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Abstract: In the metal cutting industry, power consumption is an important metric in the analysis
of energy efficiency since it relates to energy consumption of machine tools. Much of the research
has developed predictive models that correlate process planning decisions with power consumption
through theoretical and/or experimental modeling approaches. These models are created by using
the theory of metal cutting mechanics and Design of Experiments. However, these models may lose
their ability to predict results correctly outside the required assumptions and limited experimental
conditions. Thus, they cannot accurately reflect a diversity of machining configurations; i.e., selections
of machine tool, workpiece, cutting tool, coolant option, and machining operation for producing
a part, which a machining shop has operated. This paper proposes a predictive modeling approach
based on historical data collected from machine tool operations. The proposed approach can create
multiple predictive models for power consumption, which can be applicable to the diverse machining
configurations. It can create fine-grained models predictable up to the level of a numerical control
program. It uses standard-based data interfaces such as STEP-NC and MTConnect to implement
interoperable and comprehensive data representations. This paper also presents a case study to
demonstrate the feasibility and effectiveness of the proposed approach.

Keywords: power consumption; predictive model; machining; STEP-NC; MTConnect

1. Introduction

1.1. Background of Study

In the metal cutting industry, sustainability performance metrics including energy consumption,
coolant usage, and disposed waste are emerging as major indicators for improving energy efficiency
and reducing environmental burden [1]. Energy consumption is an important metric in sustainability
analysis because reducing energy consumption of machine tools can significantly improve the
environmental performance of machining operations [2]. In the analysis of energy consumption,
a key dominant metric is power consumption, which consists of the machine power consumed by
a machine tool’s actions plus the cutting power needed to remove a workpiece [3]. It closely relates
to the Specific Energy Consumption (SEC); i.e., the energy consumption for removing a unit-volume
material. In turn, the SEC multiplied with Material Removal Rate (MRR) and machining time results
in the energy consumption of machining a part [4]. For this reason, significant research has been
done to develop predictive models for power consumption in machining. These models enable
manufacturers to respond proactively by identifying anticipated power values. They can also provide
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numerical relationships necessary for predictive control and optimization to improve energy efficiency.
Much of the research has modeled the correlation between process planning decisions and the power
consumption using theoretical and/or experimental modeling approaches. This correlation comes
from the great influence of process planning decisions on the performance of machining operations [5].

A theoretical modeling approach predicts power consumption from the input of process planning
decisions using the theory of metal cutting mechanics with some assumptions such as the selection
of a linear or nonlinear function for deciding cutting constants [6-10] introduced theoretical models
that correlate the power consumption with tool geometry and cutting force. One study proposed
a power consumption model based on changes of the SEC and the MRR [3]. Astakhov and Xiao [11]
introduced a physics-based principle of minimum strain energy by partitioning energy flows in terms
of workpiece, tool and chip, and their interfaces. These works help understand the dependency of
power consumption upon cutting force, tool geometries, the MRR, and process parameters such as
feed rate, spindle speed, cutting depth, and width. They also provide numerical functions that provide
the key inputs to machining power simulators such as the technology presented in [12,13]. However,
these theory-based models may not be feasible to predict the result correctly when they cannot provide
the correct value for each coefficient of their numerical functions [4].

Meanwhile, an experimental modeling approach relies on actual experiments to make the required
predictive models. This approach takes a top-down process that follows Design of Experiments (DOE),
machining, data collection, and regression modeling. It can be useful for finding statistical significance
in the relationships between process parameters and power consumption [4]. Several studies have
used experimental models to build the relationship between the SEC and process parameters using
Response Surface Methodology [14], to predict power consumption from MRR without measuring
power demand at a machine tool [15], and to characterize the relationship between power consumption
and process parameters [4]. Astakhov and Xiao [16] presented a methodology for practical estimation
of cutting power with theoretical analysis of cutting force. Helu et al. [17] proposed empirical models
to predict energy consumption and to evaluate the trade-offs between environmental and financial
impacts. Igbal et al. [18] presented a rule-based methodology for minimizing energy consumption,
maximizing tool life, and maximizing the MRR. Peng and Xu [19] proposed the global, energy-efficient,
machining system that includes energy metering, optimization, and data interoperability in the
Computer-Aided technology (CAx) chain. Jia et al. [20] introduced a modeling methodology that
linked activities, machining states, and the basic unit for energy calculation. Bhinge et al. [21] developed
an adaptive prediction model for analyzing the energy usage of a milling machine by Gaussian Process
Regression (GPR).

These works [4,14-21] have shown good results in characterizing the numerical relationships
between power consumption and process parameters. Also they contribute to create machine-specific
models with the use of experimental data, which means the data acquired from small sets of trials
assigned by the DOE. However, they have some limitations when being applied to a machine shop
due to the following reasons. First, their experiment-based models are only effective within specified,
limited, and experimental conditions. The small sets of trials by the DOE do not reflect all machining
conditions where a machine tool has operated to produce a number of parts. The change of a Machining
Configuration (MC), i.e., the selection of machine tool, workpiece, tool holder, insert, coolant option,
and machining operation for producing a designed part, requires another DOE and its associated
experimental trials. Specifically, a regression model for one machine tool may not be valid for another
machine tool because the model for the latter requires different coefficients. In other words, experiments
must be repeated to generate the predictive models that correspond to each MC in the machine shop.
Therefore, the experimental approach used to derive individual models may not work well when
applied to the entire shop floor.

Second, many of these models are unable to find the relationships between tool path trajectory and
power consumption because they focus on the relationships between process parameters and power
consumption. Their focus naturally requires researchers to look into the cutting power, which becomes
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affected by process parameters, with a single or a few feed movements [4]. Otherwise, the consideration
of rapid movements may increase the complexity of the analysis of power consumption. Also, power
consumption during rapid movements is not much considered because the power required for running
axial component systems is confined to a small portion of total power on a machine tool [22,23]. In our
view, it is necessary to analyze the power consumption in terms of tool path trajectories given by
a Numerical Control (NC) program in order to increase the usability of predictive models for the power
consumption in a machining shop. Rapid and feed movements demand different characteristics of
power consumption. The power required during rapid movement largely depends on the capabilities
of a machine tool, whereas the power required during feed movement largely depends on metal
cutting mechanics. Including the tool path trajectory enables their models to generate a predictive
power profile accurately along with the execution of an NC program.

1.2. Proposed Approach

To overcome the limitations of the current modeling approaches, we propose a predictive
modeling approach that uses historical data, which means the data collected and accumulated from
previous machine tool operations. The proposed approach creates predictive models by identifying
the machining data required, collecting the relevant machining datasets, and then generating empirical
models from the collected datasets without the application of DOE. The first advantage of the proposed
approach is that manufacturers can create multiple predictive models that can be applicable to diverse
MCs because it helps generate customized models for each machine tool by using its dedicated
historical data. The second advantage is that manufacturers can create fine-grained models that
incorporate the different characteristics of power consumption. The proposed approach creates
fine-grained models predictable up to the level of an NC program because we consider the tool path
trajectory, i.e., rapid or feed movement, as the minimum level of MCs in model creation. Details of the
proposed approach are as follows.

For producing a machined part, the process planning phase generates manufacturing feature data
and their manufacturing process data from the input of a part design. The manufacturing process data
define the technological parameters and tooling requirements to be used for each of the machining
operations [24]. The post-processing phase converts the process plan data to an NC program executable
by Computerized Numerical Control (CNC) machine tools; i.e., post-processing data. Then a machine
tool carries out the actual machining along with the execution of an NC program, and finally produces
a machined part. Simultaneously, the machine tool outputs the machine-monitoring data that record
time-series actions and movements of the machine tool’s components in relation to the inputted NC
program. In this paper, the machining data mean sets of process plan data, post-processing data,
and their machine-monitoring data.

Figure 1 shows an example of a set of the machining data. Specifically, this figure presents
a time-series power profile and MCs to produce three parts on a turning machine tool. The power
profile consists of the summation of power consumed by the machine tool’s main body, coolant system,
and both the linear and the rotary axial systems. The MC determined by the process plan data largely
influences power values, as mentioned in Section 1.1. Also, the feed or rapid movement determined
by the post-processing data makes different power characteristics. Therefore, the process plan data
and the post-processing data can be the input data because they affect the determination of power
values. The machine-monitoring data are the output data because they record the measured responses
associated with the values of the inputted data. The proposed approach is to make cause-and-effect
relationships between these input and output data.
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Figure 1. A time-series power profile and machining configurations on a machine tool.

It should be noted that identical MCs should produce the same predictive model. Meanwhile,
a different MC requires the use of a different model. For example, we can use the machine-monitoring
data included in MCs 1 and 2 to create one predictive model, as shown in Figure 1, because the
configurations are the same. On the other hand, we should use the machine-monitoring data included
in MC 3 for making another model due to the use of different workpiece materials and tool inserts.
These differences demand different SECs and result in different power values.

Predictive modeling is the process of creating predictive models for power consumption in
the form of numerical functions. It frequently uses regression analysis to create a predictive model
expressed by a numerical function y = f(xy, ... , x,). Figure 2 shows the structure that describes the
relations of the MCs and their corresponding model components. Once we have made a predictive
model component for each MC, we can retrieve the model component when that MC occurs in
prediction. Then we re-compose accordingly these model components with regard to a certain series
of MCs to be predicted. Once we accumulate these predictive models corresponding to the various
MCs, we can obtain multiple predictive models applicable to them. In such a way, our approach is not
limited by certain assumptions that the experimental approach should consider due to the DOE.
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Figure 2. A structure for relations of machining configurations and their model components.

The rapid and feed movements determined by post-processing data demand the different
characteristics of power consumption, as mentioned in Section 1.1. Thus, a predictive model should be
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separated in terms of the feed or rapid movement even in the same MC. As shown in Figure 1, we can
use the power values on the feed movement in MCs 1 and 2 for making a predictive model; the power
values on the rapid movement in MCs 1 and 2 for making a different model. Then we can use the two
models to make a time-series power profile that covers both movements, using a series of tool path
trajectories to be predicted. Because each tool path trajectory to be predicted has its MC and the MC
has its associated model, we can retrieve the model associated with each trajectory. By these sequential
retrievals, we can make the power profile that corresponds to the series of tool path trajectories to be
predicted. For this reason, our approach considers the post-processing data as the input data to divide
tool path trajectories into these two movements for model creation. This consideration enables the
creation of fine-grained models predictable up to the level of an NC program.

The proposed approach requires a bottom-up process that follows machining, data collecting,
data fusion, and regression modeling. Particularly, data collecting is an important process because our
approach fundamentally uses historical machining data. Up to now, vendor-specific data interfaces
were commonly used for representing and exchanging machining data. These proprietary interfaces
make it difficult to use real-time data in any modeling approach. At present, standard-based
data interfaces across the CAx chain open up the possibility of implementing interoperable data
representations and exchanges in an open data-sharing environment. For this purpose, the proposed
approach uses standard-based data interfaces. Especially, we choose STEP-compliant data interface for
Numerical Controls (STEP-NC), formalized as ISO 14649, as the data interface for the process plan
data. STEP-NC enables a seamless data exchange in the CAx chain through the compliance with ISO
10303 Application Protocols (STEP APs) (ISO 2003). We choose MTConnect [25] as the data interface
for the machine-monitoring data because it defines a common language and structure for interoperable
communication across machine tools [2].

In view of the above, this paper presents the methodology of a predictive modeling approach
that uses historical data collected from machine tool operations. This paper first identifies the process
data elements relevant to power consumption among the machining data. It then describes the
categorization of each process data element into an MC data item, an input data item, or an output data
item. A set of MC data identifies a particular MC where one predictive model can be applied. The input
data and the output data, respectively, define input variables x and an output variable y necessary to
formulate a numerical function. Second, this paper presents the process to create predictive models
for power consumption by computing and updating numerical functions y = f(xy, ... , x). Third, this
paper demonstrates a case study to show the feasibility and effectiveness of the proposed approach.

2. Materials and Methods

2.1. Identification and Categorization of Process Feature Data

We should identify the process data elements that comprise the MC, input, and output data, which
can be collected from the machining data. As mentioned above, the MC and input data come from the
process plan and post-processing data. However, these process plan and post-processing data normally
contain a lot of process data elements that consist of entities and attributes to represent technological
parameters and requirements for machining a part. It is not efficient to consider all process data
elements since it increases the complexity and time in model creation. Rather, it is efficient to extract
and identify some principal data elements, which largely influence the output data, among those
process data elements. Also, it is necessary to identify output data from entities and attributes of the
machine-monitoring data that become affected by the process plan and post-processing data. We name
these extracted and identified process data elements Process Feature Data (PFD). Second, we should
specify an MC among some PFD items to characterize a particular context where a predictive model is
applied. We then should identify input variables and an output variable because these variables are
necessary to formulate a numerical function. The second work can be done by the categorization of
the PFD items.
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2.1.1. Identification of Process Feature Data

In the present work, the objective of predictive modeling is to create predictive models for power
consumption in turning machining. We can extract some principal data elements, and identify them as
PFD items based on the theoretical backgrounds relevant to that objective.

Theoretically, total power (Pyy,) is the sum of the machine power (Py,cine) and the cutting
power (Peytting), as expressed in Equation (1) [26]. Pyucnine is based on the capability of a machine
tool that corresponds to the power demand to turn-on a coolant system, hydraulic pump, computer
console, and servo motor systems [3]. Py,uine can vary from one machine tool to another, and would
hardly change (slightly change when accelerating, decelerating and running servo motors [27]) during
machining because it is determined on a machine’s specification and performance [26].

On the other hand, Pyne that appears only during real contacting of a cutting tool with
a workpiece can be represented using a physics-based principle of minimum strain energy [11].
Considering the energy flows occurred in a cutting tool, workpiece, and chip as well as their interactions
during machining, Pe,tine can be partitioned into the power spent on: (1) plastic deformation of the
layer being removed (Pp;); (2) tool-chip interface (Py); (3) tool-workpiece (Py,) interface; and (4)
formation of new surfaces (Pf), as expressed in Equation (2) [11,28]. Here, it is obvious that the
selection of a workpiece and a cutting tool with its subordinate insert influences P,y because
the interactions between them impose Py, and Py in Equation (2). As plastic deformation shapes
a permanent deformation by cutting force, Py, is significantly affected by the hardness of the workpiece
material and the chip compression ratio, which measures the thickness of a chip compared with cutting
depth, and, in turn, Py, is influenced by cutting speed and cutting depth [16,29]. P is the product of
the energy required for the formation of one shear plane and the frequency of shear planes formed,
and the frequency depends on the workpiece material and cutting speed [16]. Besides, the selection
of a machining operation (e.g., facing, contouring and grooving, or roughing and finishing) can
determine a contact pattern of a cutting tool and workpiece and thus make a different cutting force
distribution [30]. Different cooling options such as dry, minimum quantity lubricant, chilled air,
and cryogenic machining also give an impact on cutting force and machinability [31,32]. In addition,
tool path trajectories play a role on switching whether Py is applied or not. When feed path
trajectories occur during the execution of an NC program (overcut during the feed movement is
negligible), Peying is positive; whereas, Pey1ing makes zero value with rapid trajectories due to
non-contact of a tool and workpiece.

Consequently, the selection of a machine tool directly corresponds to deciding the Py, value
while the selection of a cutting tool and its insert, workpiece, machining operation, cooling type and
tool path trajectory influences the P, value. The data elements of a “machine tool”, “cutting
tool” and “insert”, “workpiece”, “machining operation”, “cooling type”, and “path trajectory” can be
PFD items.

Protal = Prachine + Pcutting (1)

where, Py, total power (W), Pucine: machine power (W), Peytiing: cutting power (W)
Pcutting =Lpd + Pic + Pry + Pfs 2)

Equation (2) provides a good understanding of cutting power and builds upon a physics-based
approach in the mechanical perspective. However, this approach requires high-skilled expertise of
cutting power and some complexity in obtaining the data regarding various parameters and thus it
can be substituted by an empirical approach based on statistics. An efficient way for the empirical
approach is to use the concept of SEC (k) and MRR (Q) in Peyng, as expressed in Equation (3) [3]. SEC
is the value of accommodating the characteristics of the above four partitioned powers apart from
MRR. As Pjyp,; can be represented by Pyuchine together with the product of SEC and MRR, the energy
requirement of machining a product can be easily calculated [4]. Much literature including [3,4,33] has
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shown the feasibility and validity of obtaining k by means of statistical analysis in various machining
conditions and thus it is reasonable to substitute Equation (3) for Equation (2).

Ptotul = Pmachine +k x Q (3)

where, k: SEC (J/cm3), Q: MRR (cm?3/5s).

Cutting speed that is calculated from feed rate, spindle speed, and cutting diameter in turning
influences P ing as mentioned above and cutting depth does also. Straightforwardly, Q is a major
determinate of Peyyting in Equation (3) and varies with “cutting depth (t)”, “feed rate (f)”, “spindle
speed (N)”, and “cutting diameter (D)” as expressed in Equation (4) [27,34]. Therefore, these four

process parameters can be chosen as PFD items.

n x fx N (D2 — D?)

Q= 4000

)

where, f: feed rate (mm/rev), N: spindle speed (revolution per minute, RPM), D;,: the original diameter
(mm), D: the final diameter (mm), ¢: cutting depth (mm) = (D, — D)/2.

2.1.2. Categorization of Process Feature Data

We should categorize each PFD item as an MC data item, an input data item or an output data
item. This categorization can be made depending on the flexibility of the process planner’s decision on
instantiating the PFD items given.

As mentioned, a set of MC data items specifies an MC. We can categorize the PFD items that
affect Pyucnine and k as MC data items. P,y is closed to steady values in the process planning phase
because it is normally pre-determined by the selection of a machine tool among the machine tools
available in a machine shop. Regarding k, a cutting tool, its insert and cooling option is pre-determined
within available resources and the dependency of machining operations to be applied. Process planners
may not be flexible in selecting a workpiece as it is decided by the order specified in the design phase.
Also, machining operations are dedicated to associated machining features due to their dependency
designated in the design phase. Path trajectory determines to turn-on/off the k value during feed
movement or approach/retract/back movement.

Thus, the PFD items influencing P,;;,cnine and k, which include the data elements of representing
a machine tool, cutting tool, insert, workpiece, machining operation, cooling type, and path trajectory,
can be dealt with as MC data items. Here, a data item selection problem occurs because even one
data element can contain various sub-elements that influence P,,;0,i, and k and thus all sub-elements
are not possible to be accommodated. For example, even an insert contains various sub-elements
that make the variety of Peing such as insert material, tool nose radius, flank angle, and cutting
edge length [16,33,35] and thus including all the sub-elements would be quite difficult to identify MC
data items and then generate predictive models in terms of the MC data items identified. To avoid

ZaTEs

the complexity of the data selection problem, “machine tool model”, “cutting tool type”, “insert
material”, “workpiece material”, “machining operation”, “cooling type”, and “path trajectory”, which
are dominant data items influencing P,;,chine and k and closed to nominal or enumeration data types,
are chosen as a set of MC data items in the present work.

On the other hand, input data items and an output data item, respectively, correspond to input
variables (xq, ..., x;) and an output variable y to formulate a numerical function v = f(x1, ..., xy).
In the process planning phase, process planners have more flexibility in determining Q than that of
P achine and k in Equation (3). Determining Q can vary with the selection of numeric values regarding
the process parameters including feed rate, spindle speed, and cutting depth within the ranges
recommended by textbooks and handbooks [34]. The changes in the process parameters influence
Peytting and in turn Pyyy. Thus, we can choose PFD items that can affect Q as input data items. We can
categorize “cutting depth”, “feed rate”, “spindle speed” additionally with “cutting diameter”, which
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is one parameter determining Q, as input data items, as expressed in Equation (4). We can categorize
“power consumption (Pyy,;)” as an output data item because “power consumption” is an output
metric of our predictive modeling. Thus, predictive models created by the proposed approach aim
at predicting “power consumption” by specifying Q in a given MC. Table 1 presents the PFD list
items described in Sections 2.1.1 and 2.1.2. The extraction method of those PFD items is explained in
Section 2.2.1.

Table 1. A list of Process Feature Data (PFD) items.

Influencing

Category PFD Item Variable Data Type Examples
Machine tool model P achine Nominal Machine tool 1, Machine tool 2
Cutting tool type k Nominal Turning, Grooving, End mill
Machinin. Insert material k Nominal Titanium coated, High speed steel
confi uratiin Workpiece material k Nominal Aluminum, Steel, Titanium
8 Machining operation k Nominal Contouring, Facing, Rough or Finish
Cooling type k Nominal Emulsion, Mineral Oil, Dry
Path trajectory k Enumeration Rapid/Feed
Cutting depth Q Numeric
. Feed rate Q Numeric
Input variable Spindle speed Q Numeric
Cutting diameter Q Numeric
Output variable Power consumption p Numeric

2.2. Predictive Modeling Process

This section introduces the process to create predictive models based on the PFD items identified
and categorized in the previous section. Specifically, this process outputs a set of numerical functions,
y=f(x1, ..., x4), which represent predictive models for specified MCs. Here, we need to: (1) extract
instances of the PFD items from accumulated machining datasets; (2) prepare training datasets using
the instances of the PFD items; (3) compute numerical functions, i.e., find correct coefficients of
numerical functions through regression analysis of training datasets; and (4) measure performances of
the numerical functions.

2.2.1. Extraction of Process Feature Data Instances

We need to identify data interfaces to extract instances of the PFD items from the machining
data. In this paper, we use standard-based data interfaces to represent the machining data. We
choose ISO 14649 (STEP-NC) as the data interface for extracting instances of the PFD items relevant
to process plan data because it provides a comprehensive data model that contains what-to-machine
and how-to-machine as well as machine tool descriptions. A STEP-NC program organizes a sequence
of machining operations in terms of workingstep. In turn, each workingstep describes a machining
operation associating instances of a tool, a strategy, a technology, and a machine function with a unique
instance of a machining feature [24]. We can extract “machine tool model” from the entity device id
defined in ISO 14649 Part 201 [36]. In turning machining, we can extract “cutting tool type”, “insert
material”, “workpiece material”, “machining operation”, and “cooling type” from the relevant entities
and attributes defined in Part 12 [37] and Part 121 [38]. Also, we can extract the input data, including
“cutting depth”, “feed rate”, and “spindle speed” from the associated attributes in ISO 14649 Part 12.
Figure 3 presents an example of the PFD extraction from a STEP-NC program. “Cutting diameter” is
a changing parameter during machining and thus we extract it from the machine-monitoring data.

We choose ISO 6983 as the data interface for extracting PFD instances relevant to post-processing
data. ISO 6983 specifies a machine-interpretable data format for positioning, line motion and
contouring control systems used in an NC [39]. As shown in Figure 4, we can extract “path trajectory”
from an NC program. GO0 instructs rapid movement; whereas, G01, G02, and GO03, respectively,

instruct linear, clockwise-circular, and counterclockwise-circular feed movements.
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[#34=PROJECT('TURNING EXAMPLE 1'#35,(1),5.3.9);
[#35=WORKPLAN(MAIN WORKPLAN'(#36).5.%52.5):
[#36=WORKPLAN('WORK PLAN FOR SETUPI',(#37,38),5.5.9);

[#37=MACHINING_WORKINGSTEP('WS ROUGH GENERAL_REVOLUTION 1'2#36.#10.220.%):

1461~TURNING_TECHNOLOGY(S, TCP. #62,0.300 F -

[#62=CONST_SPINDLE_SPEED{2000)
Spindle speed

[#131=UNIDIRECTIONAL_TURNING(3. F_,(3.000),6:$-$.5.5,2.000,5.$);

Cutting depth

[4205=GENERAL_PROFILE(S #206):
[4206~COMPOSITE_CURVE(*COMPOSITE_CURVE®,(#207,#211,£220,£224 £233 2237 £241),9);

URNING_TOOL 1,120.0,45.0,5,3,5,%282, LEFT.)
Cutting tool type

283=-MATERIA TN TDNfgp———— | .
_ Insert material

Figure 3. An example of PFD extraction from a STEP-NC program.

00002
N10 G99 S2000 MO03 MO8
N20 T01

N30 GO0 X80.5Z155.5

Figure 4. An example of PFD extraction from a Numerical Control program.

We choose MTConnect as the data interface for machine-monitoring data. The structure of
MTConnect defines an information model in terms of the machine tool’s constituent axes, spindles,
programs, and control sequences [2]. An MTConnect document includes: (1) a sample data item,
which is the value of a continuous data stream at a point in time; (2) an event data item, which is
an asynchronous change in state; and (3) a condition data item, which is the machine tool’s health
and ability to function [40]. We can extract “cutting diameter” from each path position sample data
item in the MTConnect document. We can extract “power consumption” from the summation of
time-series wattage sample data items of machine tool components. Figure 5 shows an example of the
PFD extraction from an MTConnect document.

. Cutting diameter
<ComponentStream name="X_AXIS” comp “Linear” componentld="x_axis™>

<Position dataltemld="X_POSITION" ... sequence="39" ... timestamp="_..09:00:01.20"
<Wattage dataltemld="X_POWER" ... sequence="41" ... timestamp="...09:00:01.20" ATTAGE>

/Position>

<ComponentStream name="7_AXIS” component="Linear” componentld="7_axis™>
<Position dataltemld="Z_POSITION" ___ sequence="40" _.. timestamp="...09:00:01 20">49 9/Positipn>
<Wattage dataltemld="Z_POWER" .. sequence="42" . timestamp="...09:00-01 2

<ComponentStream name="C_AXIS” component="Rotary” componentld="c_axis™>
<Wattage dataltemld="C_POWER™ ... sequence="43" ... timestamp="...09:00:01.20">|

<ComponentStream name="Systems” component="Coolant” componentld="Systems”>
<Wattage dataltemld="COOL_POWER™ . sequence="44" ___ timestamp="...09:00-01.20"

<ComponentStream name="Systems” component="Electric” componentld="Systems™>
<Wattage dataltemld="ELEC_POWER” ... sequence="45" _.. timestamp="_..09-00:01.20">§00.0</F

Figure 5. An example of PFD extraction from an MTConnect document.
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2.2.2. Preparation of Training Datasets

When machine tools carry out actual machining, we can collect instances of PFD items through
the extraction process described above. We then need to prepare training datasets by aggregating and
fusing the instances of PFD items, which are used for computing numerical functions described later.

As shown in Figure 1, we first group the PFD instances aggregated during MCs 1 and 2
into an intermediate dataset because they both use the same classification data items except “path
trajectory”. We then regroup this intermediate set into two separate datasets with respect to changes
in “path trajectory”. By this grouping of the PFD instances, we can prepare separate training datasets
for two different models that predict the power consumed during rapid or feed movement. We use
the PFD instances aggregated during MC 3 to create another model because this configuration uses
different “workpiece material” and “insert material” from those of MCs 1 and 2. The PFD instances in
Figure 1 make four different predictive models in terms of the MCs determined.

Table 2 presents an example of a training dataset that corresponds to a predictive model applicable
to the case of the feed movement in MCs 1 and 2. Here, Samples 1, 2, and 3 are examples of the data
samples collected from MC 1. Samples 4 and 5 are examples of the data samples from MC 2. Even the
same values of the input variables can make slightly different power values due to certain reasons such
as machine’s chatter, insert’ wear, and tool holder’s misalignment. These five samples that are collected
during machining two parts make one predictive model because their MCs (Machine 1, Turning tool,
TiN-coated, Aluminum, Contouring rough, On, Feed) are set to be identical.

Table 2. An example of a training dataset.

. Output
Machining Input Variables Variable
Configuration Sample No. Cutting Feed Spindle Cutting Power
Number Depth Rate Speed Diameter Consumption
1 1.6 0.27 1000 23.4 4598.3
1 2 1.6 0.27 1000 23.4 4561.1
3 1.6 0.27 1000 21.8 4343.1
4 2.8 0.46 1137 222 6294.3
2 5 2.8 0.46 1137 19.4 5554.5

2.2.3. Computation of Numerical Functions

We can perform regression analysis to compute numerical functions by using training datasets
described above. Several regression analysis techniques such as polynomial, nonlinear, and Bayesian
linear regressions can be applicable to find statistically-significant relationships between the input
data and the output data. Also, we can apply an Artificial Neural Network (ANN) technique for
this purpose.

ANN is capable of learning from a dataset to describe nonlinear input-and-output relationships
by characterizing topology, weight factors, bias and activation functions that are used in hidden and
output layers of the network [41]. It is a commonly-used technique for pattern matching that recognizes
patterns and matches inputs to those patterns in the areas such as speech and image recognition and
classifier systems [42]. In the area of metal cutting, it is also commonly-used for predicting machining
performances [43]. It has been effectively employed for supervised learning where the training is
supervised and the desired outputs are also supplied during training [41]. Our problem is supervised
learning because we identified the input and output variables necessary for creating predictive models.
Moreover, ANN helps create a predictive model easily when a new MC appears because it just requires
a new training dataset without any change of the structure of the networks. Even when existing MCs
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require recalculation of their models due to some reasons such as the calibration of data values, ANN
can recalculate the models efficiently through adjusting weighting factors and bias.

Figure 6 presents the structure of the back propagation neural network consisting of input, hidden
and output layers. Each MC has a numerical function computed by this neural network. Here, x;
represents ith input. N and M represent each number of neurons in each hidden layer. A neuron is
an information-processing unit that is fundamental to the operation of the neural network. wj;, wy;,
and wy indicate the weight factors between the neurons of four layers. f;, and f, are activation functions
of the neurons from the hidden layer and output layer, respectively [42].

Machining Configuration 3-Rapid | \
Machining Configuration 3-Feed | |
Machining Configuration 1-Rapid |

Machining Configuration 1-Feed Input layer Hidden layer Output layer

Machine tool: Machine 1
‘Workpiece: Aluminum X

. . 1
Cutting tool: Turning

Insert: TiN-coated

Qperation: Contouring rough X
Coolant: On

Tool path trajectory: Feed

e

Figure 6. A structure of a neural network on a machining configuration.

2.2.4. Performance Measurement of Numerical Functions

The computed functions require quantitative validation and measurement to assure their
performances above a satisfactory threshold level. For example, we can validate the functions
through the cross validation technique that partitions the data into training data to establish the
functions and validation data to verify them. We can measure the accuracy of the functions
through Root-Mean-Square Error (RMSE) analysis of the differences between predicted values and
measured values.

Uncertainty Quantification (UQ) is important in predictive modeling, although this UQ is
out-of-scope for this paper. Data uncertainty can occur due to sparse, imprecise, qualitative, subjective,
faulty, or missing data. Also, model uncertainty can exist in the models [44]. The data and model
uncertainty can decrease the model’s ability to predict results correctly. The UQ helps characterize the
sources of the uncertainty and measure the probability distribution of the data and finally find some
controllable solutions.

3. Analysis and Results

We demonstrate our modeling approach through a case study.  Here, we obtain
machine-monitoring data from the machining simulator that can generate MTConnect documents
from the input of process plan data [45].

3.1. Case Scenario

Two turning machine tools manufacture a turned part, and they execute the batch production for
each workpiece material. The workpiece has three types of metallic materials, including aluminum
(AL), steel (STL), and titanium (TT). Each machine tool produces the parts which are weekly allocated:
Machine 1 (700 parts: 300 AL parts, 150 STL parts, and 250 TI parts), and Machine 2 (350 parts: 150 AL,
150 STL, and 50 TI). Each machine tool has its unique capabilities, assuming Machine 1 is a more
efficient machine tool than Machine 2 with respect to the machine power consumed during idle state
and rapid movement.
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A cylindrical workpiece passes through a machine tool to execute a contouring rough (termed in
ISO 14649) machining operation to produce the same general revolution turning feature. The process
parameters—feed rate, spindle speed, and cutting depth—control the contouring rough operation.
Here, we assign the three process parameters randomly using a uniform distribution within the
allowable ranges listed in Table 3. The ranges of the process are normally given by textbooks and
handbooks [34]. This machining operation uses the same cutting tool (general turning tool), insert
(TiN-coated), and coolant option (coolant on). In other words, this case study uses the same MC with
respect to “cutting tool type”, “insert material”, “machining operation”, and “cooling type”. This
process plan scenario generates a set of STEP-NC programs. Each set of STEP-NC programs is assigned

to each machine tool to produce the allocated parts.

Table 3. Range of process parameters.

A Workpiece Material
Process Parameter Unit
AL STL TI
Feed rate mm/rev 0.1-0.5 0.2-0.6 0.2-04
Spindle speed RPM 900-2000 900-1200 500-1000
Cutting depth mm 1-4 2-6 1-3

3.2. Creation of Predictive Models

Given the case scenario above, the machining simulator generates MTConnect documents that
record the two machine tools” movements [45]. An identical value set of the process parameters can
result in slightly different power consumption due to randomized values to capture chatter (Machine 1:
£10% uniform-random deviation on cutting power, and +5% uniform-random deviation on machine
power; Machine 2: £15% on cutting power, and £10% on machine power). We prepare training
datasets, as described in Section 2.2.2. Based on the training datasets, we create twelve predictive
models for power consumption in terms of the combination of two machine tools, three workpiece
materials, and two different path trajectories. In other words, the three MC data items—“machine
tool model”, “workpiece material”, and “path trajectory”—have different combinations in the twelve
models. Each model corresponds to each combination of a machine tool, a workpiece material,
and a rapid or feed movement. To compute numerical functions of the twelve predictive models,
we generate twelve Multi-layer Perceptron neural networks with one hundred maximum iterations,
two hidden layers, five neurons with logistic activation functions per each hidden layer, one input
layer, and one output layer. We use KNIME, a statistics and data mining tool, to generate these neural
network models [46]. A neural network inputs a set of the input variables—feed rate (f), spindle speed
(N), cutting depth (t), and cutting diameter (D)—and outputs the output variable, power consumption.
For example, Table 4 shows weight factors and bias values given in neurons per layer in the case of
a combination of “Machine 1”7, “AL”, and “feed”. All the predictive models have this kind of neural
network models.
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Table 4. Weight factors and bias values (“Machine 17, “AL”, “feed”).

13 of 19

Hidden Layer 1 Hidden Layer 2 Output Layer
Ni,0 N1 Ny, Ny3 N4 Nz, N1 N3 N33 N34 N3
Input Input Input

f —0.014 0.051 0.092 —0.330 —-0.377 Ny 1.380 0.787 0.191 0.522 —1.074 N —0.948
N —0.905 3.751 1.635 1.016 —2.855 N1 0.029 —2.017 —-0.787 0.664 0.401 N4 —1.117
t —0.919 0.189 1.767 3.213 0.734 N, —0.493 —-0.738 —0.703 1.313 0.829 N, —1.386

D —0.138 —0.358 2511 3.326 0.325 Ni3 —2266 —0.967 —2.134 2.800 1.283 Nojs3 0.504

Bias 0.035 —1.650 —1.839 —4.475 0.017 Ni 4 —0.277 2.651 1.689 1.802 —1.348 No 4 1.804
Bias —0.145 1.296 1.253 —0.200 0.216 Bias —0.639
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3.3. Performance Analysis of Predictive Models

Using the machining simulator, we create validation datasets to analyze the performances of the
created predictive models. We newly generate these validation datasets from another weekly allocation
(numbers of validation data samples appear in Table 5). Due to the random assignment of process
parameters, the weekly allocation with differing STEP-NC programs results in validation datasets
different from the training datasets used in the creation of the twelve predictive models before. Also,
the random deviation on the cutting and machine power makes different measured values even in the
same set of the process parameters. The performance analysis of the models is described below:

(1) Comparison between the measured power and the predicted power: Using the validation
datasets, we can make a time-series of measured and predicted power profiles for the two
machine tools” operations. Figure 7 presents some captures of the power profiles to compare
the predicted power that the predictive models generate with the measured power that the
machining simulator generates. Figure 7a,b show the power profiles of Machine 1 and Machine 2,
respectively, which produce seven parts with three workpiece materials and different process
parameter sets. The predicted power coincides well with the measured power. The cutting power
and the machine power have separate patterns on the measured power. The cutting power varies
in terms of the values of feed rate, spindle speed, and cutting depth. Also, it gradually decreases
as cutting diameter decreases. The machine power keeps steady state during spindle rotation.
Our predictive models can capture these phenomena.

Material: AL (Material: AL (Material: AL (Material: STL Material: STL Material: TT Material: TT

Feedrate: 024 Feedrate: 0.3 Feedrate: 026 Feedrate: 028 Feedrate: 024 Feedrate: 021 Feedrate: 0.37
Spindle speed: 1060 : 1760 : 1100 (| Spindle speed: 1130 | |Spindle speed: 930 Spindle spesd: 620 Spindle speed: 590
Cutting depth: 34 ||Cuttingdepth: 25 || Cutting depth: 35 || Cutting depth: 33 | | Cutting depth: 3.5 Cutting depth: 2.3 Cutting depth: 2.0
Power (W)
10000
5000 ! —MEASURED_POWER
ﬂ —PREDICTED POWER
8000
7000 ’1“
6000 p
o 311 ™
5000 ""|
4000 ] q
3000 B ™
2000 I‘ ]’ r
1000
° Time (s)
020 40 60 850 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540
(a)
Material: AL Material: AL Material: AL Material: STL Material: STL. (Material: TT Material: TT
Feedrate: 017 Feedrate: 031 Feedrate: 0.47 Feedrate: 0.49 Feedrate: 0.58 Feedrate: 021 Feedrate: 027
1300 1m0 1130 1160 1135 620 | Spindle speed: TT0
Cuttinz depth: 35 ||Cuttina depth: 21 | [Cuttingdepth: 32 || Cutting depth: 33 || Cutting depth: 36 | |Cutting depth: 23 Cutting depth: 1.6
Power (W)
10000
—MEASURED_POWER
9000 <M Mk
——PREDICTED_POWER
8000 n
7000 M q“ n !ﬂ
6000 d !I i
5000 -
w000 pia Mg,
i L m i fmy
3000 m L
> .ir i Jr ‘1[ i 1
1000 - B
0 Time (s)
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560

Figure 7. A comparison between the measured power and predicted power. (a) Power profiles on
Machine 1; (b) Power profiles on Machine 2.
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(2) Statistical analysis of predictive models: we perform statistical analysis for the twelve predictive
models computed by neural networks using statistical metrics including the coefficient of
determination (R?) and the RMSE. Table 5 shows the result. The values of the statistical metrics
indicate our predictive models can make good performances with minimum 84.1% R? and
maximum 0.066 RMSE. It is noted that the RMSE is measured on a 0-to-1 scale for min-max
normalization of power values.

Table 5. Statistical analysis of the predictive models.

Machine Workpiece  Path Trajectory  Training Samples Validation Samples  R? (%) RMSE
AL Feed 77,241 74,683 96.7 0.031

Rapid 35,449 35,509 97.9 0.040

Machine 1 STL Feed 16,679 16,217 95.9 0.044
Rapid 12,944 12,879 97.1 0.042

I Feed 121,657 123,379 98.3 0.025

Rapid 33,050 33,022 98.4 0.033

AL Feed 36,758 36,670 95.5 0.037

Rapid 20,657 20,615 98.2 0.033

Machine 2 STL Feed 16,564 15,967 95.3 0.042
Rapid 15,165 14,988 84.1 0.064

I Feed 25,684 22,329 96.8 0.035

Rapid 8018 7740 88.1 0.066

(3) Power distributions in predictive models: We analyze the power distribution of each predictive

model to check its accuracy to predict the desired results correctly within the range of minimum
and maximum power. Figure 8a presents, for example, the scatter plot that maps the normalized
predicted power with the normalized measured power for the case of “Machine 1”7,“T1”,
and “feed”. Here, the normalized power means a 0-to-1 scaled power converted from an original
power value. The accuracy of the predictive model coincides with the middle of the power
distribution. However, it falls off at both edges of the power distribution. In particular, these
models slightly lose their predictive power at the top area of power distribution. The predicted
power is distributed from 0.079 to 0.828; whereas, the measured power is distributed from 0
to 1. The RMSEs, respectively, score 0.022 in the validation samples less than the first quartile
number, 0.021 in the samples between the first quartile and the third quartile numbers. However,
the RMSE indicates 0.035 in the samples higher than the third quartile number. This fall-off
occurs in all the predictive models. We conjecture that the distribution of the training dataset is
left-skewed, as shown in Figure 8b; and thus the number of training data samples for predicting
higher power values is very small compared to the numbers for lower and middle power values
to learn these data samples.

g
Number of Samples

\

PREDICTED_POWER

=

=

o

o 02 04 [ 1] a8 12
MEASURED_POWER

(a) (b)

0.00 0.4

Figure 8. Power distribution and training data sample distribution (“Machine 1”7, “T1”, “feed”).
(a) A scatter plot of measured power and predicted power; (b) A distribution of training data samples.
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4. Discussion

Case study demonstrates the feasibility and effectiveness of the proposed approach, which uses
predictive models that are generated from the machining data. The proposed approach can be efficient
for creating multiple predictive models that reflect the diversity of MCs (see Section 3.3 (1)). Also,
it can make fine-grained models predictable up to the level of an NC program (see Section 3.3 (1)).
These created models show good accuracy to predict power consumption (see Section 3.3 (2)).

We find a practical issue related to the application of the proposed approach. Though the
predictive models computed by the neural network produce good results, the results are not good at
very high power values (see Section 3.3 (3)). The distributions of the three process parameters were too
narrow to represent the accuracy consistently across the entire ranges of observed process parameters.
We need to broaden the ranges of values of the process parameters to sustain the accuracy and decrease
the learning bias. For example, we can broaden the ranges of feed rate in Table 3, and then obtain their
associating training datasets for sustaining the accuracy within the desired ranges.

Another practical issue is the determination of the number of training data samples. There is
no rigid rule for determining the number of training samples for power prediction using neural
networks. Thus, we need to analyze the dependency between the number of training samples and
statistical results for determining that number. We measure the change of the RMSE with regard to
the increase of the number of training data samples. Figure 9 shows the trend graph that plots the
numbers of training data samples and their corresponding RMSEs for the case of the TI material and
two machine tools. As the sample sizes increase and the under-fitting of the ANN-based models
decreases, RMSEs decrease to below 5% by about 6000 samples for Machine 1 and by 3000 samples
for Machine 2. On the other hand, the ANN-based models start to increase the RMSEs when they,
respectively, reach about 250,000 training samples in Machine 1 and about 50,000 training samples in
Turning 2. This phenomenon is due to the over-fitting problem, which undermines a generalization
ability of ANN-based models and can be caused from larger training data sizes than needed to solve
the given problem [47].

153
=]

——@——  Machine 1
——@——  Machine 2

RMSE (%)

ot
™

10 4

0 100000 200000 300000 400000 500000
Training data samples

Figure 9. A trend graph of RMSE with regard to increase of training data samples.

5. Conclusions

This paper presented a standard data-based modeling approach to predict power consumption in
turning machining operations. For this purpose, we described how to identify and categorize the MC,
input, and output data among machining data, and then how to create predictive models using the
identified and categorized data. The methodology presented in this paper can provide a good ability
of prediction for process planning decisions on the basis of historical data collected from machining
operations. The methodology allows manufacturers to create multiple predictive models that can
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be applied to diverse MCs. The methodology enables manufacturers to create fine-grained models
predictable up to the level of an NC program. The methodology uses standardized data interfaces
such as STEP-NC and MTConnect to provide comprehensiveness and interoperability to capture and
share the machining data.

A machining shop can benefit from the application of hundreds or thousands of instances of
predictive models for its machining facilities and operations. To provide these multiple instances
of predictive models, we are developing a logically-organized framework that can design and
operate these predictive models. This framework reduces the number of times of running the
predictive modeling process by clustering together some MCs where the similarity in the relationships
between input and output variables is found. This framework also constructs a common pool
that accumulates predictive models to be used as building blocks. It enables common, reusable,
and extensible applications of predictive models across machining shops. This is a significant
advantage over traditional modeling approaches based on regression models. This is another reason
why we use standardized data interfaces that can provide an open data sharing environment across
machining shops.

As we mentioned in Section 1, data collecting is an important process because our approach uses
historical machining data. A machining shop accumulates a large volume of machine-monitoring data
as the number and the operation time of machine tools increase. A conventional database environment
cannot efficiently manage the large volume of the data needed to perform fast retrieval and processing
for runtime decision-making. Thus, it is helpful to use distributed database techniques such as Hadoop
Distributed File System and its associated programming techniques such as MapReduce. We are
currently developing this data infrastructure to increase the abilities of data retrieval and processing
across machining shops.

Some limitations of this paper were the use of machine-monitoring data generated from
a machining simulator, and the inability of predictive models to sustain high accuracy in high power
values. Also, UQ was the out-of-scope of this paper. Future works include: (1) using real data collected
from actual machining operations; (2) establishing consistency of high accuracy across full ranges of
power values; and (3) integrating methodologies of UQ.
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