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Abstract: Atmospheric pollution gradually become a focus of concern all over the world owing to its
detrimental influence on human health as well as long range impact on global ecosystem. This paper
investigated the relationship among SO2 emissions, GDP, fossil fuel energy consumption, energy
consumption intensity, and economic structure of five provinces in China with the highest SO2

emissions spanning from 2002–2015 based on panel data model. Through comparatively analyzing
the coefficients in the established panel data model for Hebei, Henan, Inner Mongolia, Shandong,
and Shanxi, we can obtain that: (1) fossil fuel energy consumption made the most devotion to SO2

discharge compared with GDP, energy consumption intensity, and economic structure. And the more
the fossil fuel energy consumption, the more the devotion made by it to SO2 discharge. (2) GDP
devoted less to SO2 emissions than fossil fuel energy consumption, and the larger the scale of the
economy, the greater the contribution made by it to SO2 emissions. (3) The higher the proportion
of the secondary industry added value accounted in GDP, the more the devotion made by the
economic structure and energy consumption intensity to SO2 emissions. Through analyzing the
Granger causality examination results, it can be concluded that: (1) there existed a bi-directional causal
relationship between fossil fuel energy consumption and SO2 emissions among five selected provinces.
(2) There existed uni-directional causal nexus running from GDP to SO2 emissions, from energy
consumption intensity to SO2 emissions, and from economic structure to SO2 emissions among five
chosen provinces. Based on the empirical analysis, several policy implications were proposed to
provide references for policy makers, which were (1) Giving full play to the guiding role of price
signals, and improving the price policy for desulfurization. (2) Formulating a new comprehensive
evaluation system to measure the regional development level considering economic development
and environmental impacts. (3) Exploring renewable and sustainable energy sources to substitute for
fossil fuel energy according to regional resources endowment. (4) Developing high value added and
low pollution emissions industries and reducing the proportion of secondary industry.

Keywords: sulfur dioxide emissions; economic development; fossil fuel energy consumption;
panel data model; Chinese five provinces

1. Introduction

As the second largest economy in the world, China is facing serious environmental issues owing
to rapid development of economy. From the start of 2003, an uncommon heavy fog and haze weather
swept over central and eastern region in China, which drew widespread attention from public [1,2].
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Since then, the environment has gradually deteriorated. In 2014, the air quality of nearly 90% China’s
cities have not met the standards [3]. Additionally, in accordance with the 2016 Environmental
Performance Index, the air quality of China ranked 109th in 178 countries [4]. Such serious air pollution
problems in China not only threaten the health of local people, but also pose great damage to the global
air quality [5]. Thus, the reasons caused environmental problems, and the measures taken to control the
pollution in China gain widespread concerns around the world [6]. Even though a series of measures
have been implemented by Chinese government to enhance air quality, such as establishing the
national air quality monitoring network, closing down small energy-intensive enterprises with heavy
pollution, eliminating backward production capacity, and developing renewable energy, the effects
have not been remarkable.

Due to China’s heavy dependence on fossil energy, including coal energy, and petroleum energy,
as well as secondary industry, sulfur dioxide (SO2) is one of the significant air pollutants which
emissions amount came to the top at 25.89 million tons in 2006 [7]. Although Chinese government
set series of goals to cut down SO2 emissions, the volume of SO2 emissions is still a critical burden
for the environment. Therefore, recent years, some literatures researched on the driving forces of
SO2 emissions and environmental Kuznets curve for SO2 discharge to find solutions for reducing
SO2 discharge. Literatures about factors affecting SO2 emission can be classified into two categories,
direct aspects and indirect aspects. Since atmospheric pollutants are mainly generated from energy
consuming, direct forces refer to energy-related causes, while indirect factors imply socio-economic
elements which firstly act on energy-related factors and then influence air pollutant emissions.
Sinha [8] researched on the influence of energy intensity and economic development on SO2 emissions.
Yao et al. [9] employed index decomposition analysis method to analyze the overall industrial scale in
the change of SO2 discharge and found that engineering emission reduction and supervision emission
reduction contributed the most to reduce SO2 emissions, while structure emissions reduction has
not shown a remarkable effect. Han et al. [10] established a new decomposition method combining
Grossman decomposition model with logarithmic mean Divisia index (LMDI) method to analyze
the factors affecting industrial SO2 emissions. They found that the scale effect was the significant
factors influencing SO2 emissions. Literatures above all studied on indirect influencing factors
on SO2 discharge, while some studies also researched on direct impact factors. Wang et al. [11]
examined the impacts of treatment technology on SO2 discharge for industry employing LMDI method.
Yang et al. [12] analyzed the influence of three critical direct elements: energy consumption, energy
structure, and treatment technology on SO2 discharge in China employing LMDI. They found that
energy consumption was the primary reason for SO2 increasing, while the improvement of treatment
technology played a significant role in reducing SO2 emissions.

Empirical studies on environmental Kuznets curve can be retrospected to the work of Grossman
and Krueger [13], who firstly found evidence for the existence of the inverted U-shaped nexus between
some contaminant indicators and GDP for 42 countries. Since then, the existence of environmental
Kuznets curve hypothesis was proved in carbon dioxide emissions by Holtz-Eakin and Selden [14],
and Stern et al. [15], in sulfur discharge by Kaufmann et al. [16] as well as List and Gallet [17],
in four critical atmospheric pollutants by Selden and Song [18], Harbaugh [19], and Miah [20],
and in renewable energy by Angeliki and Konstantinos [21]. Stern and Common [22] examined
the environmental Kuznets curve hypothesis for sulfur discharge employing a separate sample and
a global sample of high-income Organization for Economic Cooperation and Development countries,
and the findings validated the existence of this hypothesis among these countries. Shen [23] found
a U-shape curve instead of an inverted U-shape curve between sulfur emissions and GDP based on
provincial data of China during the period of 1993–2002. The research of Fodha and Zaghdoud [24]
displayed an inverted U-shape curve nexus between sulfur discharge and economic development.
Then, series of literatures queried that existing literatures based on income-pollutants environmental
Kuznets curve model may provide biased evidence due to the failure to take relevant explanatory
variables into consideration [25]. Therefore, some latest literatures try to study the nexus between
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income and pollutants by taking energy related variables, urbanization, and technique progress
variables into the function. Kohler [26] found that there existed a long term relationship between
environmental quality, per capita energy use and foreign trade in South Africa. Shahbaz et al. [27]
investigated the co-integration relationship and causal relationship among industrialization, electricity
consumption, and CO2 emissions of Bangladesh, and found that environmental Kuznets curve existed
between industrial process and CO2 discharge. Wang et al. [28] investigated the relationship among
economic development, urbanization, and sulfur dioxide discharge employing panel data model
based on semi-parametric panel fixed effects regression. The results showed that an inverted U-shape
curve existed between economic development and sulfur dioxide discharge. Zhou et al. [7] verified an
inverse N-shape relationship between sulfur discharge and economic development, and proved the
positive influence of technical progress on sulfur discharge reduction.

Although environmental Kuznets curve analysis model is widely applied in researching the
relationship between economic growth and contaminants, many scholars and policymakers put
forward their critiques on the concept of environmental Kuznets curve hypothesis and methodology in
previous researches. Firstly, the inverse U-shape environmental Kuznets curve is not applicable
for all kinds of pollutants, and only small amount of empirical analysis support an inverse
U-shape environmental Kuznets curve for some primary atmospheric contaminants [19]. Shafik and
Bandyopadhyay [29] examined a panel of 149 countries during the period of 1960–1990, and found
that among ten indicators of environmental quality, only two indicators fitted for an environmental
Kuznets curve path. Secondly, a large amount of studies on environmental Kuznets curve hypothesis
researched cross-sectional data and summarized an exclusive development path for different countries
or provinces, which was criticized for the invalidity of cross-sectional technique [30,31].

Above all, considering about the shortcomings of existing literatures on researching the
relationship between sulfur emissions and socio-economic driving forces, this paper established
a multi-variate panel data model for five provinces with the largest sulfur dioxide (SO2) emissions
in China taking economic development, fossil fuel energy consumption, energy consuming intensity,
and economic structure into consideration spanning the period of 2002–2015. The main contributions
of this paper are as follows:

(1) Combining economic development, energy consumption, technical advancement, and economic
structure together to analyze the contribution of each variable to SO2 emissions. To the best of our
knowledge, this paper is the first study in the field of investigating the relationship between sulfur
discharge and socio-economic forces to simultaneously explore the contribution of economic
growth, energy consumption, technical progress, and economic structure to SO2 emissions using
panel data unit root test and panel co-integration theory. Additionally, granger causality test
is also employed to investigate the causal relationship between these four data sequences and
SO2 emissions.

(2) The contribution of economic development, energy consumption, technical advancement, and
economic structure to SO2 discharge can be quantitatively analyzed regarding to different
provinces. Based on panel data model, cross-sectional technique can be fully exploited, thus, the
contribution degree of four variables to SO2 discharge can be quantitatively measured according
to five different provinces, and the causal relationship direction among these four variables and
SO2 discharge can be obtained with respect to different provinces. Therefore, the policymakers of
different provinces can formulate effective and practicable policies to reduce the discharge of SO2

according to the empirical analysis results.

The rest parts of this paper are conducted as below. Section 2 majors on introducing the
methodology used in this paper and the framework of this research. Section 3 provides the data
sources and pre-analysis. The empirical analysis will be carried out in Section 4. Section 5 draws the
conclusions and provides policy implications.



Sustainability 2018, 10, 657 4 of 20

2. Theoretical Framework and Methodology

2.1. Test for Cross-Sectional Dependence

The establishment of panel data model should start with cross-sectional dependence test which
is necessary for choosing appropriate methods for testing unit root. This paper used the Pesaran
cross-sectional dependence test for cross-sectional dependence examination [32]. The original panel
data model can be written as:

yit = αi + βitxit + µit (1)

where i = 1, 2, . . . , N and t = 1, 2, . . . , T, βit demonstrates a vector of parameters for K × 1 to be
evaluated, xit indicates a K × 1 vector of explanatory variables, αi implies parameters which do not
change with provinces and µit is supposed to be independently and identically distributed. The null
and the alternative hypotheses are represented as follow:

H0 : ρij = ρji = cor
(
µit, µjt

)
= 0 f or i 6= j (2)

H1 : ρij = ρji 6= 0 f or some i 6= j (3)

where:

ρij = ρji =
∑T

t=1 µitµjt(
∑T

t=1 µ2
it

) 1
2
(

∑T
t=1 µ2

jt

) 1
2

(4)

The statistic of the Breusch-Pagan [33] LM test is provided as Equation (5):

LM =
N−1

∑
i=1

N

∑
j=i+1

Tijρ̂2
i
→ χ

N(N − 1)
2

2
(5)

where the ρ̂ij means the coefficients estimated by the residuals of the model. Pesaran [32] improved
the LM test by proposing an alternative test regarding to the average value of ρ̂ij calculated by:

CDLM =

√
2T

N(N − 1)

N−1

∑
i=1

N

∑
j=i+1

ρ̂ij → N(0, 1) (6)

Pesaran [32] certified the advancement of this test in small samples which is suitable for this study.

2.2. Test for Panel Unit Root

Panel unit root test methods employed in previous literatures can generally be classified into
two categories. The first category takes cross-sectional independence into consideration, such as
Hadrid [34], Choi [35], Levin, Lin and Chu (LLC test) [36], Im, Pesaran and Shin (IPS test) [37]
and some others. The second category considers cross-sectional dependence, including the test
methods proposed by Bai and Ng [38], Moon and Perron [39], Pesaran [40], Phillips and Sul [41],
and Smith et al. [42]. The equation applied to test stationary is listed as Equation (7):

∆yit = ρiyit−1 + δiXit + εit (7)

where i = 1, 2, . . . , N is used to represent province; t = 1, 2, . . . , T demonstrates time point; Xit indicates
the explanatory variables containing fixed effects or individual time trend; ρi means the coefficient for
auto-regression; and εit implies interference term of stable series.
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As Equation (7) may be an autocorrelation, higher order differential delay terms were explored
by Levin et al. [36]:

∆yit = ρiyit−1 + δiXit +
pi

∑
j=1

θij∆yit−1 + εit (8)

where pi represents the lags amount in the regression. Im et al. [37] verified a t-bar statistic as the
average value of the individual ADF statistic as Equation (9):

t− bar =
1

N ×∑N
i=1 tρi

(9)

where tρi means the individual t-statistic to test for the original hypothesis.

2.3. Test for Panel Co-Integration

If the variables sequences are confirmed to be stable in the same order, the process should step to
panel co-integration test employing Pedroni’s co-integration test method [43] of which the regression
equation can be written as:

yit = αi + δit + β1ix1i,t + β2ix2i,t + K + βMixMi,t + eit (10)

where i implies various provinces, t indicates different time points, M represents the number of
explanatory variables, β1i, β2i, βMi demonstrates the coefficients of explanatory variables, αi means
the intercept component, and eit is the evaluated residual on behalf of the divergence from the long-run.

Pedroni co-integration examination method is made up of two groups. One is based on the
within dimension approach including panel v-statistic, panel ρ-statistic, panel PP-statistic and panel
ADF-statistic. The other one is based on the between dimension approach consisted of group ρ-statistic,
group PP-statistic and group ADF statistic.

2.4. Test for Panel Data Model Form

The primary three forms for panel data model are random effects, fixed effects, and regression
models for pooled. The Hausman examination method and the likelihood ratio (LR) examination
method are usually employed to test for the proper form of panel data model [44].

The forms of panel data models contain the constant intercepts and coefficients model, the variable
intercepts and invariable coefficients model, and the changed intercepts and coefficients model [45].
These three forms of panel data models are shown in Equations (11)–(13).

yit = α + βxit + µit (11)

yit = αi + βxit + µit (12)

yit = αi + βixit + µit (13)

where i represents the provinces, t demonstrates the time point, αi means the intercept, βi indicates
coefficient, and µit implies the error component.

In order to verify the panel data model form, F-test will be utilized to decide if the following two
null hypotheses should be accepted or rejected by computing the residual sum of squares (RSS) of
Equations (11)–(13).

H1 : β1 = β2 = · · · = βN

F1 = (S2−S1)/[(N−1)k]
S1/[NT−N(k+1)] ∼ F((N − 1)k, N(T − k− 1))

(14)
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H2 : α1 = α2 = · · · = αN , β1 = β2 = · · · = βN

F2 = (S3−S1)/[(N−1)(k+1)]
S1/[NT−N(k+1)] ∼ F((N − 1)(k + 1), N(T − k− 1))

(15)

where F1 is for the H1 hypothesis of which the slopes are invariable and the intercepts are different, F2

is for the H2 hypothesis of which the slopes and the intercepts are all unchanged, S1, S2, and S3 are
the residual sum of squares of Equations (11)–(13). Additionally, N, T, and k indicate the amount of
provinces, years, and explanatory variables.

Considering the significance level and T > k + 1, if F2 is less than the critical value, then we accept
H2 and the panel data model form should be Equation (11), otherwise, it needs to examine hypothesis
H1. If F1 is more than the critical value, H1 should be rejected and the panel data model form should
be Equation (13), otherwise, it should be Equation (12).

2.5. Test for Causality

Engle and Granger [46] proposed that if two data sequences are co-integrated, then there exists
Granger Causal relationship. At the aim of investigating causality among different data sequences, the
Granger causality examination method [47] is utilized to testify if one data sequence has an impact on
another. For Granger causality, if Y can be forecasted more precisely through using the data of both
X and Y than using Y, then we can conclude that the variable X Granger causes Y. This method is
employed in this paper to identify the causal relationships among different variables:

yt = α0 +
m

∑
i=1

αiyt−i +
m

∑
i=1

βixt−i + et (16)

xt = α0 +
n

∑
j=1

αjyt−j +
n

∑
j=1

β jxt−j + et (17)

Equation (18) shows the null hypothesis of the Granger causality examination method, which
demonstrates “X does not Granger-cause Y”. Equation (19) is used to test if Y Granger-causes X.

H0 : βi = 0, i = 1, 2, · · · , m (18)

H0 : β j = 0, j = 1, 2, · · · , n (19)

2.6. Theoretical Framework

The theoretical framework is demonstrated in Figure 1. The empirical analysis can be proceeded
with following steps.

Step 1: Test for cross-sectional dependence

The empirical analysis will start with cross-sectional dependence test to identify the methods
used in unit root test and panel co-integration test.

Step 2: Test for panel unit root

After confirming whether it is necessary to consider cross-sectional dependence, the stable of all
variables need to be examined and the methods used in this stage depend on the results of step 1. Only if
all variables are stable in the same order, the empirical analysis can proceed to co-integration test.

Step 3: Test for panel co-integration

After verifying all variables are stationary at the same order, Pedroni co-integration examination
method will be used for testing whether there exists long-term relationship among SO2 emissions and
all independent variables. If not, the panel data model cannot be established, otherwise, we need to
determine the form of panel data model.
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Step 4: Test for panel data model form

At this step, LR test and Hausman test are used to determine the fixed effect or random effect
of panel data model. And then F-test will be employed to judge whether the panel data model is
constant intercepts and coefficients model, the variable intercepts and invariable coefficients model,
or the changed intercepts and coefficients model. After identifying the model form, the panel data
model can be estimated.

Step 5: Test for Granger causal relationship

At the aim of further and better understanding the relationship among SO2 emissions, GDP,
fossil fuel energy consumption, energy consumption intensity, and economic structure, Granger
causality examination method will be used to explore the nexus among these variables. And the
direction of causal nexus can provide policy making references for policy makers.
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3. Data Sources and Pre-Analysis

3.1. Study Area and Data Sources

At the aim of exploring the contributions of various socio-economic factors to SO2 discharge and
specifically carrying out policy recommendations to reduce SO2 emissions, this paper investigates the
contributions of economic development, fossil fuel energy consumption, energy consuming intensity,
and economic structure to SO2 discharge using the data of five provinces with the highest SO2

emissions in China during the period of 2002–2015. The provinces selected in this paper are Hebei,
Henan, Inner Mongolia, Shandong, and Shanxi.

For economic development, gross domestic production (GDP) is selected to represent the growth
of economy, and is converted to the constant price using 2002 as basic period. For fossil fuel energy
consumption, it is made up of the use amount of coal, crude oil, and natural gas. The statistical unit
is 104 ton for coal and crude oil consumption, and 108 cubic meter (m3) for natural gas consumption.
On the purpose of maintaining consistency of statistical requirements, the consumption units are
converted to 104 ton coal equivalent (tce) employing the coefficients suggested in the China Energy
Statistic Yearbook, which are 0.7143 tce/t, 1.4286 tce/t, and 1.33 tce/103 m3 for the consuming of coal,
crude oil, and natural gas [48–67]. For energy consuming intensity, it is represented by the value of
energy consumption for the whole society divided by GDP (constant price taking 2002 as basic period).
For economic structure, it is expressed by the value of the added value for secondary industry divided
by GDP due to the high proportion of added value of secondary industry in GDP. All data of the
variables mentioned above as well as the data of SO2 emissions are collected from the official website
of National Statistics Bureau of China. This dataset on SO2 emissions in provincial level allowed this
research from provincial aspects over a long period.

The representation forms of all independent variables and SO2 discharge used in the panel data
model are listed in Table 1. The data of SO2 discharge, GDP, fossil fuel energy consumption, and energy
consuming intensity are transformed into natural logarithmic form. The data of the economic structure
is multiplied by 100 before being converted into the natural logarithmic form.

Table 1. The representation forms of all variables in panel data model.

Variables Definition Unit

SO2 The amount of sulfur dioxide emissions Thousand tons
GDP The development of economy Billion yuan
FEC The amount of fossil fuel energy consumption Million tce
ECI Energy consumption intensity for the whole society Tce/million yuan
ES The proportion of secondary industry added value accounted for GDP %

3.2. Pre-Analysis

Since the high level of SO2 discharge can cause acid rain weather which seriously damage to
human health, it is necessary to research on the contributions of significant socio-economic factors on
SO2 emissions to provide references for policy makers. Figure 2 displays the spatial distribution of
SO2 discharge in 32 primary provinces of China in the year of 2010 and 2015. As can be seen from
the figure, the SO2 emissions amount of Inner Mongolia, Shanxi, Hebei, Shandong, Henan, Sichuan,
and Guizhou in 2010 were more than 1100 thousand tons, which contributed more than 40% of SO2

emissions in China. During the period of 2011–2015, the SO2 emissions amount of most provinces
showed downward trend. However, the amount of SO2 discharge in Hebei, Henan, Inner Mongolia,
Shandong, and Shanxi still maintained more than 1100 thousand tons, among which Shandong ranked
the first with 1525.67 thousand tons and Hebei ranked the fifth with 1108.37 thousand tons. Therefore,
these five provinces are selected to be the objects of this study aiming at better understanding the
relationships between SO2 emissions and significant socio-economic indicators in these five provinces.
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Figure 2. The spatial distribution for SO2 discharge in China in the year of 2010 (A) and 2015 (B).
Note: NX for Ningxia, SX for Shaanxi, SHX for Shanxi, HB for Hebei, SD for Shandong, JS for Jiangsu,
HEN for Henan, AH for Anhui, HUB for Hubei, ZJ for Zhejiang, CQ for Chongqing, GZ for Guizhou,
HUN for Hunan, JX for Jiangxi, FJ for Fujian, GX for Guangxi, GD for Guangdong, TW for Taiwan,
and HN for Hainan.
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The development trend of GDP for the selected five provinces from 2002 to 2015 is demonstrated
in Figure 3. As indicated in the figure, the economy scale of Shandong ranks the first, with 1027.55
billion yuan in 2002 and 4486.34 billion yuan in 2015. Before 2009, the scale of economic development
in Hebei and Henan was close to each other, while after 2009, the growth rate of Hebei lagged behind
Henan. The economic scales of Inner Mongolia and Shanxi are much smaller than other three provinces,
with 194.09 billion yuan for Inner Mongolia and 232.48 billion yuan for Shanxi in 2002, and 1226.40
billion yuan and 856.93 billion yuan for Inner Mongolia and Shanxi in 2015, respectively.

The development tendency of fossil fuel energy consumption from 2002 to 2015 for the chosen five
provinces is indicated in Figure 4. With the largest economic scale, the fossil fuel energy consumption
of Shandong also ranked the first with 495.34 million tce in 2015 and 10.28% annual growth rate.
Although the economic scale of Shanxi ranked the fifth, the fossil fuel energy consumption of it ranked
the second with 378.68 million tce in 2015, which means the development of economy in Shanxi mainly
depends on the consumption of fossil fuel energy. The amount of fossil fuel energy consumption in
Inner Mongolia increased fast from 69.90 million tce in 2002 to 368.83 million tce in 2015 with 14.14%
annual growth rate ranking the third. The fossil fuel energy consumption of Hebei and Henan showed
a downtrend from 323.57 million tce for Hebei and 292.49 million tce for Henan in 2011 to 306.10
million tce for Hebei and 245.67 million tce for Henan in 2015.Sustainability 2018, 10, x FOR PEER REVIEW  10 of 19 
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The development trend of energy consuming intensity from 2002 to 2015 for five provinces is
illustrated in Figure 5. As depicted in the figure, the energy consuming intensity of Hebei, Henan,
Inner Mongolia, Shandong and Shanxi all showed decrease tendency from 2002 to 2015. Based on the
analysis of GDP and fossil fuel energy consumption, we can conclude that the energy use efficiency of
Shanxi was the lowest, thus the energy consuming intensity of Shanxi should be the highest. It can
also be obtained from the figure that the energy consuming intensity of Shanxi ranked the first which
is much higher than other four provinces.

The development tendency of economic structure for the selected five provinces from 2002 to 2015
is implied in Figure 6. As displayed in the figure, at the beginning of the analysis phase, the proportion
of secondary industry added value accounted for GDP in Shandong was the highest with 50.46%, and
then it reduced to 46.80% in 2015 ranking the fourth. The proportion of secondary industry added
value accounted for GDP in Shanxi ranked the second in 2002, and then it decreased to 40.69% in
2015 ranking the fifth. The proportion of secondary industry added value accounted for GDP in Inner
Mongolia, Henan and Hebei first increased to 55.97% in 2011, 57.28% in 2010, and 54.34% in 2008,
and then dropped to 50.48%, 48.42%, and 48.27% in 2015.Sustainability 2018, 10, x FOR PEER REVIEW  11 of 19 
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4. Empirical Analysis

4.1. Results for Cross-Sectional Dependence Examination

The initial stage of empirical analysis should be cross-sectional dependence examination which
decides the methods selected to test unit root. The results of Pesaran cross-sectional dependence
examination method utilized in this study are shown in Table 2. As can be seen from p-value in Table 2,
the null hypothesis can be rejected at 5% confidence level. Therefore, the methods employed to test data
stationary and co-integration relationship should take cross-sectional dependence into consideration.

Table 2. Results for cross-sectional dependence test.

Cross-Sectional Dependence Test Pesaran’s Test of Cross-Sectional Independence p-Value

Pesaran cross-sectional dependence test 3.8687 0.0147 b

Notes: The probability values less than the confidence level demonstrates the null hypothesis is rejected.
b demonstrates 5% significance level.

4.2. Results for Unit Root Examination

Since the following analysis should take cross-sectional dependence into consideration, at the
stage of testing data series stationary, L.L&C, IPS, Augmented Dickey Fuller-Fisher (ADF-Fisher) and
Phillips-Perron Fisher (PP-Fisher) examination approaches are selected. As shown in Table 3, regarding
to the probability values in the brackets of different examination methods for variables, we can
obtain that all variables are not stable in their level form. Then all variables need to be differenced.
∆lnSO2, ∆lnGDP, ∆lnFEC, ∆lnECI, and ∆lnES are utilized to represent the first difference form for
SO2 emissions, GDP, fossil fuel energy consumption, energy consumption intensity, and economic
structure in natural logarithmic form. Since all of the probability values in brackets are less than the
confidence level, SO2 emissions and four independent variables are stable in the same order.

Table 3. Results for panel unit root test.

Form Variables L.L&C IPS ADF-Fisher PP-Fisher Conclusions

Level

lnSO2
0.86482 0.40240 0.78035 1.50630 Non-stationary
(0.8064) (0.6563) (0.6769) (0.4709)

lnGDP
0.63442 2.02464 0.03046 0.00020 Non-stationary
(0.7371) (0.9785) (0.9849) (0.9999)

lnFEC
−1.05854 −0.29416 2.03733 1.33161 Non-stationary
(0.1449) (0.3843) (0.3611) (0.5139)

lnECI
1.45960 2.51124 0.01416 0.00313 Non-stationary
(0.9278) (0.9940) (0.9929) (0.9984)

lnES
3.47883 1.85937 0.06078 0.19242 Non-stationary
(0.9997) (0.9685) (0.9701) (0.9083)

First Differences

∆lnSO2
−2.01509 −1.52874 5.66558 6.09979 Stationary
(0.0219) b (0.0432) b (0.0488) b (0.0474) b

∆lnGDP
−3.88122 −1.98857 7.21690 15.1666 Stationary
(0.0001) a (0.0234) b (0.0271) b (0.0005) a

∆lnFEC
−2.87180 −2.46566 8.46117 14.4327 Stationary
(0.0020) a (0.0014) a (0.0252) b (0.0109) b

∆lnECI
−3.87144 −2.52606 8.84465 13.1489 Stationary
(0.0001) a (0.0058) a (0.0120) b (0.0014) a

∆lnES
−2.24266 −2.01695 7.59160 8.75067 Stationary
(0.0125) b (0.0219) b (0.0225) b (0.0126) b

Notes: probability values are listed in the brackets. The probability values less than the confidence level demonstrates
the variable is stationary. a illustrates 1% significance level; b demonstrates 5% significance level.
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4.3. Results for Panel Co-Integration Examination

As all variables are first order differential stationary, the empirical analysis can step to panel
co-integration test. Pedroni’s co-integration examination approach is utilized in this stage and the
statistic values of it are illustrated in Table 4. Since all values of probability are less than the confidence
level, it can be verified that the long-term co-integration relationship is existed among SO2 discharge,
GDP, fossil fuel energy consumption, energy consumption intensity, and economic structure.

Table 4. Results for panel co-integration test.

Test Method Test Statistics Value Probability

Pedroni

Panel v-Statistic −1.845422 0.0479 b

Panel rho-Statistic −1.025375 0.0410 b

Panel PP-Statistic −7.517128 0.0000 a

Panel ADF-Statistic −1.990137 0.0211 b

Group rho-Statistic −1.937089 0.0126 b

Group PP-Statistic −8.544697 0.0000 a

Group ADF-Statistic −1.536537 0.0295 b

Notes: a points to 1% level of confidence; b refers to 5% confidence level.

4.4. Model Form Determination

As there exists long-run co-integration relationship among all variables, the empirical analysis
can proceed to model estimation. First, the effect of panel data model needs to be identified. Generally,
LR test and Hausman test are used to determine whether the panel data model is fixed effect or random
effect. The test results are shown in Table 5. With regard to LR examination approach, the probability
value is less than the significance level, which implies that the panel data model should be fixed effect.
As for Hausman examination results, based on the value of cross-section random and probability
values of all independent variables, it is verified that the panel data model should be fixed effect.

Table 5. Results for panel data model effect test.

LR Test Results

Statistic Prob.

Cross-section F 14.382367 0.0001 a

Hausman Test Results

Chi-Square Statistic Prob.

Cross-Section Random 38.453127 0.0000 a

Variable Fixed Random Var(Diff.) Prob.
GDP 1.472034 1.142088 0.023867 0.0000 a

FEC 1.503979 0.505360 0.027417 0.0015 a

ECI −1.309788 0.034978 0.003147 0.0027 a

ES 0.976341 0.736415 0.004137 0.0059 a

Notes: a refers to 1% significance level.

Then the panel data model form of the unchanged intercepts and coefficients model, the changed
intercepts and unchanged coefficients model, and the changed intercepts and coefficients model need to
be determined employing F-test. Firstly, we need to obtain three sum square residual values represented
by S1, S2, and S3 of Equations (11)–(13), respectively. Secondly, we can calculate the values of F1 and F2

statistics based on Equations (14) and (15). Thirdly, the panel data model form can be confirmed. If the
value of F2 is smaller than the critical value F2,α((N − 1)(K + 1),(NT − N(K + 1)), the panel data model
is confirmed to be the model with constant intercepts and coefficients, if not, the hypothesis H1 will be
examined. If the value of F1 is larger than the critical value F1,α((N − 1)K,(NT − N(K + 1)), the panel data
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model is verified to be the model with changed intercepts and coefficients, if not, it is judged to be the
model with variable intercepts and invariable coefficients. In accordance with the results for F-test,
both of the values of F1 and F2 statistics are more than the critical values at the given significance level.
Therefore, the established panel data model should be the changed intercepts and coefficients model
as Table 6 shown.

Table 6. Results for F-test.

S1 S2 S3 F1 F2

0.021035 0.057892 0.090373 4.927992 7.416710

4.5. Estimation for Panel Data Model and Provincial Comparative Analysis

Based on the above examination process, a fixed effect panel data model with changed intercepts
and coefficients consists of SO2 discharge, GDP, fossil fuel energy consumption, energy consumption
intensity, and economic structure can be established for Hebei, Henan, Inner Mongolia, Shandong,
and Shanxi. The estimated coefficients of the panel data model and the test results for the effectiveness
of the model are listed in Table 7. The value of R2 is 0.9981 which means the fitting effect of the
model is pretty good. The value of F-statistic is 129.0515, which is much more than the critical value
representing the coefficients of the model are all significant. Therefore, it can be confirmed that the
established panel data model is valid and significant.

Table 7. The estimated results for panel data model.

Variables Hebei Henan Inner Mongolia Shandong Shanxi

lnGDP
0.6314 0.6525 0.6198 0.7378 0.5928

(0.0368) b (0.0075) a (0.0332) b (0.0023) a (0.0022) a

lnFEC
0.8894 0.8039 0.8767 0.9312 0.8905

(0.0042) a (0.0250) b (0.0451) b (0.0089) a (0.0004) a

lnECI
0.3907 0.3885 0.4103 0.4331 0.3098

(0.0423) b (0.0413) b (0.0399) b (0.0385) b (0.0275) b

lnES
0.4488 0.4425 0.4523 0.4828 0.3364

(0.0469) b (0.0421) b (0.0327) b (0.0069) a (0.0016) a

C 1.0691 2.5034 1.0053 4.0775 3.6094

R2 0.9981 F-statistic 129.0515 Prob 0.0000

Notes: probability values are listed in the brackets. The values of the probability smaller than the specific confidence
level demonstrates the coefficients are significant. a refers to 1% confidence level; b points to 5% confidence level.

As all variables are converted to logarithmic form, the coefficients represent elasticities. Through
analyzing the coefficients, we can conclude that:

(1) Compared with GDP, energy consumption intensity, and economic structure, fossil fuel energy
consumption makes the greatest contribution to SO2 discharge. Since fossil fuel energy contain
large amount of sulfur element, the combustion of fossil fuel energy will release a great deal of
sulfide which is the main source of sulfur dioxide. Through comparing the different contributions
of fossil fuel energy consumption to SO2 emissions for different provinces, it can be summarized
that the more the fossil fuel energy consumption, the greater the contribution made by it to
SO2 emissions. Since the fossil fuel energy consumption amount of Shandong ranked the first,
the contribution of fossil fuel energy consumption to SO2 emissions is the greatest, followed
by Shanxi. The contribution of fossil fuel energy consumption to SO2 emissions in Henan is
the smallest.
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(2) The contribution of GDP to SO2 emissions is less than fossil fuel energy consumption, but more
than energy consumption intensity and economic structure. Compared with the contribution
of fossil fuel energy consumption to SO2 emissions, GDP make much less contribution to SO2

emissions. Through comparing the different devotions of GDP to SO2 emissions among five
selected provinces, it can be concluded that the larger the scale of the economy, the greater the
devotion made by it to SO2 emissions. Since the economy scale of Shandong ranked the first,
the devotion of GDP to SO2 emissions in Shandong is the greatest, followed by Henan. GDP in
Shanxi contributes the smallest to SO2 emissions.

(3) The more the proportion of the secondary industry added value accounted in GDP, the greater
the contribution of the economic structure and energy consumption intensity to SO2 emissions.
From the overall trend of the proportion for secondary industry added value accounted in GDP,
the proportions of secondary industry added value accounted in GDP for Shandong and Inner
Mongolia are higher than other three provinces, and the contributions of energy consumption
intensity and economic structure to SO2 emissions of Shandong and Inner Mongolia are higher
than Hebei, Henan, and Shanxi.

4.6. Analysis for Granger Causality Relationship

The results of Granger causality test for the established panel data model are listed in Table 8.
If the probability values in brackets are less than the specific significance level, there exists Granger
causality relationship between these two variables. As illustrated in Table 8, we can summarize that:

(1) For the selected five provinces, there exists a bi-directional causality relationship between fossil
fuel energy consumption and SO2 emissions. This indicates that the decrease of fossil fuel
energy consumption can contribute to the reduction of SO2 emissions, while the decrease of SO2

emissions will have a negative impact on fossil fuel energy consumption.
(2) There exist uni-directional causal relationships running from GDP to SO2 emissions, from

energy consumption intensity to SO2 emissions, and from economic structure to SO2 emissions.
That means the increase of GDP will lead to the raise of SO2 emissions, the decrease of energy
consumption intensity will bring about the decline of SO2 emissions, and the decrease of the
proportion for the secondary industry added value accounted in GDP will result in the reduction
of SO2 emissions. But there is no feedback from SO2 emissions to GDP, energy consumption
intensity, and economic structure.

Table 8. Results for Granger causality examination.

Null Hypothesis Hebei Henan Inner Mongolia Shandong Shanxi

LnGDP does not
Granger cause lnSO2

13.9091 5.6767 13.8430 4.1553 4.9914
(0.0036) a (0.0343) b (0.0037) a (0.0463) b (0.0450) b

LnSO2 does not Granger
cause LnGDP

2.24072 0.1902 1.1868 0.1243 0.0970
(0.1770) (0.8309) (0.1037) (0.8851) (0.1987)

LnFEC does not Granger
cause lnSO2

11.6568 7.0617 5.0697 12.8058 6.3492
(0.0376) b (0.0209) b (0.0464) b (0.0274) b (0.0268) b

LnSO2 does not Granger
cause LnFEC

5.04149 6.4067 5.0836 4.2632 5.8372
(0.0496) b (0.0306) b (0.0207) b (0.0159) b (0.0221) b

LnECI does not Granger
cause lnSO2

8.2239 5.6432 6.3869 5.7609 4.9374
(0.0426) b (0.0347) b (0.0264) b (0.0402) b (0.0214) b

LnSO2 does not Granger
cause LnECI

2.93488 2.0607 2.4265 0.4482 1.0361
(0.1187) (0.1978) (0.1583) (0.6559) (0.4035)

LnES does not Granger
cause lnSO2

11.0065 9.5477 26.6237 5.5607 4.8368
(0.0129) b (0.0113) b (0.0005) a (0.0256) b (0.0252) b

LnSO2 does not Granger
cause LnES

1.2259 1.5802 1.3166 0.1397 0.1608
(0.3496) (0.2714) (0.1028) (0.8720) (0.8545)

Notes: probability values are listed in the brackets. a points to 1% confidence level; b refers to 5% confidence level.
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5. Conclusions and Policy Implications

This paper investigated the relationship among SO2 emissions, GDP, fossil fuel energy
consumption, energy consumption intensity, and economic structure of five provinces in China with
the highest SO2 emissions employing panel data model approach spanning from 2002 to 2015. Based
on panel unit root examination to confirm all variables are stable in the same order, panel co-integration
examination to verify all variables are co-integrated in the long-term, and model form determination
tests, the panel data model can be estimated and the Granger causality examination can be conducted,
which provided strong evidence on the complicated relationships among these variables. Through
analyzing the established panel data model, the main conclusions are as follows:

(1) Fossil fuel energy consumption makes the greatest contribution to SO2 discharge compared with
GDP, energy consumption intensity, and economic structure. And the more the fossil fuel energy
consumption, the greater the devotion made by it to SO2 emissions.

(2) GDP makes less contribution to SO2 emissions than fossil fuel energy consumption, and the
larger the scale of the economy, the greater the contribution made by it to SO2 emissions.

(3) The higher the proportion of the secondary industry added value accounted in GDP, the more the
devotion made by the economic structure and energy consumption intensity to SO2 emissions.

Through investigating the causal relationship among SO2 emissions, GDP, fossil fuel energy
consumption, energy consumption intensity, and economic structure of Hebei, Henan, Inner Mongolia,
Shandong, and Shanxi using Granger causality examination method, we can obtain that:

(1) A bi-directional causal relationship exists between fossil fuel energy consumption and SO2

emissions among five selected provinces.
(2) Uni-directional causal nexus exist running from GDP to SO2 emissions, from energy consumption

intensity to SO2 emissions, and from economic structure to SO2 emissions among five
chosen provinces.

The empirical analysis of this research can make policy makers better understand the complex
relationships between SO2 emissions, GDP, fossil fuel energy consumption, energy consumption
intensity, and economic structure of Hebei, Henan, Inner Mongolia, Shandong, and Shanxi. In this way,
the significant influencing factors of SO2 discharge can be found, and effective and practicable policies
can be formulated according to the contributions of different factors and causality relationships.
Therefore, regarding to the above econometric analysis, the following recommendations are put
forward:

(1) Giving full play to the guiding role of price signals, and improving the price policy for
desulfurization. Based on the empirical analysis, it can be found that the consumption of
fossil fuel energy makes the greatest contribution to SO2 emissions. However, in the long-run,
energy consumption of various provinces in China will still depend on fossil fuel energy to
a large extent. Therefore, in the process of using fossil fuel energy, desulfurization equipment
is needed to reduce sulfur emissions. Considering about the increase of the cost for enterprises
using desulfurization equipment, it is necessary to implement a certain price subsidy policy so
that the increased cost due to the use of desulfurization technique can be covered, which can also
encourage enterprises to develop desulfurization technology.

(2) Formulating a new comprehensive evaluation indicator to measure the regional development
level considering economic development and environmental impacts. Currently, GDP is deemed
as the significant indicator to evaluate the regional development level, which neglects the
environmental impact. Therefore, it is essential to establish a comprehensive evaluation system
for measuring regional development level, which can not only consider the level of economic
development, but also take the impact of pollutant emissions on the environment in the process
of rapid economic development into consideration.
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(3) Exploring renewable and sustainable energy sources to substitute for fossil fuel energy.
Considering the high pollution and limited nature of fossil fuel energy, we should actively exploit
other renewable energy to take over the use of fossil resources. Based on regional resources
endowment, people in inland areas should energetically develop the use of wind energy and
solar energy, such as Hebei, Henan, Inner Mongolia, and Shanxi, while people in coastal areas
should positively explore the use of hydropower and tidal energy, such as Shandong.

(4) Developing high value added and low pollution emissions industries and reducing the proportion
of secondary industry. According to the empirical analysis, we can obtain that the higher the
proportion of the secondary industry accounted in GDP, the more the devotion made by the
economic structure and energy consumption intensity to SO2 emissions. Therefore, policy makers
should draft related policies for economic structure adjustment, which should aims at reducing
the proportion of secondary industry and developing high value added and low pollution
emissions industries. Additionally, policies related to improve energy using efficiency should
be executed.

Based on the above analysis, although the results of this study are inspiring, we also have lots of
work needed to be done in the future. The policy effect of reducing SO2 emissions should be quantified
and added to the panel data model to analyze the function of policies in decreasing SO2 discharge.
Additionally, it is also necessary to analyze the influence of renewable energy and its relevant policies
on SO2 emissions. Therefore, policymakers can grasp the policy effect, and propose more effective
policies and measures.
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