
sustainability

Article

Economic and Emission Dispatch Using Ensemble
Multi-Objective Differential Evolution Algorithm

Xiaobing Yu 1,2,*, Xianrui Yu 2, Yiqun Lu 2 and Jichuan Sheng 1,2 ID

1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,
Nanjing University of Information Science & Technology, Nanjing 210044, China; jsheng@nuist.edu.cn

2 School of Management and Engineering, Nanjing University of Information Science & Technology,
Nanjing 210044, China; 20171213556@nuist.edu.cn (X.Y.); luyiqun@nuist.edu.cn (Y.L.)

* Correspondence: yuxb111@163.com; Tel.: +86-025-5873-1549

Received: 16 January 2018; Accepted: 1 February 2018; Published: 6 February 2018

Abstract: In the past two decades, China’s manufacturing industry has achieved great success.
However, pollution and environmental impacts have become more serious while this industry has
grown. The economic and emission dispatch (EED) problem is a typical multi-objective optimization
problem with conflicting fuel costs and pollution emission objectives. An ensemble multi-objective
differential evolution (EMODE) is proposed to tackle the EED problem. First, the equality constraints
of the problem have been transformed into inequality constraints. Next, two mutation strategies
DE/rand/1 and DE/current-to-rand/1 have been implemented to improve the conventional DE.
The performance of the proposed algorithm is evaluated on six test functions and the numerical results
have indicated that the proposed algorithm is effective. The proposed algorithm EMODE is used to
solve a series of six generators and eleven generators in the EED problem. The experimental results
obtained are compared with those reported using single optimization algorithms and multi-objective
evolutionary algorithms (MOEAs). The results have revealed that the proposed algorithm EMODE
either matches or outperforms those algorithms. The proposed algorithm is an effective candidate to
optimize the manufacturing industry of China.

Keywords: economic and emission dispatch; differential evolution; mutation strategy; multi-objective;
manufacturing industry

1. Introduction

Currently, every country has enacted strict regulations and laws to protect the environment from
pollution [1]. For example, the US Clean Air act was implemented in 1990. This act mandates that
power companies should reduce NOX by 2 million ton/year and SO2 emission by 10 million ton/year
from 1980 levels [2,3]. In the past decades, China’s government has also enacted related laws and
regulations to protect the environment [1,3–7]. However, when power companies generate electricity,
they produce harmful pollutants. Thus, these companies have to reduce the emissions of these harmful
pollutants, such as CO2, CO and NOx [8]. Therefore, the economic and emission dispatch (EED)
problem is a highly critical problem for power companies. The problem consists of two objectives,
including minimization costs and emissions with the constraints. It is a typical non-linear constrained
multi-objective optimization problem (CMOP).

This problem has to deal with linear/nonlinear, equality/inequality constraints, concave feasible
region, et al. Consequently, many traditional optimization approaches may not be attractive since they
are computationally expensive or easily get stuck at local optima. In the past decade, evolutionary
algorithms have been obtained increasingly attention for solving the problem due to their adaptability
and flexibility to the task [9]. Currently, there are many approaches proposed to handle the economic
and emission dispatch (EED) problem. These approaches can be classified into two categories.
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The first one is to transform the problem into a single optimization problem [10]. Generally,
different objectives are combined by the relative weights among these objectives. This category
generally applies the following method to form a new objective function:

min
NG

∑
i=1

[wFi + (1− w) · λ · Ei] (1)

where w is the relative weight between fuel costs Fi ($/h) and emissions Ei (ton/h), λ is a scaling factor
and Ng is the number of generators [8,11–21]. The EED problem is converted into single objective
function using the penalty factor. The main advantage of the method is that it is easy to implement.
However, it is highly difficult to identify suitable weights among different objectives. Multiple runs are
often required for the sake of obtaining non-dominated solutions. In the past decades, multi-objective
evolutionary algorithms (MOEAs) have made considerable progress. These algorithms are widely
applied to solve the EED problem.

The second category addresses the EED problem of MOEAs. These population-based optimization
algorithms can obtain multiple non-dominated solutions in a single run. This approach can overcome
the main disadvantage of the first category. As the performances of MOEAs are attractive, they have
been widely employed to solve the EED problem. A multi-strategy ensemble biogeography-based
optimization algorithm is proposed to solve the EED problem [22]. A new MOEA based on an
enhanced firefly algorithm is proposed to acquire a set of non-dominated solutions and to solve
various EED problems [23]. The differential evolution (DE) algorithm and PSO (particle swarm
optimization) algorithm are combined to form a new hybrid algorithm called DEPSO. The proposed
hybrid algorithm is used to address the EED problem [24]. A trust region algorithm based on the
MOEA is presented to cope with the problem [25]. A time varying acceleration PSO is proposed to
improve the solutions of the EED problem [26]. A quantum-behaved PSO algorithm is introduced
to address the EED problem [27]. A new bare-bones multi-objective PSO algorithm is designed to
solve the EED problem [28]. An extended NSGA-II algorithm is presented for the EED problem [2].
A new two-archive multi-objective grey wolf algorithm is presented to solve reactive power dispatch
problems [29].

From the above discussion, it is noticed that MOEAs are widely used in the field of EEDs. In the
recent years, the DE as one EA has attracted increasing attention due to its attractive performance.
It is a simple powerful optimization algorithm created by Storn and Price [30]. Many multi-objective
differential evolution (MODE) algorithms have been proposed and achieved remarkable performances
compared to other MOEAs when solving the EED problem. A modified version of MODE is
used to tackle the extended dynamic EED problem. In MODE, an ensemble of selection method
is implemented [31]. A new extended adaptive MODE algorithm is adopted by double selection
and adaptive random restart operators to solve the EED problem. The efforts can avoid premature.
Moreover, a new constraint handling technique is also implemented [32]. A DE algorithm based on
the orthogonal design method and e-domination is implemented to solve the EED problem for the
purpose of saving energy and protecting environment [33]. A summation based on the multi-objective
differential evolution (SMODE) algorithm is used to optimize the EED problem with stochastic wind
power [34]. An extended multi-objective binary DE algorithm is presented to solve the EED problem.
A marginal correction is used to handle various constraints [35]. An enhanced multi-objective DE
algorithm is presented to solve the EED problem to realize the aim of the minimization of fuel costs
and emission effects. The operators of DE are modified and an elitist archive technique is used to retain
the non-dominated solutions during the evolution [36]. The MODE algorithm is proposed to solve
the EED problem, which uses an external elitist archive to retain non-dominated solutions during the
evolution [37]. The modified differential evolution (MDE) uses five differential solutions instead of
three like the conventional DE to solve the EED problem [38]. An improved multi-objective differential
evolution algorithm contains the chaos initialization strategy, the parameter adaptive strategy and
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the dynamic non-dominated sorting strategy to address the EED problem [39]. A DE combined with
Gaussian mutation (DEGM) is implemented to handle the EED problem [40].

In fact, the EED problem is a typical constraint multi-objective problem (MOP). Multi-objectives
have to be solved and constraints have to be satisfied. Balancing objective optimization and constraint
satisfaction are two equally important goals. In the above proposed algorithms based on the DE, there
is only one mutation strategy used. In fact, the mutation strategy plays an important role during
evolution. In the light of the no free lunch theorem, no single mutation strategy can outperform
all others on every optimization problem [41]. In most DE variants, only mutation strategy is
adopted to generate trial vector. Thus, the search ability is limited. In fact, different mutation
strategies have different features. Chosen mutation strategies have distinct advantages and they
can be effectively cooperated and combined to optimize different kinds of problems. The idea is
widely used in single optimize problem [42]. Composite DE (CoDE) uses rand/1/bin, rand/2/bin
and current-to-rand/1 to generate trial vectors. Simulation results have shown that CoDE is very
competitive on all the CEC2005 test functions [42].Three mutation strategies DE/rand/1, DE/best/2
and DE/current-to-rand/1 are chosen to form a mutation strategy pool. Compared with conventional
DE and adaptive DE algorithms, simulation results have proven that the ensemble method has achieved
better performance [43]. As classical evolutionary programming (CEP) with Gaussian mutation is better
at searching in a local neighborhood while the fast EP (FEP) with the Cauchy mutation performs better
over a larger neighborhood, an ensemble approach is proposed by combining adaptive EP, Gaussian
and Cauchy mutations, the experimental results have revealed that the ensemble is better than the
single mutation-based algorithms [44]. Different mutation and update strategies are implemented in
mDE-bES [45]. An ensemble of multiple strategies is realized by a multi-population based approach.
Extensive experiments show that the proposed method is competitive [46]. An ensemble DE algorithm
is proposed to classify electromagnetic targets in resonance scattering region. Compared with DE
variants, the performance of the proposed algorithm is better [47]. Thus, all the above simulation
results and evidences have clearly revealed that different strategies can be more appropriate and
benefit can be derived from the availability of diverse strategies.

Based on the observation, the ensemble mutation strategies of the DE are implemented. As the
multi-objective optimization problems are different from single optimization problems, Pareto theory
is used to select best solutions. Thus, mutation strategies chosen are different from the single
optimization problems. In addition, in order to cope with the equality constraints in the EED
problem, a new mechanism is proposed by transforming the equality constraint into the inequality
constraint. Next, the constraint domination principle is adopted to select these solutions to enter the
next generation. By these efforts, a novel ensemble MODE (EMODE) is implemented to solve the EED
problem. The primary advantage is that the proposed algorithm uses two different mutation operators.
They have different features and can cooperate with each other to accelerate the optimization process
while retaining the diversity of the population. To validate the performance of the proposed algorithm
EMODE, it has been compared with the latest single optimization algorithms and MOEAs. Based
on the benchmark test functions (CTP2~CTP7), the proposed algorithm is better than NSGAII [48]
and MODE with mutation strategy DE/rand/1 according to the performance indicator Inverted
Generational Distance (IGD). Then, the algorithm is used to solve the EED problem. Compared
with the latest single optimization, the proposed algorithm is better than the recursive, PSO, DE and
improved recursive. Compared with MOEAs, EMODE is better than MODE and SPEA 2. The NSGAII,
PDE and EMODE have achieved similar performance. We can get the conclusion that the proposed
algorithm is competitive.

The paper is organized as follows. In Section 2, the EED problem is briefly introduced.
The conventional DE is presented and the proposed algorithm is developed in Section 3. In Section 4,
experiments on the EED problem are performed. The study’s conclusions are presented in Section 5.
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2. Economic Emission Dispatch (EED) Problem

The major aim of power companies is to schedule the generators’ output to satisfy the load
requirements with minimum fuel costs without considering emissions. Currently, every country has
begun to protect the environment from pollution. These power companies have to make alternative
strategies to reduce pollutants such that they can meet the requirements of environmental protection.
Otherwise, they will be severely punished. The EED problem is a typical MOP [10]. Addressing this
problem requires simultaneously minimizing fuel costs and emission levels. Meanwhile, this approach
has to meet certain constraints. First, some notations have to be presented such that the problem can
be clearly explained. The notations are as follows [10]:

PGi: The output power of the ith generator
ai, bi, ci: The fuel cost coefficients of the ith generator
αi,βi,γi: The emission coefficients of the ith generator
NG: The number of generators
PD: The total load demand
Pl : The power losses
Pmin

Gi : The minimum power output of the ith generator
Pmax

Gi : The maximum power output of the ith generator
Bij: The loss coefficient between the ith generator and the jth generator
F(PGi): The total fuel costs function
E(PGi): The total emissions function
FE: The total cost of generators
The total fuel costs function F(PGi) can be presented by the following equation

F(PGi) =
NG

∑
i=1

[ai + biPGi + ciP2
Gi] (2)

The emission may be SO2 or NOx. They are released by fossil fuels in power plants. The total
emission function E(PGi) can be defined as

E(PGi) =
NG

∑
i=1

[αi + βiPGi + γiP2
Gi] (3)

Thus, the multi-objective of the EED problem can be given as follows:

FE = (F(PGi), E(PGi)) (4)

When optimizing the EED problem, some constraints have to be met. The first one is power
balance. The total power generated has to equal to the total power required and total power lost. It can
be expressed as

NG

∑
i=1

PGi = PD + Pl , Pl =
NG

∑
i=1

NG

∑
j=1

PGiBijPGj (5)

The second constraint is the capacity constraint. The output power of every generator unit is
constrained by the range limits:

Pmin
Gi ≤ PGi ≤ Pmax

Gi (6)

3. Ensemble Multi-Objective Differential Evolution (EMODE)

3.1. Conventional DE

In the conventional DE, mutation, crossover and selection are very critical. The main framework
of the DE is similar to the EAs, which is exhibited in Figure 1.
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According to the main steps of the DE, Vi = {v1
i , v2

i , . . . , vD
i ,} and Ui = {u1

i , u2
i , . . . , uD

i ,} are the
trial vectors, where D is the dimension of the problem. The former is generated by the mutation
strategy in the mutation step. The latter is generated in the crossover step.

The mutation strategy plays an important role during evolution. Price and Storn employed the
DE/rand/1/bin that has been widely used. The main strategies used in the DE algorithm are listed as
follows [30]:

DE/best/1: Vi = Xbest + F·(Xri
1
− Xri

2
) (7)

DE/best/2: Vi = Xbest + F·(Xri
1
− Xri

2
) + F·(Xri

3
− Xri

4
) (8)

DE/current-to-best/1: Vi = Xi + F·(Xbest − Xi) + F·(Xri
1
− Xri

2
) (9)

DE/rand/: Vi = Xri
1
+ F·(Xri

2
− Xri

3
) (10)

DE/rand/2: Vi = Xri
1
+ F·(Xri

2
− Xri

3
) + F·(Xri

4
− Xri

5
) (11)

DE/current-to-rand/1: Ui = Xi + K·(Xri
1
− Xi) + F·(Xri

2
− Xri

3
) (12)

The indices ri
1, ri

2, ri
3 are mutually exclusive integers. They are randomly generated within the

range [0, 1]. The three of them have to be different from the index i. F and K are the mutation scale
factors. Both of them are used to control the amplification of the differential variation.
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3.2. EMODE Algorithm

3.2.1. Mutation Strategies

The performance of the DE relies on parameter values and the mutation strategy. On the basis of
the no free lunch theorem, no single mutation strategy can outperform all others on every optimization
problem [41]. Different optimization problems have different features. They demand different mutation
strategies with different parameter values. Furthermore, to optimize a specific problem, different
mutation strategies with different characteristics may be better than the conventional DE with a single
mutation strategy [43]. Mutation strategies involved in the conventional DE are analyzed as follows.

The mutation strategies DE/best/1/bin, DE/rand-to-best/1/bin, DE/best/2/bin and
DE/rand-to-best/2/bin have the best solution information that we have found so far. They are
widely used in the single optimization problem. However, these strategies cannot be directly used
to solve the multi-objective optimization problem since there are no best solution concepts. Those
solutions with the lowest fronts also cannot dominate each other.

DE/rand/1 and DE/rand/2 have similar exploration capabilities. Nonetheless, DE/rand/1 was
first developed for the DE and is one of the most widely and successful employed strategies. Thus,
it is chosen as one of mutation strategies for the proposed algorithm.

DE/current-to-rand/1 is a rotational-invariant mutation strategy. This approach does not have
crossover, which is significantly different from the above mutation strategies. Therefore, it is also
chosen as the second mutation strategy.

3.2.2. Handling the Equality Constraints in EED Problem

In the EED problem, there are NG equality constraints. Generally, these equality constraints are
converted into inequality constraints:

|h(PGi)| − δ ≤ 0 (13)

h(PGi) =
NG

∑
i=1

PGi − PD − Pl =
NG

∑
i=1

PGi − PD −
NG

∑
i=1

NG

∑
j=1

PGiBijPGj (14)

where δ is the tolerance value for the equality constraints. According to [9], δ is a very small positive
number, such as 0.0001. The absolute value operator can be removed by transforming Equation (13)
into inequality constraints:

−δ ≤ h(PGi) ≤ δ→≤
{

h(PGi) ≤ δ

−h(PGi) ≤ δ
(15)

Thus, the total constraint violation (CV) can be expressed as follows:

CV(PGi) = max(−h(PGi)− δ, 0) + max(h(PGi)− δ, 0) (16)

In the past decades, many techniques have been proposed to solve the constraints. These
techniques mainly include the constraint domination principle [48] and penalty function [49].

Deb et al. proposed the constraint domination principle [48]. If two solutions are feasible,
the solution that Pareto dominates the other solution is better. If two solutions are infeasible,
the solution with the larger constraint violation is worse and the solution with the smaller constraint
violation is better. If one solution is infeasible and the other solution is feasible, the feasible solution
is better than the infeasible solution. The principle is similar to the feasibility rules that are used to
address single objective constraint problems.

The penalty method is one of the simplest and most commonly used techniques to address
constraint MOPs [49]. The penalty method introduces a penalty function or a coefficient into the
original objective function to penalize those solutions that violate constraints. The main advantage
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of the penalty method is that the infeasible solutions will also have the opportunity to enter into
following generations. The drawback is that when using the penalty method to solve constraint
problems, it is still the most difficult method to find appropriate penalty coefficients, which guides the
search direction towards the optimum.

However, the constraint domination principle prefers constraints to objectives. It is a greedy
mechanism [50].The advantage of the principle is that it has the ability to motivate the population
to the feasible regions and accelerate the optimization. In addition, the method does not need any
penalty parameters, which makes it attractive. Thus, the approach is adopted to solve the constraints
in the EED problem.

3.2.3. Solve the EED Problem by EMODE Algorithm

In the proposed algorithm, evolution can be implemented by the DE algorithm. The offspring
population is generated by the DE operator. Then, the parent population and offspring population
are combined to form a mating pool. The mating pool is divided into feasible solutions and infeasible
solutions. These solutions are sorted in increasing order according to the respective objective function
values and constraint violations. If the number of feasible solutions is more than the population size,
the population will be directly selected from these solutions to enter in the next generation. Otherwise,
some infeasible solutions with lower constraint violations will be chosen to enter the next generation.

According to the discussion above, the main procedure based on the EMODE to solve EED
problem is presented as follows:

Step 1 Initialize the parameters that include the mutation scale factor F, the crossover rate CR,
the maximum iteration numbers and number in the population (NP).

Step 2 Randomly generate NP individuals p = {X1,G, . . . , XNP,G,} uniformly distributed
in the range [Pmin

G , Pmax
G ], where Pmin

G = {Pmin
G1 , Pmin

G2 , . . . , Pmin
Gi . . .} and Pmax

G =

{Pmax
G1 , Pmax

G2 , . . . , Pmax
Gi . . .}.

Step 3 Calculate fuel costs and emissions according to Equations (2) and (3) and, total constraint
violations CV based on Equation (16).

Step 4 while stopping criterion is not met

Step 4.1 Generate two vectors V1
i,G, V2

i,G according to Equations (10) and (12).
Step 4.2 Generate two vectors U1

i,G, U2
i,G according to the DE crossover.

Step 4.3 If the trial vectors U1
i,G, U2

i,G cannot meet the constraints of Equation (6);
randomly generate them within the search space

Step 4.4 Selection
Calculate fuel costs and emissions according to Equations (2) and
(3) and, the total constraint violations CV based on Equation (16) of
U1

i,G, U2
i,G respectively.

MP = (p, U1
i,G, U2

i,G);// combine p and U1
i,G, U2

i,G to form a mating pool (MP).

(p1, p2) = split(MP);//feasible solutions (p1) and infeasible solutions (p2)

If (size(p1) ≥ NP)

Select NP individuals from p1 by the non-dominated and crowding distance
sorting and store these individuals in the current population p
End

If size(p1) < NP

Sort p2 by CV
p = p1 + p2(NP− szie(p1));

End
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Step 5 End while
Step 6 Select non-dominated solutions from p and output the corresponding results.

To clearly reveal the proposed algorithm, Figure 2 illustrates the main steps.Sustainability 2018, 10, x FOR PEER REVIEW  8 of 17 
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4. Experiment Results

4.1. Experiments Based on Benchmark Functions

To verify the performance of the proposed algorithm, six benchmark functions (CTP2, CTP3,
CTP4, CTP5, CTP6 and CTP7) are adopted [51]. They are presented in Equation (17). The parameters
settings are listed in Table 1.
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Minimize f1(
→
x ) = x1

Minimize f2(
→
x ) = g(

→
x )(1− f1(

→
x )

g(
→
x )

)

subject to c(
→
x ) = cos(θ)( f2(

→
x )− e)− sin(θ) f1(

→
x ) ≥

a| sin(bπ(sin(θ)( f2(
→
x )− e) + cos(θ) f1(

→
x ))

c
)|

d

g(x) = 1 +
10
∑

i=2
[x2

i
− 10 cos(2πxi) + 10], x ∈ [0, 1]

(17)

The MODE algorithm based on mutation strategies DE/rand/1 is used to make comparisons.
In addition, NSGAII with the constraint domination principle is also selected. The Inverted
Generational Distance (IGD) is adopted as a performance indicator, which is widely used in MOEAs.

IGD =
∑v∈PA

d(v, PA)

|P∗| (18)

where d(v, PA) is the minimum Euclidean distance between v and the points in PA [60, 61] depicted in
Figure 3 [52].

Table 1. Parameters of the second group test functions.

Functions Parameters

CT2 θ = −0.2π, a = 0.20, b = 10.0, c = 1, d = 6.0, e = 1
CT3 θ = −0.2π, a = 0.10, b = 10.0, c = 1, d = 0.5, e = 1
CT4 θ = −0.2π, a = 0.75, b = 10.0, c = 1, d = 0.5, e = 1
CT5 θ = −0.2π, a = 0.75, b = 10.0, c = 2, d = 0.5, e = 1
CT6 θ = 0.1π, a = 40.00, b = 0.5, c = 1, d = 2.0, e = −2
CT7 θ = −0.05π, a = 40.00, b = 5.0, c = 1, d = 6.0, e = 0
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Each algorithm runs 25 times. The NSGAII is implemented based on the GA. All the parameters
are the same, including the crossover probability 0.9, the mutation probability 0.1, the mutation
distribution index 20 and the population size 100. For the proposed method, the population size is
set to 100, F linearly decreases from 1.0 to 0.7 and CR linearly increases from 0.4 to 0.8. The stopping
criterion is set at 500 generations for the above four methods.

Results and Discussion

The results of IGD are presented in Table 2. The complexities of constrained search space are
controlled. The complexity of the test functions can be further increased by using a multi-modal
function g(x). It is difficult to find and maintain correlated decision variables to fall on the constrained
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boundaries. In addition, there could be other difficulties near the real Pareto front. The constraints
can make the real Pareto front become a set of discrete regions. At the extreme, the real Pareto front
can become a collection of discrete solutions. It can be observed that the proposed algorithm has
achieved the best IGD on CTP2, CTP4, CTP5, CTP6 and CTP7. The NSGAII obtained superior results
on CTP3. Since NSGAII and DE algorithm with rand/1 mutation strategy get trapped in the local
feasible regions in some runs, the performance of the two methods is bad. The reason is that the
constrained complexities make the two methods unable to overcome a series of infeasible regions
before coming to inland with the Pareto front. However, the proposed algorithm can accelerate the
whole process with the help of ensemble mutation strategies. The non-dominated solutions obtained
by the proposed algorithm and the Pareto front are presented in Figure 4. These non-dominated
solutions are uniformly distributed along the Pareto front of each test functions. By the comparisons
and experimental results, it can be concluded that ensemble mutation strategies are effective and the
proposed algorithm is competitive.

Table 2. The IGD metric of three algorithms.

IGD NSGAII DE/rand/1 EMODE

CTP2 4.63 × 10−3 (6.76 × 10−6) 2.78 × 10−3 (4.27 × 10−8) 2.35 × 10−3 (3.04 × 10−8)
CTP3 1.18 × 10−2 (2.10 × 10−4) 4.13 × 10−2 (1.36 × 10−3) 1.92 × 10−2 (4.21 × 10−6)
CTP4 1.20 × 10−1 (1.53 × 10−3) 8.4 × 10−2 (5.13 × 10−5) 8.81 × 10−2 (1.18 × 10−4)
CTP5 1.35 × 10−1 (1.62 × 10−3) 1.054 × 10−1 (4.53 × 10−4) 9.90 × 10−2 (1.26 × 10−5)
CTP6 1.03 × 10−2 (2.41 × 10−5) 1.16 × 10−1 (7.70 × 10−2) 9.62 × 10−3 (1.43 × 10−7)
CTP7 2.10 × 10−3 (7.16 × 10−6) 6.73 × 10−2 (5.24 × 10−3) 1.04 × 10−3 (3.10 × 10−9)
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4.2. Experiments Based on Typical EED Problems

To evaluate the performance of the proposed algorithm EMODE, it has been used to solve the
EED problem by considering the following three test systems. The three test systems have been widely
used as benchmark functions. The results from various optimization methods can make fair and
faithful comparisons based on the benchmark functions. In the three test systems, the population size
of the proposed EMODE is set to 200, F linearly decreases from 1.0 to 0.7 and CR linearly increases
from 0.4 to 0.8. The maximum number of iterations is set to 1000.

Results and Discussion

(1) The first test system with six generators

The test system has six generators. It has quadratic cost functions and emission level functions.
The power demands range from 500 MW to 1100 MW. They are 500 MW, 600 MW, 700 MW, 800 MW,
900 MW, 1000 MW and 1100 MW. In this test system, the loss coefficients and power loss are not taken
into account. The coefficients are listed in Table 3. To make comparisons, the recursive method, PSO,
DE and improved recursive method are selected to optimize the test system. The results of the above
four methods are directly taken from [11]. The results from the proposed method and the four methods
are presented in Table 4. The best results obtained are highlighted in bold.

Table 3. Coefficients of the six-unit generator.

Unit ai bi ci ffi fii fli Pmin
Gi Pmax

Gi

1 756.800 38.540 0.1525 13.860 0.3300 0.0042 10 125
2 451.325 46.160 0.1060 13.860 0.3300 0.0042 10 150
3 1050.000 40.400 0.0280 40.267 −0.5455 0.0068 35 225
4 1243.530 38.310 0.0355 40.267 −0.5455 0.0068 35 210
5 1658.570 36.328 0.0211 42.900 −0.5112 0.0046 130 325
6 1356.660 38.270 0.0180 42.900 −0.5112 0.0046 125 315

Table 4. Comparison of fuel costs and emission for the six-generator system (Cost: unit $ and Emission:
unit kg).

Load
Recursive PSO DE Improved Recursive EMODE

Cost Emission Cost Emission Cost Emission Cost Emission Cost Emission

500 27,093 118.7 27,098 118.9 27,098 118.8 27,093 118.7 27,073 118.5
600 32,627 153.8 27,098 154.1 31,629 153.8 31,629 153.8 31,621 153.3
700 36,314 197.0 31,635 197.1 36,314 197.1 36,314 197.0 36,312 196.4
800 41,148 248.5 36,314 248.5 41,153 248.5 41,148 248.5 41,144 248.1
900 46,132 308.1 41,160 308.3 46,132 308.1 46,132 308.1 46,104 307.9

1000 51,265 375.9 51,270 376 51,265 375.9 51,265 375.9 51,257 375.6
1100 56,546 451.9 56,557 451.8 56,547 451.9 56,546 451.9 56,518 451.3

It can be observed that the proposed algorithm EMODE has achieved the best results in the six
generators test system with different required loads. For example, when the load demand is 1100,
the fuel costs are 56,518$ and emissions are 451.3 kg. Meanwhile, the recursive and improved recursive
methods have achieved the same performance and can be ranked as the second best. The PSO has the
worst performance. Thus, the best compromised results from the proposed method are significantly
better than other four methods. The finding has revealed that the proposed method can accelerate
optimization while retaining population diversity. The best compromised solutions are given in
Table 5.
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Table 5. EED solutions of the six-generator system.

Load 500 600 700 800 900 1000 1100

P1 25.7573 36.7136 50.1154 60.3290 69.0865 83.5220 92.5939
P2 11.5306 25.9094 37.3288 52.5394 65.8889 78.5015 93.0328
P3 87.2611 103.6695 119.5007 133.4621 150.9331 158.9832 179.3460
P4 90.5584 104.5445 120.1008 131.7089 149.9904 168.0432 182.2870
P5 145.4741 168.0550 188.8845 214.5138 233.1996 257.4707 274.9088
P6 139.4184 161.1081 184.0696 207.4469 230.9015 253.4795 277.8315

Time(s) 5.3 7.6 7.9 8.0 7.8 8.1 7.9

In order to further validate the effectiveness of the proposed method, the set coverage is
introduced. The performance index can be used to compare the difference between two algorithms.
Let A and B be two non-dominated solutions. C(A,B) is defined as the percentage of the solutions in B
that are dominated by at least one solution in A:

C(A, B) =
{u ∈ B|∃v ∈ Av dominates u}

|B| (19)

where |B| is the number of solutions in the B [52]. C(A,B) is not necessarily to 1 − C(B,A). If C(A,B) = 1
indicates that all solutions in B are dominated by some solutions in A. If C(A,B) = 0 implies that
no solution in B is dominated by a solution in A. The results of set coverage between EMODE
and four algorithms are listed in Table 6. It can be noticed that all set coverage is equal to 1,
which indicates that all solutions generated by the four algorithms are dominated by some solutions
generated by EMODE. As EMODE is the multi-objective evolutionary algorithm, it can obtain multiple
non-dominated solutions in a single run. Thus, we can get the conclusion that EMODE is better than
the four algorithms.

Table 6. The results of set coverage between EMODE and four algorithms.

C(EMODE, Algorithm) Recursive PSO DE Improved Recursive

EMODE 1 1 1 1

(2) Test systems with eleven generators

The second test system has eleven generators. It also has quadratic cost functions and emission
level functions. The power demands range from 1000 MW to 2500 MW. They are 1000 MW, 1250 MW,
1500 MW, 1750 MW, 2000 MW, 2250 MW and 2500 MW. The coefficients are listed in Table 7. It is
noticed that the loss coefficients and power loss are also not taken into account. The results from above
five methods are listed in Table 8. It can be observed that the proposed method outperforms the other
four methods that include two recursive methods and two heuristic methods. We take demand = 2500
as an example. In the proposed method, fuel costs are 12,403$ and emissions are 902.2 kg. Therefore,
it is better than other four optimization methods. The best compromise solutions are given in Table 9.

Table 7. Coefficients of the eleven-unit generator.

Unit ai bi ci ffi fii fli Pmin
Gi Pmax

Gi

1 387.85 1.92699 0.00762 33.93 −0.67767 0.00419 20 250
2 441.62 2.11969 0.00838 24.62 −0.69044 0.00461 20 210
3 422.57 2.19196 0.00523 33.93 −0.67767 0.00419 20 250
4 552.50 2.01983 0.00140 27.14 −0.54551 0.00683 60 300
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Table 7. Cont.

Unit ai bi ci ffi fii fli Pmin
Gi Pmax

Gi

5 557.75 2.12181 0.00154 24.15 −0.40060 0.00751 20 210
6 562.18 1.91528 0.00177 27.14 −0.54551 0.00683 60 300
7 568.39 2.10681 0.00195 24.15 −0.40006 0.00751 20 215
8 682.93 1.99138 0.00106 30.45 −0.51116 0.00355 100 455
9 741.22 1.99802 0.00117 25.59 −0.56228 0.00417 100 455

10 617.83 2.12352 0.00089 30.45 −0.41116 0.00355 110 460
11 674.61 2.10487 0.00099 25.59 −0.56228 0.00417 110 465

Table 8. Comparison of fuel costs and emissions for the eleven-generator system.

Load 1000 1250 1500 1750 2000 2250 2500

Recursive
Costs 8502.3 9108.4 9733.5 10,378 11,041 11,723 12,424

Emissions 93.1 154.2 245.2 366.1 517.1 697.9 908.7

PSO
Costs 8508 9114 9737 10,380 11,041 11,725 12,429

Emissions 94.3 156.8 247.3 368.7 518.1 698.8 911.6

DE
Costs 8506 9118 9736 10,377 11,041 11,723 12,425

Emissions 93.1 154.2 246.9 366.1 517.1 697.9 908.7

Improved Recursive Costs 8502.3 9108.4 9733.5 10,377.8 11,041 11,723 12,425
Emissions 93.1 154.2 245.2 366.1 517.1 697.9 908.9

EMODE
Costs 8496.7 9107 9730.1 10,369 11,020 11,718 12,403

Emissions 93.1 151.8 240.9 361.9 516.6 685.8 902.2

Table 9. EED solutions of the eleven-generator system.

Load 1000 1250 1500 1750 2000 2250 2500

P1 86.4143 95.9372 102.9861 108.3956 118.1331 128.3625 128.7609
P2 72.9674 86.5057 86.4853 95.9172 98.7609 101.8583 118.5395
P3 90.4008 96.3682 115.3208 122.5703 124.8677 152.8952 144.9564
P4 82.7058 98.2494 119.8692 139.2933 167.6652 189.9708 203.6015
P5 55.1308 77.6149 94.8632 110.9899 144.2773 155.3846 161.9490
P6 73.4721 99.1753 116.2041 150.2056 165.3362 175.5657 200.9291
P7 49.5901 71.0873 96.0055 106.7755 130.9537 143.0967 172.6625
P8 132.1147 169.5561 208.4068 249.4712 270.2169 335.2919 369.4619
P9 124.6620 149.6263 183.7925 224.6640 252.5837 287.4033 324.4974

P10 118.8382 150.5627 190.0441 220.5946 274.8657 302.1718 341.9780
P11 113.7038 155.3168 186.0224 221.1228 252.3396 277.9991 332.6638

Time(s) 9.8 11.2 12.4 14.3 14.6 12.8 11.9

In order to further validate the performance of the proposed algorithm, γ-iteration, GA and
gravitational search algorithm (GSA) [53] are also chosen to make comparisons [12]. The power
demand is 2500. The coefficients are same to Table 7. The comparisons results are listed in Table 10.
It can be observed that the result of EMODE is better than γ-iteration, GA and GSA.

Table 10. Comparison of the results for test system (PD = 2500 MW).

Algorithm Costs Emissions

γ-iteration 12,424.94 908.7
GA 12,423.77 908.5

Proposed GSA 12,422.66 908.54
EMODE 12,403 902.2
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(3) Test systems considering the power lost

This test system is different from the above two test systems. The power lost is considered. It has
six generators, too. The coefficients are the same as Table 3. The B matrix of the loss formula is
as follows:

B =



0.000140 0.000017 0.000015 0.000019 0.000026 0.000022
0.000017 0.000060 0.000013 0.000016 0.000015 0.000020
0.000015 0.000013 0.000065 0.000017 0.000024 0.000019
0.000019 0.000016 0.000017 0.000071 0.000030 0.000025
0.000026 0.000015 0.000024 0.000030 0.000069 0.000032
0.000022 0.000020 0.000019 0.000025 0.000032 0.000085


The proposed method is compared with four MOEAs, including the NSGAII, PDE, SPEA 2 and

MODE. The results of the four MOEAs are directly taken from [54]. To make a fair comparison,
the functional evaluation numbers are same. The best compromise solutions and results from the five
MOEAs are presented in Table 11. It can be observed that the EMODE has achieved 64,827$ costs,
which is the smallest among the five methods. The emissions are 582.9 kg, which is a littler worse
than the results from NSGAII and PDE. However, the result is better the results from the SPEA 2 and
MODE and it can dominate their results. Thus, the proposed method is better than the SPEA 2 and
MODE in the third test system.

Table 11. Comparison of fuel costs and emissions for the six-generator system considering the power lost.

NSGAII PDE SPEA 2 MODE EMODE

P1 113.1259 107.3965 104.1573 108.6284 104.3959
P2 116.4488 122.1418 122.9807 115.9456 119.5126
P3 217.4191 206.7536 214.9553 206.7969 224.9859
P4 207.9492 203.7047 203.1387 210.000 195.8249
P5 304.6641 308.1045 316.0302 301.8884 296.9230
P6 291.5969 303.3797 289.9396 308.4127 309.6791

Costs ($) 64,962 64,920 64,884 64,843 64,827
Emissions (kg) 581.1 581.1 582.9 583.3 582.9

5. Conclusions

The EED problem is a typical constraint MOP. The two objectives are fuel costs and emissions.
They conflict with each other. A novel EMODE is proposed to solve the EED problem. The proposed
algorithm converts the equality constraints of the EED problem into the inequality constraints. Then,
the two mutation strategies DE/rand/1 and DE/current-to-rand/1 are implemented in the EMODE.
The proposed algorithm can accelerate optimization while retaining the diversity of the population.

The performance of the proposed algorithm is evaluated using six benchmark test functions and
the numerical results have indicated that the proposed algorithm is effective. Then, the proposed
algorithm has been tested on a series of six generators and eleven generators EED problems. Compared
with the latest single optimization, the proposed algorithm is better than the recursive, PSO, DE and
improved recursive. Compared with MOEAs, EMODE is better than MODE and SPEA 2. The NSGAII,
PDE and EMODE have achieved similar performance. The results have demonstrated that the proposed
algorithm can provide high quality solutions. It can be observed that the proposed algorithm is a
promising algorithm to solve the EED problem. It can provide an approach to realize the transition
from China-Made to China-Innovation.
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