) used as poly(3-	CRT monitor housing	PHB1 – 50MMT performs almost
	poly(3-	results 0.5 Kg CO2 eq. per FU	hydroxybutyrate) (PHB)	Injection molding, extrusion and filler	30% better compared to HIPS in
	hydroxybutyrate	best case: PHB1 - 10SCB results	fillers are compared to high-	production are the highest contributors	terms of carbon emissions
) (PHB) filler	0.1 Kg CO2 eq. per FU	impact polystyrene (HIPS)	for PHB-MMT composites	PHB1 - 10SCB performs 150%
	, , ,	HIPS results 15.1 Kg CO2 eq. per	used in cathode ray tube	Internal car panels	better compared to HIPS in terms
		FU	(CRT) monitor housing and	Use phase is the highest contributor for	of carbon emissions
		Internal car panels	glass-fibers-filled	PHB-MMT due to higher weight that	Internal car panels
		best case: PHB1 – 10OMMT	polypropylene (GF-PP) used	leads to higher fuel consumption.	PHB1 – 100MMT performs 9%
		results 627.2 Kg CO2 eq. per FU	in internal panels of vehicles	PHB produced from sugar cane (PHB1).	worse compared to PP-GF in terms
		best case: PHB1 - 20SCB results	-	PHB produced from corn starch (PHB2).	of carbon emissions
		552.1 Kg CO2 eq. per FU			PHB1 - 20SCB performs 3% better
		PP-GF results 569.9 Kg CO2 eq.			compared to PP-GF in terms of
		per FU			carbon emissions
(Schrijver	Nanoclays LDH	n.d.	Different compositions of	NREU contribution	Carbon emissions
s et al.,	(layered double		nanoclays LDH and MMT	<u>Nanoclays:</u>	<u>Nanoclays:</u>
2014)	hydroxides) and		with surfactants (dodecyl	LDH: Surfactants and drying of the clay	best case: LDH (based on
	MMT		sulfate and stearate) are	are the highest contributors	MgO+Al(OH)3+Stearate) performs
	(montmorillonite		compared.	MMT: Organic modification and	about 6% better than MMT in
)		Biodegradable polymer	surfactants are the highest contributors	terms of carbon emissions
			PBAT, with and without	Carbon emissions	Mulching films:
			nanoclay, is compared to	Mulching films:	best case: LDPE based films with
			LDPE that is recycled and	LDPE: Waste incineration is the highest	recycling and energy recovery
			incinerated with energy	contributor in carbon emissions	from incineration perform about
			recovery for mulching film	PBAT: PBAT production is the highest	40% better compared to PBAT
			application (in agriculture	contributor in carbon emissions	(LDH/ZnAl-stearate) in terms of
			sector). Irganox 1010 or p-		carbon emissions
			hydroxy-cinnamic acid are		
			used as UV stabilizers.		

(Notter et	Multiwalled	n.d.	High temperature (HT)	Carbon emissions	Overall environmental
al., 2015)	carbon		polymer electrolyte	HT PEM FCs	<u>performance</u>
	nanotubes		membrane fuel cells (PEM	Energy intensive processes of platinum	HT PEM FCs
	(MWCNTs)		FCs) with MWCNTs as	mining and refining processes contribute	PEM FCs with MWCNT have 20%
			support materials for	more to carbon emissions	better performance than PEM FCs
			platinum compared to PEM	FCEV	with CB.
			FCs with CB (carbon black).	EU energy mix: Operation of vehicle due	<u>µ-CHP plants</u>
			Fuel cell electric vehicles	to hydrogen production is the biggest	HT PEM FC powered plants
			(FCEV) that use PEM FC are	contributor	perform about 20% better than
			compared with battery	Renewable energy mix: Operation of	Stirling engine device
			electric vehicles (BEV) and	vehicle and PEF FC (production,	Carbon emissions for vehicle types
			internal combustion vehicles	maintenance and disposal)	Renewable energy mix: FCEV has
			(ICV).	Environmental performance	comparable emissions to BEV, and
			Micro-combined heat and	<u>µ-CHP plants</u>	performs more than 50% better
			power plants (μ -CHP) that	natural gas production, operation of the	than ICV
			use PEM FC are compared to	plant are and quality of energy produced	EU energy mix: FCEV have about
			μ -CHP plants with Stirling	the biggest contributors	50% higher emissions than BEV,
			engine.		and about 25% higher emissions
					than ICV

Table S3. LCA studies on nanomaterials in the energy sector.

Reference	Nanomaterial	Carbon emissions and	Compare to alternative	Key drivers for carbon emissions and	Overall Assessment
		energy		energy	
(Li et al.,	Silicon	Carbon emissions	High capacity lithium ion batteries	Carbon emissions	Carbon emissions
2014)	nanowires	LIB packs with SiNW anode	(LIB) with silicon nanowires	Battery use mainly from primary energy	LIB packs with SiNW result in
	(SiNWs)	result in about 0.188 kg	(SiNW) anode are compared to	consumption is the highest contributor to	about 18% higher carbon
		CO2eq. per km of EV	conventional LIB with graphite	carbon emissions. It is followed by	emissions than the alternative LIB
		driving	anode and applied to electric	battery production and specifically SiNW	pack with graphite anode.
		LIB packs with graphite	vehicles (EV) driving	anode production due to large energy	
		anode result in 0.155 Kg		demand and toxic chemicals.	
		CO2eq. per km of EV		SiNW fabrication is energy intensive.	
		driving.			
(Zhai et	Single-walled	Energy demand	Conventional graphite anode is	Energy demand	Production and Use phase
al., 2016)	carbon	Manufacturing phase:	compared to SWCNT anode and	Manufacturing of SWCNT anode requires	(Application on Li-ion batteries
	nanotube	SWCNT anode: Requires	conventional carbon black cathode	very large amount of energy.	<u>on vehicles)</u>
	(SWCNT)	additional energy of 21425	is compared to MWCNT cathode in		Negative net energy benefits for

	anode and multi-walled carbon nanotube cathode (MWCNT)	MJ compared to conventional graphite anode. MWCNT cathode: Avoids energy of 444 MJ compared to conventional carbon black cathode.	Li-ion batteries.		SWCNT anode Li-on batteries on vehicles throughout vehicle lifetime compared to graphite anode Li-on on vehicles: -14716 MJ Positive net energy benefits for MWCNT cathode Li-on batteries on vehicles throughout lifetime compared to carbon black cathode Li-on on vehicles: 2775 MJ
(Kushnir	Carbon coated	n.d.		Level 1	Level 1
and	LiFePO4 and			Energy intensive material processing of	Cumulative energy demand
Sandén,	lithium		Level 1	production of nano-based lithium ion	<u>(CED)</u>
2011)	titanate		Carbon coated LiFePO4 as cathode	batteries and lowered voltages of cells	Production of nanomaterial based
	nanoparticle		and lithium titanate nanoparticle	which result in larger material use per	battery systems results in 40-300%
	Li4Ti5O12		Li4Ti5O12 as anode for lithium ion	unit of energy storage are the most	more CED per KWh compared to
			batteries are compared to	important drivers.	alternatives.
			alternatives LiCoO2 and	Level 2	Level 2
			LiNi0.8Co0.2O2 as cathodes and	Battery lifetime	Nanomaterials increase battery
			carbon as anodes for lithium ion	Level 3	lifetime and thus, the lifecycle
			batteries.	Energy mix	energy efficiency increases.
			Level 2		Level 3
			This level includes the use phase of		Improvements in quality of
			the lithium ion batteries.		batteries due to nanomaterials
			Level 3		may improve the transportation
			This level includes the implication		system efficiency at higher level,
			of background energy systems		in which the energy flows are
					much larger in magnitude, i.e.
					introduction of competitive
					electric vehicles

Reference	Nanomaterial	Carbon emissions and energy	Compare to alternative	Key drivers for carbon emissions and energy	Overall Assessment
(Pourzahedi	Silver	AgNP synthesis results in	n.d.	AgNp synthesis: Combustion related processes:	Carbon emissions for AgNp
and	nanoparticles	1.3E+02 Kg CO2 eq. for the		hard coal, natural gas, lignite and diesel for power	synthesis dominate the life
Eckelman,	(AgNPs)	production of 1 Kg of AgNP		generation	cycle impacts of the
2014)				Bandage production: Silver nanoparticles are the	bandage.
				biggest contributor for carbon emissions even	Carbon emissions from
				though they cover just 6% of the bandage mass	AgNp and bandage
					production are several
					times higher compared to
					carbon emissions from
					bandage EOL treatment

Table S4. LCA studies on nanomaterials in the medical sector.

Table S5. LCA studies on nanomaterials in the food sector.

Referenc	Nanomateria	Carbon emissions and energy	Compare to	Key drivers	Overall Assessment
e	1		alternative		
(Piccinno	Cellulose	Carbon emissions	Production of	Liberation of MFC	Carbon emissions
et al.,	nanofibers	Brazilian electricity mix	cellulose nanofibers	(microfibrillated	Carrot waste process performs 17.8
2015)		Carrot waste process for the production of 1g of MFC	from vegetable food	cellulose) used in the	to 2.0 times better than unripe
		results in about 0.1 kg CO2eq	waste (carrot waste) is	wet-spinning process	coconut and cotton processes in
		Cotton and unripe coconuts for the production of 1g of	compared to the	route for cellulose	terms of carbon emissions
		MFC results in about 0.1 and 1.1 kg CO2eq. respectively	existing alternatives	production from	Carrot waste process performs
		US electricity mix	of the production of	waste carrot is the	better compared to TOHO process
		Carrot waste process for the production of 1g of MFC	cellulose nanofibers	main contributor of	(about 27% lower carbon
		results in about 1.5 kg CO2eq	from cotton and	environmental	emissions)
		TOHO process for the production of 1g of MFC results in	unripe coconuts, and	impact	
		about 1.9 kg CO2eq	from wood pulp		

Nanomaterial	Performance of nanos compared to alternative	Comparison of nanomaterial to alternative in terms of carbon emissions	Reference
Nanoscale layers on polymer PVs	Better	Both polymer PVs on glass substrate and polymer PVs on flexible substrate perform better compared to mc-Si PV systems.	[17]
Quantum dot PVs	Better	Quantum dot PVs perform better compared to ribbon multi-Si, multi-Si, mono-Si, CdTe, CIS, DSPV.	[18]
C60 fullerene OPVs	Better	OPVs perform better compared to a-Si and mc-Si PVs.	[20]
Nanocrystalline DSC solar cells	Comparable	nc-DSC have comparable carbon emissions with a-Si cell systems	[19]
a-Si/nc-Si solar cell	Worse	a-Si/nc-Si solar cell performs worse compared to mc-Si solar cells in terms of carbon emissions	[21]
a-Si/nc-Si solar cell	Worse	a-Si/nc-Si solar cell performs worse compared to a-Si technology in terms of carbon emissions	[22]
a-Si/nc-Si solar cell	Worse	a-Si/nc-Si solar cell has higher energy demand than a-Si solar cell	[23]
TNT perovskite solar cell	Worse and Comparable	TNT perovskite solar cells perform worse compared to CdTe solar cells; they are comparable to a-Si, multi-Si and DSC solar cells; they perform better than mono-Si solar cells in terms of carbon emissions.	[24]

Table S6. Summary of performance of nanomaterial use in the solar sector compared to alternatives.

Table S7. Summary of performance of nanomaterial use in the polymer sector compared to alternatives.

Nanomaterial	Performance of nanos compared to alternative	Comparison of nanomaterial to alternative	Reference
CNF reinforced polymer nanocomposites	Production of CNF PNCs: Worse Application to car panels: Better	Production of CNF PNCs results in higher carbon emissions compared to steel production. Application of CNF PNCs to body panels for vehicles results in fuel savings and net energy savings compared to steel alternative.	[25]
Nanofifibrillated cellulose (NFC) reinforced epoxy composites	Production NFCs: Worse Application to car panels: Comparable	Production of NFC epoxy composites results in higher carbon emissions compared to neat PLA. Application of NFC epoxy composites to body panels for vehicles balance of carbon emissions compared to GF/PP composite alternatives.	[26]
Nanoscaled organophilic montmorillonite (OMMT) used as poly(3- hydroxybutyrate) (PHB) filler	Application to CRTs: Better Application to car panels: Worse	 PHB1 - 50MMT and PHB1 - 10SCB perform better compared to HIPS in terms of carbon emissions in CRT monitor - housing. PHB1 - 100MMT and PHB1 - 20SCB have worse and comparable carbon emissions respectively compared to PP-GF in internal car panel 	[27]

		applications.	
Nanoclays LDH and MMT used in polymer nanocomposites	Application to mulching films: Worse	Nanoclay LDH production performs better than nanoclay MMT production in terms of carbon emissions. Nanoclay based PBAT perform worse compared to LDPE alternative, for mulching film application in agriculture sector.	[28]
Multiwalled carbon nanotubes	Production of MWCNT PEM FCs: Better Application to μ-CHP: Better Application to vehicles: Worse and Comparable	 PEM FCs with MWCNTs perform better compared to PEM FCs with CB in terms of overall environmental performance. HT PEM FCs powered μ-CHP plants perform better compared to alternative Stirling engine μ-CHP plants in terms of overall environmental performance. FCE vehicles perform worse in terms of carbon emissions compared to BEVs and ICVs when EU energy mixed is applied. FCE vehicles have comparable carbon emissions to BEVs when renewable energy mix is applied. 	[29]

Table S8. Summary of the performance of nanomaterial use in the energy sector compared to alternatives.

Nanomaterial	Performance of nanos compared to alternatives	Comparison of nanomaterial to alternative	Reference
Silicon nanowires (SiNWs)	Worse	LIB packs with SiNW result in higher carbon emissions than the alternative LIB pack with graphite anode.	[30]
Carbon coated LiFePO4 and lithium titanate nanoparticle Li4Ti5O12	Worse	Production of nanomaterial-based battery systems results higher energy demand compared to alternatives.	[31]
SWCNT anode and MWCNT cathode	Worse for SWCNT Better for MWCNT	SWCNT anode performs worse compared to graphite anode. MWCNT performs better compared to carbon black cathode. Application of SWCNT Li-on batteries in vehicles results in negative net energy benefit. Application of MWCNT Li-on batteries in vehicles results in positive net energy benefit.	[12]