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Abstract: In this study, we proposed a new empirical method by combining generalized 

autoregressive score functions and a copula model with high-frequency data to model the 

conditional time-varying joint distribution of the government bond yields between Poland/Czech 

Republic/Hungary, and Germany. Capturing the conditional time-varying joint distribution of 

these bond yields allowed us to precisely measure the dependence of the government securities 

markets. In particular, we found a high dependence of these government securities markets in the 

long term, but a low dependence in the short term. In addition, we report that the Czech Republic 

showed the highest dependence with Germany, while Hungary showed the lowest. Moreover, we 

found that the systemic risk dynamics were consistent with the idea that the global financial crisis 

not only had spillover effects on countries with weak economic fundamentals (e.g., Hungary, which 

had the highest systemic risk), but also had contagion effects for both CEEC-3 countries and 

Germany. Finally, we confirm that three major market events, namely the EU accession, the global 

financial crisis, and the European debt crisis, caused structural changes to the dynamic correlation. 

Keywords: dynamic conditional correlation; generalized autoregressive score functions; time-

varying copula function; CoVaR 

 

1. Introduction 

Measuring the dependence structures of government securities markets is garnering 

considerable attention from academia as well as from financial institutions, given the continuing 

expansion of the European Union (EU). In 2004, 10 countries from Central and Eastern Europe and 

the Mediterranean region joined the EU, which served as a historic step towards unifying Europe 

after several decades of division that had resulted from the Cold War. In this study, rather than 

investigating correlations, we propose a new approach to investigate the dependence structures 

among these countries’ financial markets including the investigation of general correlations as well 

as tail correlation. 

Financial markets become integrated when economies strongly depend on one other. This 

process not only reduces transaction costs, but also improves the efficiency of information sharing. 

However, although financial integration increases overall market efficiency, it reduces the 

diversification benefits available to prospective investors. Thus, investigating the dynamic process 

of financial integration allows us not only to measure the interdependence of economies, but also to 

provide useful information for investors. 

Here, we propose a new method for evaluating the degree to which the integration processes 

and risk spillovers in Central and Eastern Europe have evolved over time. To simplify our analysis, 
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we chose Poland, the Czech Republic, and Hungary (termed as the CEEC (Central and Eastern 

European countries)-3 hereafter) to represent Central and Eastern Europe given that these countries 

have the largest economies and financial markets in the region as well as the best data availability. 

To represent the EU, we chose Germany because of its economic background and geographic factors. 

Therefore, we investigated the differences in the dependence structures of the government securities 

markets in the CEEC-3 and Germany. 

Two types of approaches tend to be used to study dependence structures. The first type includes 

observation-based methods such as those based on the generalized autoregressive conditional 

heteroskedasticity (GARCH) framework [1,2]. The dynamic conditional correlation (DCC-GARCH)-

based approach [3–5] and copula-GARCH-based approach [6–8] are representative examples. The 

second type is parameter-based methods. The classical analysis of this type focuses on time-varying 

parameters, which allows us to better characterize the dynamic correlations in government securities 

markets by using easy estimations. For example, Pozzi and Wolswijk [9] employed a linear state 

space approach to estimate the latent factor decomposition of the excess returns or risk premiums 

suggested by a standard international capital asset pricing model for government bonds. They found 

that the government bond markets in the Eurozone under investigation were almost fully integrated 

by the end of 2006, showing that an important part of the achieved convergence was reversed during 

2007–2009. Bekiros [10] also provided evidence that time-varying parameter models more accurately 

forecast Eurozone economies than other models. 

In this study, we employed a parameter-driven model, namely the generalized autoregressive 

score (GAS) model, to investigate the dynamic integrated process of European government securities 

markets. For example, Creal et al. [11] employed the GAS model to analyze the dynamic correlation 

between the euro and yen, and between the euro and pound. Meanwhile, Oh and Patton [12] and 

Creal and Tsey [13] provided evidence that the GAS model could be employed with high 

dimensional copula to investigate the interdependence among different assets. With regard to the 

topics of the present study, Boubakri and Guillaumin [14] provided evidence that financial 

integration was not perfect, but was increasing based on the dynamic correlation of the foreign 

exchange rate. Furthermore, they also showed that financial contagion occurred during the global 

financial crisis. 

Instead of focusing on the foreign exchange rate, in this study, we investigated the integration 

of these countries based on interest rates (e.g., bond yields). Moreover, in contrast to the studies of 

Yang and Hamori [5,7,8] who focused on investigating observations, we computed time-varying 

parameters. The technique adopted herein was based on the score function of the predictive model 

density at time t by incorporating the non-linear property. In addition, in contrast to observation-

driven models, the GAS model has the advantage of exploiting the complete density structure rather 

than only means and higher moments. Furthermore, its applications can be extended to asymmetric, 

long memory, and other more complicated dynamics without increasing model complexity. 

Therefore, by employing the GAS framework, we restructured the time-varying copula model to 

investigate the dynamic integrations of the government securities markets in Eastern Europe. 

To understand the risk spillover effect between the CEEC-3 and Germany, we employed copulas 

to compute the conditional value-at-risk (CoVaR) by providing quantitative evidence on the systemic 

risk spillovers in government securities markets. Furthermore, we evaluated how the deteriorating 

financial position of a sovereign market could impair the performance of other government securities 

markets during a crisis. In particular, we used the CoVaR measures originally proposed by Adrian 

and Brunnermeier [15] and generalized by Girardi and Ergün [16], which allowed us to capture the 

possible risk spillovers between markets by providing information on the value-at-risk (VaR) of a 

market, conditional on the fact that another market is in financial distress. 

By adopting a two-step procedure, we easily obtained the value of the CoVaR. In the first step, 

we computed the cumulative probability of the CoVaR from a copula function by assuming the 

cumulative probability of the VaR of the market in financial distress, and the confidence level of the 

CoVaR. In the second step, we obtained the value of the CoVaR by inverting the marginal 

distribution function for this cumulative probability. Moreover, by employing GAS specifications, 
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we obtained more sensitive information on the risk spillover effect in the government securities 

markets of the CEEC-3 and Germany. 

Our contributions to the body of knowledge are threefold. First, we provide more specific details 

on the dependence across different maturities when compared with previous studies. Second, we 

implemented a new approach (i.e., the GAS-based dynamic Gaussian copula) to investigate the 

dynamic correlations among these markets, which can provide us with more sensitive correlations 

to the structural changes. This approach allowed us to analyze how the degree of dependence 

changed according to major market events, namely the EU accession (2004), the global financial crisis 

(2008), and the European debt crisis (2012). Third, we compared and contrasted the risk spillover 

effect in the government securities markets of the CEEC-3 and Germany by employing both the 

Gaussian copula model and the Gaussian copula GAS model. Finally, we employed the Symmetrized 

Joe-Clayton copula (SJC copula; [17]) to investigate the tail dependence of these markets and 

compared them with the results from the GAS-based model to verify the robustness of the results. 

The remainder of this article is organized as follows. Section 2 discusses the copulas and verifies 

the time-varying dependence structure. Section 3 describes the data and statistical issues. Section 4 

provides the empirical results and Section 5 concludes. 

2. Method 

In this section, we first describe the margins of the return distributions based on our empirical 

model. Second, we introduce the specifications of the dynamic copula model. Then, we selected one 

particular elliptical copula (Gaussian copula) model to investigate the dependence of the government 

securities markets in Eastern Europe. Furthermore, we estimated the systemic risk of these countries 

based on both the Gaussian copula and the Gaussian copula GAS models. Finally, to justify the 

empirical findings, we employed the SJC copula to examine the dynamic tail dependence of the 

examined government securities markets.  

2.1. Marginal Distribution Specifications 

The marginal distribution for each return series is characterized by a Glosten-Jagannathan-

Runkle GARCH (GJR-AR(k)-GARCH(1,1)-Skew-t; [18]) model that considers the effects of 

asymmetric information [18–20]. Assume 𝑅𝑖,𝑡 and ℎ𝑖,𝑡 to be bond i’s return and conditional variance 

for period t, respectively. Thus, the GJR-AR(k)-GARCH(1,1)-Skew-t model for the bond return is 

𝑅𝑖𝑡 = 𝜇𝑖 + 𝛼𝑖,1𝑅𝑖,𝑡−1 + 𝛼𝑖,2𝑅𝑖,𝑡−2 +⋯+ 𝛼𝑖,𝑘𝑅𝑖,𝑡−𝑘 + 𝜀𝑖,𝑡 (1) 

ℎ𝑖,𝑡 = 𝜔𝑖 + 𝛽𝑖ℎ𝑖,𝑡−1 + 𝛿𝑖𝜀𝑖,𝑡−1
2 +⋯+ 𝛾𝑖𝑠𝑖,𝑡−1𝜀𝑖,𝑡−1

2  (2) 

where 𝑠𝑖,𝑡−1 = 1 when 𝜀𝑖,𝑡−1 is negative and 𝑠𝑖,𝑡−1 = 0 otherwise. We assumed that the error term 

𝜀𝑖,𝑡 followed the skew-t distribution with the density function 𝑓(𝜐𝑡 , 𝜆𝑡), such that 

𝑓(𝑦𝑡; 𝜐𝑡 , 𝜆𝑡) =

{
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𝜐𝑡+1

2
)

𝛤(
𝜐𝑡
2
√𝜋(𝜐𝑡−2) )

, 𝑏 = √1 + 3𝜆𝑡
2 − 𝑎2, and 𝑎 = 4𝜆𝑡𝑐(

𝜐𝑡−2

𝜐𝑡−1
). This density is defined for 2 < 𝜐𝑡 <

∞ and −1 < 𝜆𝑡 < 1 [21]. For the GJR (1, 1) model, the constraints applied to Equation (3) are 𝛿 +

𝛽 + 2𝛾 < 2, δ > −γ, and 𝛽 ∈ (0,1), and we chose k based on the Akaike information criterion (AIC) 

[22].  
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2.2. A Copula with GAS Dynamics 

After determining the suitable marginal distribution, we proceeded to the copula function. A 

dynamic copula model is typically used to model the dependence of government securities markets 

in Eastern Europe in a dynamic process. However, an important contribution of our research was to 

calculate the time-varying correlations between the CEEC-3 and Germany. Two types of 

specifications allow the parameters to vary over time. First, studies of copula-based analysis such as 

Hafner and Manner [23] and Manner and Segers [24] have proposed a stochastic copula model that 

allows the parameters to evolve as a latent time series. Second, ARCH (autoregressive conditional 

heteroskedasticity)-type models such as dynamic conditional correlation (DCC) [3] and their related 

models for copulas [11,17] permit the time-varying parameters to vary according to the functions of 

the lagged observables. One advantage of the second approach is that it avoids the need to “integrate 

out” the innovation terms driving the latent time series processes [25,26]. In addition, as pointed out 

by McAleer [27], DCC may suffer from the problem of the derivation of asymptotic properties of the 

Quasi-Maximum Likelihood Estimators. Therefore, based on the parameter-driven methodology, the 

Generalized Autoregressive Score (GAS) model provided us with another view of the conditional 

correction model as well as the CoVaR approach.  

As our empirical model, we employed the GAS model of Creal et al. [11]. This function describes 

the time-varying copula parameter (𝛿𝑡) as a combination of the lagged copula parameter and a 

forcing variable related to the standardized score of the copula log-likelihood. Following Creal et al. 

[11], a copula with GAS dynamics can be expressed as 

𝑼𝒕|ℱ𝑡−1~𝑪𝒕(𝛿𝑡(𝛾)) (4) 

where 𝛾  is the copula function’s parameter; and 𝑼𝒕 = [𝑈1𝑡 , 𝑈2𝑡]′  is the vector of the marginal 

conditional probability integral transform. To ensure that the correlation of the normal copula falls 

between the values of −1 and 1, Creal et al. [11] suggested transforming the copula parameter by 

using an increasing invertible function (e.g., logarithmic, logistic) to the parameter: 

𝜅𝑡 = ℎ(𝛿𝑡) ⟺ 𝛿𝑡 = ℎ−1(𝜅𝑡) (5) 

For a copula with a transformed time-varying parameter 𝛿𝑡  , a GAS (1,1) model can be described 

as 

𝜅𝑡+1 = 𝜔 + 𝑏𝜅𝑡 + 𝑎𝐼𝑡
−
1
2ℎ(𝛿𝑡)𝒔𝒕 (6) 

𝒔𝒕 ≡
𝜕𝑙𝑜𝑔 (𝑢𝑦; 𝛿𝑡)

𝜕𝛿𝑡  
 (7) 

𝐼𝑡 ≡ 𝐸𝑡−1[𝒔𝒕𝒔𝒕
′] = 𝐼(𝛿𝑡) (8) 

Although the functions for the time-varying parameters are arbitrary, they can nest a variety of 

popular approaches from conditional variance models to trade duration and count models. 

Nonetheless, in contrast to the approach taken by Patton [17], GAS models are more sensitive to 

correlation shocks (for a comparison of the two models, see [11]). 

Since we examined the dynamic process of the dependence of the government securities 

markets in the CEEC-3 and Germany, we employed the time-varying Gaussian copula. The 

conditional Gaussian copula function is defined as the density of the joint standard uniform variables 

(𝑢𝑡 , 𝑣𝑡)  with a time-varying correlation 𝜌𝑡 . Moreover, we assumed that 𝑥𝑡 = 𝜙−1(𝑢𝑡)  and 𝑦𝑡 =

𝜙−1(𝑣𝑡), where 𝜙−1(∙) represents the inverse of the cumulative density function of the standard 

normal distribution. Then, the density of the time-varying Gaussian copula is expressed as 

𝐶𝑡
𝐺𝑎𝑢(𝑢𝑡 , 𝑣𝑡|𝜌𝑡) =

1

√1−𝜌𝑡
2
𝑒𝑥𝑝 (

𝑥𝑡
2+𝑦𝑡

2

2
−

𝑥𝑡
2−2𝜌𝑥𝑡𝑦𝑡+𝑦𝑡

2

2(1−𝜌𝑡
2)

)  (9) 

Thus, by combining Equation (6) with Equation (9), the Gaussian correlation parameter 𝜌𝑡 is 

modeled by the transformed parameter 𝜌𝑡 = (1 − 𝑒𝑥𝑝 (−𝜅𝑡))/(1 + 𝑒𝑥𝑝 (−𝜅𝑡)) , and the additional 

scaling factor 𝛿𝑡 = 2/(1 − 𝜌𝑡
2)  in Equation (6) is the consequence of modeling the transformed 
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correlation parameter 𝜅𝑡  rather than 𝜌𝑡  directly. Hence, we compared and contrasted the GAS 

Gaussian copula estimation across maturities. 

2.3. CoVaR 

In this section, we quantified the VaR (Value at Risk) and CoVaR (Conditional Value at Risk) for 

the government securities markets in the CEEC-3 and Germany. Given the strong linkages of these 

markets [7], we considered the impact of financial distress in the German market (as measured by its 

VaR) on the VaR of the CEEC-3 market and vice versa. Following the studies of Adrian and 

Brunnermeier [15] and Girardi and Ergün [16], the CoVaR for asset i is the VaR for asset i conditional 

on the fact that asset j exhibits an extreme movement. 

Let 𝑟𝑡
𝑐 be the returns for the CEEC-3 government securities market and 𝑟𝑡

𝑑 be the returns for 

the German government securities market. The downside CoVaR for stock returns for an extreme 

downward oil movement and a confidence level 1 − 𝛽 can be formally expressed as the 𝛽-quantile 

of the conditional distribution of 𝑟𝑡
𝑐 as 

𝑃𝑟(𝑟𝑡
𝑐 ≤ 𝐶𝑜𝑉𝑎𝑅𝛽,𝑡

𝑐 (𝑞, 𝑝)|𝑟𝑡
𝑑 ≤ 𝑉𝑎𝑅𝛼,𝑡

𝑑 ) = 𝛽 (10) 

where 𝑉𝑎𝑅𝛼,𝑡  
𝑑  is the 𝛼-quantile of the German government securities market return distribution and 

𝑃𝑟(𝑟𝑡
𝑑 ≤ 𝑉𝑎𝑅𝛼,𝑡

𝑑 ) = 𝛼 measures the maximum loss that the German government securities market 

returns may experience for a confidence level 1 − 𝛼 and a specific time horizon. 

Moreover, we measured the systemic impact of the CEEC-3 government securities market on 

the German government securities market by considering the CoVaR for the latter instead of the 

former as in Equation (10). The CoVaR in those equations can be represented in terms of copulas, 

since the conditional probabilities can be rewritten, respectively, as 

𝐶 (𝐹𝑟𝑡
𝑐(𝐶𝑜𝑉𝑎𝑅𝛽,𝑡

𝑐 ), 𝐹𝑟𝑡
𝑑(𝑉𝑎𝑅𝛼,𝑡

𝑑 )) = 𝛼𝛽 (11) 

where 𝐹𝑟𝑡𝑐 and 𝐹𝑟𝑡𝑑
 are the marginal distributions of the CEEC-3 government securities market and 

German government securities market returns, respectively. We followed Reboredo and Ugolini [25] 

in computing the CoVaR by following a two-step procedure. Following the studies of Adrian and 

Brunnermeier [15] and Girardi and Ergün [16], the systemic risk contribution of market j as the delta 

CoVaR ( ∆𝐶𝑜𝑉𝑎𝑅 ) can be defined as the difference between the VaR of the overall German 

government securities market conditional on the distressed state of the CEEC-3 government 

securities market (𝑅𝑡
𝑐 ≤ 𝑉𝑎𝑅𝛼,𝑡

𝑐 ). The VaR of each of the individual CEEC-3 government securities 

markets can then be treated as a whole conditional on the benchmark state of the market, considering 

it to be the median of the return distribution of the market, or, alternatively, the VaR for α = 0.5. The 

systemic risk contribution of the market for each CEEC-3 country is the government securities market 

thus defined as 

∆𝐶𝑜𝑉𝑎𝑅𝑡
𝑐/𝑑

=
𝐶𝑜𝑉𝑎𝑅𝛽,𝑡

𝑐/𝑑
− 𝐶𝑜𝑉𝑎𝑅𝛽,𝑡

𝑐/𝑑,𝛼=0.5

𝐶𝑜𝑉𝑎𝑅𝛽,𝑡
𝑑,𝛼=0.5  (12) 

The primary shortcoming of such a specification is that it estimates the contemporaneous 

correlation with the market to gauge the size of the potential tail spillover effects. In other words, it 

is useful as it captures the marginal contribution of markets to the overall systemic risk. In this study, 

we investigated the risk spillover effects between the CEEC-3 countries and Germany by employing 

both the Gaussian copula model and Gaussian copula GAS model. 

2.4. Estimation Method 

In the final step, we employed the multi-stage maximum likelihood (MSML) estimation method 

to calculate the dynamic relationships between the government securities markets in the CEEC-3 and 

Germany. First, we estimated the marginal distributions separately. In the second step, we estimated 

the copula model conditioned on the estimated marginal distribution parameters. Therefore, the final 

dynamic copula with the GAS process based on the GARCH model can be specified as 
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ℒ(𝜃) =∑ 𝑙𝑜𝑔
𝑇

𝑖=1
(𝒇𝒕(𝑿𝒕; 𝜃)) =∑ log (𝑓1𝑡(𝑋1,𝑡; 𝜃1)) +

𝑇

𝑖=1
∑ log (𝑓2𝑡(𝑋2,𝑡; 𝜃2))

𝑇

𝑖=1
 

+∑ log(𝒄𝒕(𝐹1,𝑡(𝑋1,𝑡; 𝜃), 𝐹2,𝑡(𝑋2,𝑡; 𝜃𝑐)))
𝑇

𝑖=1
 

(13) 

where 𝜃 = (𝜙′, 𝛾′)′ is the estimated vector of all the parameters including those of the marginal 

distributions 𝜙 and of the copula 𝛾. 

3. Data 

To investigate the dependence of the CEEC-3 and Germany across maturities, we employed  

3-month, 1-year, 3-year, 5-year, and 10-year government bond yields based on a daily frequency. In 

particular, we focused on 3-year, 5-year, and 10-year government bond yields and omitted 3-month 

and 1-year government bond yields due to the availability of data and empirical results. For instance, 

the short-term interest rate for 3-month and 1-year yields cannot model the stable dynamic 

correlation between Hungary and Germany since the estimation procedure does not converge. Thus, 

the data on 3-month and 1-year yields did not fit the model well as there were too many poorly fitting 

observations. Moreover, the marginal distribution for Poland was not well specified since the 

GARCH process was hardly justified.  

The sample period ran from 1 January 2002 to 31 December 2016. The total dataset was 

comprised of 3914 valid observations. In all cases, bond returns were calculated as the first 

differences of the logs of yields. Table 1 reports the descriptive statistics of the return series. 

Particularly, we witnessed the increasing of interest rate for the CEEC-3 countries across the different 

term structures during our sample periods. In addition, the negative returns of the bond yields also 

indicated the bad credit environment in the CEEC-3 countries where investors require higher 

nominal interests. The reason may be due to the saving-investment imbalance with other developed 

countries such as Germany, whose mean return for ten-year bond yield was still positive. Compared 

to Germany, the CEEC-3 countries have to deal with their debt problem. For example, the 

government of Hungary faces a great fiscal deficit and struggles to solve its debt problem. The results 

of the Jarque–Bera (JB) test showed that the null hypothesis of the normal distribution was rejected 

in all cases. 

Table 1. Summary statistics across different maturities. 

 Poland Hungary Czech Republic Germany 

3-year     

Mean –0.000366 −0.000562 −0.000653 −0.000225 

Std. Dev. 0.016497 0.017400 0.140969 0.167249 

Skewness 0.678808 1.424991 -0.416608 0.682362 

Kurtosis 11.01275 22.50707 87.16472 65.51154 

JB 10,771.20 *** 63,382.03 *** 1,145,605 *** 628,135.2 *** 

Observations 3914 3914 3914 3914 

5-year     

Mean −0.000303 −0.000380 −0.000874 −0.000848 

Std. Dev. 0.015542 0.017361 0.169736 0.165198 

Skewness 0.447378 0.761848 1.162340 2.072385 

Kurtosis 13.77973 15.21576 188.6507 218.0410 

JB 19,081.27 *** 24,714.69 *** 5,574,346 *** 7,432,406 *** 

Observations 3914 3914 3914 3914 

10-year     

Mean −0.000225 −0.000204 −0.000636 0.000268 

Std. Dev. 0.013174 0.015519 0.022779 0.124821 

Skewness 0.496346 0.154218 0.336106 -0.555559 

Kurtosis 13.80813 10.68544 28.27690 206.1039 

JB 19,211.42 *** 9648.186 *** 103,392 *** 6,627,889 *** 

Observations 3914 3914 3914 3914 
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Notes: *, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively. 

4. Empirical Results 

4.1. Marginal Distribution Estimations 

In the first step, we employed univariate GJR-AR(k)-GARCH(1,1)-Skew-t models to model the 

marginal distributions. Based on the SBIC (Schwarz Bayesian information criterion) [28], we selected 

k = 2 for the 3-year maturity and k = 1 for the 5-year and 10-year maturities. Tables 2–4 report our 

estimation results. We found that all the coefficients of the conditional variance term (β) with values 

close to one were statistically significant at the 1% level. The coefficients of the asymmetric effect (γ) 

were also statistically significant at the 1% level for the Czech Republic and Germany for the 3-year 

maturity, and Poland and Germany for the 10-year maturity. Furthermore, the degrees of freedom 

parameters (υ) were statistically significant at the 1% level with values above two, suggesting that 

the tails of the error terms were heavier when compared with the normal distribution. Although the 

skew terms (λ) were not statistically significant with positive values in most cases except Germany, 

we still used the skew-student-t distribution since all the countries must correlate with Germany. 

Table 2 shows the Q(s) and Q2(s) statistics to justify the empirical results of the GJR-AR(k)-

GARCH(1,1)-Skew-t models. The Q(s) statistic at lag s is a test statistic following an asymptotical 

distribution with degrees of freedom equal to the number of autocorrelations less the number of 

parameters. Its null hypothesis assumes that there is no autocorrelation up to lag s for the 

standardized residuals. The Q2(s) statistic at lag s proposes a null hypothesis of no autocorrelation 

up to order s for the standardized squared residuals. As shown in Tables 2–4, the null hypothesis of 

no autocorrelation up to order 20 for the standardized residuals and standardized squared residuals 

was accepted for all currencies, supporting our model specifications. 

Table 2. Estimation results of the marginal distribution for 3-year yields. 

 Poland Hungary Czech Republic Germany 

Mean Equation     

μ1 × 10−4 −5.211 (2.115) *** −4.897 (2.511) ** −0.788 (0.745) 1.388 (1.546) 

 −0.024 (0.015) −0.018 (0.015) −0.051 (0.015) *** −0.029 (0.023) 

Variance Equation     

ω × 10−5 3.414 (1.125) *** 2.251 (2.332) 3.112 (1.052) *** 1.718 (0.344) 

δ 0.108 (0.053) *** 0.149 (0.607) *** 0.249 (0.075) *** 0.206 (0.051) *** 

β 0.805 (0.039) *** 0.716 (0.101) *** 0.753 (0.038) *** 0.772 (0.031) *** 

γ 0.023 (0.039) −0.129 (0.365) 0.213 (0.065) *** 0.250 (0.012) *** 

υ 3.138 (0.209) *** 2.492 (0.416) *** 2.646 (0.106) *** 3.384 (0.581) *** 

λ 0.023 (0.018) 0.014 (0.016) 0.048 (0.015) *** 0.049 (0.025) * 

Diagnostic     

Q(20) 23.21 [0.588] 36.54 [0.251] 81.22 [0.245] 21.18 [0.227] 

Q2(20) 13.23 [0.786] 21.55 [0.127] 44.87 [0.621] 17.97 [0.419] 

Log-Likelihood 11,202.57 10,244.36 8596.28 8496.57 

Notes: The numbers in parentheses are standard errors. The numbers in square brackets are p-values. 

Q(20) (Q2(20)) is the Ljung–Box Q statistic for the null hypothesis that there is no autocorrelation up 

to order 20 for the standardized residuals (standardized squared residuals). *, **, and *** represent 

significance at the 10%, 5%, and 1% levels, respectively. 

Table 3. Estimation results of the marginal distribution for 5-year yields. 

 Poland Hungary Czech Republic Germany 

Mean Equation     

μ1 × 10−4 −2.618 (2.110) 5.124 (2.221) ** −5.428 (4.775) 3.781 (1.546) *** 

α −0.008 (0.019) 0.031 (0.015) ** −0.086 (0.017) *** 0.332 (0.015) *** 
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Variance Equation     

ω × 10−5 2.414 (3.125) 4.141 (1.128) 1.787 (1.188) 1.221 (1.188) 

δ 0.091 (0.037) *** 0.154 (0.013) *** 0.073 (0.001) *** 0.012 (0.002) *** 

β 0.911 (0.028) *** 0.842 (0.039) *** 0.891 (0.028) *** 0.944 (0.015) *** 

γ 0.008 (0.028) 0.139 (0.005) 0.145 (0.016) *** 0.099 (0.005) *** 

υ 3.806 (0.281) *** 2.445 (0.055) *** 2.836 (0.588) *** 7.367 (0.568) *** 

λ 0.013 (0.053) 0.015 (0.016) 0.027 (0.021) 0.071 (0.101) 

Diagnostic     

Q(20) 15.21 [0.448] 41.27 [0.651] 82.12 [0.245] 22.54[0.347] 

Q2(20) 3.286 [1.000] 14.22 [0.234] 44.11 [0.621] 14.27 [0.721] 

Log-Likelihood 11,235.812 10,113.699 10,244.87 9853.126 

Notes: The numbers in parentheses are standard errors. The numbers in square brackets are p-values. 

Q(20) (Q2(20)) is the Ljung–Box Q statistic for the null hypothesis that there is no autocorrelation up 

to order 20 for the standardized residuals (standardized squared residuals). *, **, and *** represent 

significance at the 10%, 5%, and 1% levels, respectively. 

Table 4. Estimation results of the marginal distribution for 10-year yields. 

 Poland Hungary Czech Republic Germany 

Mean Equation     

μ1 × 10−4 2.568 (0.221) *** 6.351 (1.121) *** −4.298 (1.125) *** 2.121 (0.285) *** 

α −0.042 (0.011) 0.046 (0.031) −0.009 (0.018) 0.089 (0.119) 

Variance Equation     

ω × 10−5 3.122 (1.155) *** 2.886 (1.085) *** 1.987 (0.788) *** 4.221 (1.688) *** 

δ 0.116 (0.032) *** 0.111 (0.003) *** 0.166 (0.078) *** 0.017 (0.007) *** 

β 0.891 (0.025) *** 0.832 (0.054) *** 0.835 (0.053) *** 0.961 (0.006) *** 

γ −0.023 (0.021) 0.024 (0.469) 0.046 (0.041) 0.041 (0.009) *** 

υ 4.012 (0.324) *** 2.319 (0.607) *** 2.996 (0.256) *** 11.621 (2.152) *** 

λ 0.009 (0.012) −0.055 (0.019) 0.015 (0.017) 0.026 (0.022) 

Diagnostic     

Q(20) 15.26 [0.541] 69.17[0.265] 55.32 [0.185] 12.96 [0.899] 

Q2(20) 1.565 [1.000] 24.75 [0.631] 42.25 [0.331] 9.54 [0.841] 

Log-Likelihood 11,116.610 10,004.310 10,522.495 9826.073 

Notes: The numbers in parentheses are standard errors. The numbers in square brackets are p-values. 

Q(20) (Q2(20)) is the Ljung–Box Q statistic for the null hypothesis that there is no autocorrelation up 

to order 20 for standardized residuals (standardized squared residuals). *, **, and *** represent 

significance at the 10%, 5%, and 1% levels, respectively. 

4.2. Dynamic Copula Estimations 

In the second step, we transformed the standardized residuals obtained from the GARCH model 

into uniform variates based on the cumulative distribution function. By applying this step, we 

obtained the vector of filtered returns to estimate the copula functions in the CEEC-3 government 

securities markets. Therefore, we estimated both the dynamic Gaussian copula and the dynamic 

Gaussian copula based on the GAS framework by using the filtered return in the first step. Table 5 

reports the estimation results. According to Creal et al. [11] and Creal and Tsay [13], the GAS 

specification can provide a more persistently time-varying correlation process. Since the log-

likelihood was the largest for the 10-year yields when compared with the other two, the long-term 

yields also provided the most persistently time-varying correlation process. In addition, the terms (a, 

b) for the GAS framework estimations were significant in most cases, which indicated that the GAS 

framework models the Gaussian copula well. 
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Table 5. Estimation results of the Gaussian copula and Gaussian copula GAS (1,1) models. 

 3-Year 5-Year 10-Year 

Gaussian Copula Model 

Poland–Germany    

ω 0.001 (0.007) 0.004 (0.011) 0.179 (0.059) *** 

a 0.026 (0.004) *** 0.079 (0.006) *** 0.481 (0.014) *** 

b 1.981 (0.018) *** 1.923 (0.012) *** 0.556 (0.041) *** 

Log-Likelihood 30.528 76.522 90.791 

Hungary–Germany    

ω −0.021 (0.048) −0.043 (0.063) *** −0.057 (0.022) ** 

a 0.075 (0.004) *** 0.022 (0.007) *** 0.490 (0.004) *** 

b 0. 821 (0.257) *** 0.975 (0.016) *** −0.477 (0.086) *** 

Log-Likelihood 11.344 18.252 22.671 

Czech–Germany    

ω 0.001 (0.118) 0.006 (0.361) 0.352 (0.102) *** 

a 0.025 (0.001) *** 0.071 (0.003) *** 0.395 (0.012) *** 

b 1.994 (0.147) *** 1.984 (0.004) *** 0.749 (0.221) *** 

Log-Likelihood 61.300 173.693 254.458 

Gaussian Copula GAS (1,1) Model 

Poland–Germany    

ω 0.096 (0.085) 0.187 (0.091) ** 0.328 (0.094) *** 

a 0.013 (0.003) *** 0.032 (0.007) *** 0.021 (0.004) *** 

b 0.992 (0.004) *** 0.983 (0.008) *** 0.990 (0.004) *** 

Log-Likelihood 30.551 84.951 110.213 

Hungary–Germany    

ω –0.029 (0.048) −0.062 (0.061) −0.052 (0.067) 

a 0.018 (0.007) ** 0.019 (0.006) *** 0.014 (0.006) ** 

b 0.963 (0.030) *** 0.978 (0.014) *** 0.987 (0.012) *** 

Log-Likelihood 11.136 19.819 18.023 

Czech–Germany    

ω 0.796 (0.198) *** 2.004 (0.358) *** 0.872 (0.187) *** 

A 0.005 (0.001) *** 0.0163 (0.028) *** 0.001 (0.000) *** 

B 0.988 (0.023) *** 0.998 (0.004) *** 0.998 (0.001) *** 

Log-Likelihood 79.386 225.322 346.200 

Notes: *, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively. 

To illustrate the integration process between the CEEC-3 and Germany, Figures 1–3 plot their 

estimated dynamic correlations from the Gaussian copula GAS model for the 3-year, 5-year, and 10-

year yields. These figures illustrate the high (low) dependence of the government securities markets 

in the long term (short term). In addition, the Czech Republic showed the highest dependence with 

Germany, while Hungary showed the lowest. In particular, the structures of dynamic correlations 

for Hungary were different from that of Poland and the Czech Republic, which may due to the fact 

that Hungary has been experiencing a fiscal crisis since 2012. 



Sustainability 2018, 10, 324  10 of 23 

 

 

 

Figure 1. Dynamic correlations between Hungary and Germany. Notes: This figure plots the 

estimated dynamic correlations between Hungary and Germany from the Gaussian copula and 

Gaussian copula GAS models for 3-year yields (top), 5-year yields (middle), and 10-year yields 

(bottom). 
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Figure 2. Dynamic correlations between Czech Republic and Germany. Notes: This figure plots the 

estimated dynamic correlations between Czech Republic and Germany from the Gaussian copula and 

Gaussian copula GAS models for 3-year yields (top), 5-year yields (middle), and 10-year yields 

(bottom). 



Sustainability 2018, 10, 324  12 of 23 

 

 

 

Figure 3. Dynamic correlations between Poland and Germany. Notes: This figure plots the estimated 

dynamic correlations between Poland and Germany from the Gaussian copula and Gaussian copula 

GAS models for 3-year yields (top), 5-year yields (middle), and 10-year yields (bottom). 

Meanwhile, to see how EU accession, the global financial crisis, and the European debt crisis 

affected dependence, we employed the multiple breakpoint test to examine the influence of 

dependence based on global information citations (Table 6). In general, we found that these three 

events affected dependence significantly. As shown in Figures 1–3, the correlation significantly 

increased before the examined CEEC-3 countries became EU members, in the global financial crisis 

period, and in the European debt crisis period. Combining the results presented in Table 6 confirmed 

that financial contagion occurred during these two crises. Meanwhile, the significant increase in 

correlation before EU accession may have been caused by the expectations of market participants 

and requirements of being EU members. After the global financial crisis, there was a significant 

decrease in dependence, perhaps because of capital regulations and market segmentation [14]. 
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Table 6. Breakpoint test based on global information citations. 

 3-Year 5-Year 10-Year 

Czech–Germany    

Breakpoint 1 9/28/2004 12/24/2004 12/12/2003 

Breakpoint 2 8/23/2007 10/17/2008 3/05/2007 

Breakpoint 3 8/04/2009 9/29/2010 2/12/2009 

Breakpoint 4 12/28/2011 10/22/2012 1/25/2011 

Breakpoint 5   1/11/2013 

Poland–Germany    

Breakpoint 1 5/01/2006 4/01/2004 4/01/2004 

Breakpoint 2 11/05/2008 5/15/2006 5/15/2006 

Breakpoint 3 10/18/2010 10/22/2008 10/22/2008 

Breakpoint 4 1/21/2013 10/04/2010 10/04/2010 

Breakpoint 5  11/07/2012 11/07/2012 

Hungary–Germany    

Breakpoint 1 3/20/2007 9/25/2006 8/07/2007 

Breakpoint 2 12/04/2009 6/05/2009 9/27/2010 

Breakpoint 3 12/10/2012 12/07/2012 1/04/2013 

Breakpoint 4    

Breakpoint 5    

Notes: The date is given by Month/Day/Year. We chose the numbers of the breakpoint date according 

to the SIC. 

4.3. Risk Spillovers 

Figures 4–6 plot the estimations of ΔCoVaR. Specifically, the blue line reflects the spillover effect 

from Germany to the CEEC-3 and the red line reflects the spillover effect from the CEEC-3 to 

Germany (The CoVaR estimations are available from the authors upon request). As shown in these 

figures, the GAS-based Gaussian copula model was more sensitive than the Gaussian copula model 

as expected. Moreover, the empirical evidence indicated that the German systemic risk was low and 

relatively stable, while the CEEC-3 systemic risk was high and variant. Specifically, Poland showed 

the lowest systemic risk, whereas Hungary showed the highest. Since the impact of the global 

financial crisis was reflected in the abrupt increase in the ΔCoVaR value, we observed that the 

European debt crisis increased the ΔCoVaR value for both the German systemic risk and the CEEC-

3 systemic risk. Finally, the ΔCoVaR of long-term government securities fluctuated more widely than 

that for short-term government securities in these countries. These results suggest that the systemic 

risk is higher for both the CEEC-3 countries and for longer-term bonds. 

Panel A: The risk spillover from Germany to Poland 
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Panel B: The risk spillover from Poland to Germany. 
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Figure 4. ΔCoVaR between Poland and Germany. Notes: This figure plots the estimated ΔCoVaR 

between Poland and Germany from the Gaussian copula and Gaussian copula GAS models for 3-

year yields (top), 5-year yields (middle), and 10-year yields (bottom) in the panel (A,B). 

Panel A: The risk spillover from Germany to the Czech Republic. 
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Panel B: The risk spillover from the Czech Republic to Germany. 

 

Figure 5. ΔCoVaR between the Czech Republic and Germany. Note: This figure plots the estimated 

ΔCoVaR between the Czech Republic and Germany from the Gaussian copula and Gaussian copula 

GAS models for 3-year yields (top), 5-year yields (middle), and 10-year yields (bottom) in the panel 

(A,B). 

Panel A: The risk spillover from Germany to Hungary. 
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Panel B: The risk spillover from Hungary to Germany. 
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Figure 6. ΔCoVaR between Hungary and Germany. Note: This figure plots the estimated ΔCoVaR 

between Hungary and Germany from the Gaussian copula and Gaussian copula GAS models for 3-year 

yields (top), 5-year yields (middle), and 10-year yields (bottom) in the panel (A,B). 

Furthermore, our empirical evidence also showed that ΔCoVaR volatility increased 

substantially for the countries in crisis. The reason may be the uncertainty of the government 

securities markets and implementation of stabilization policies by the European Central Bank and 

International Monetary Fund. These actions also provoke sudden changes in investor expectations. 

All the evidence on the systemic risk dynamics was consistent with the idea that the crisis not only 

had spillover effects on countries with weak economic fundamentals (e.g., Hungary, which had the 

highest systemic risk), but also had contagion effects for both the CEEC-3 and Germany. 

4.4. Dynamic SJC Copula 

To ascertain how these events affected the dependence of the government securities markets in 

CEEC-3 and Germany, we employed the dynamic SJC (symmetrized Joe-Clayton) copula proposed 

by Patton [17] to investigate positive and negative events. In particular, we examined the dynamic 

tail correlations in these markets to find the possibility of contagion or fight to quality. Generally, 

correlations exist across the markets, but tail correlations do not. If the tail correlations exist across 

the markets, the contagion or fight to quality will more likely occur as the contagion is more likely to 

be related to the lower tail dependence, while the fight to quality is more likely to be connected to 

the upper dependence. Following Patton [17], the density of the SJC copula is 

𝑐𝑆𝐽𝐶(𝑢, 𝑣|𝜏
𝑈, 𝜏𝐿) = 0.5[𝑐𝐽𝐶(𝑢, 𝑣|𝜏

𝑈, 𝜏𝐿) + 𝑐𝐽𝐶(1 − 𝑢, 1 − 𝑣|𝜏
𝑈, 𝜏𝐿) + 𝑢 + 𝑣 − 1] (14) 

The SJC copula is symmetric when 𝜏𝑈 = 𝜏𝐿  and asymmetric otherwise. To estimate the time-

varying dependence structure for the conditional copula, we assumed that the dependence 

parameter was determined by past information and that it followed an autoregressive moving 

average, or ARMA (1,10)-type process. Therefore, the dynamics of upper and lower tail dependence 

can be expressed as Equations (15) and (16), respectively: 

𝜏𝑡
𝑈 =∏(𝛽𝑈

𝑆𝐽𝐶𝜏𝑡−1
𝑈 +𝜔𝑈

𝑆𝐽𝐶 + 𝛾𝑈
𝑆𝐽𝐶 1

10
∑ |𝑢𝑡−𝑖 − 𝜐𝑡−𝑖|

10

𝑖=1
) (15) 

𝜏𝑡
𝐿 =∏(𝛽𝐿

𝑆𝐽𝐶𝜏𝑡−1
𝐿 +𝜔𝐿

𝑆𝐽𝐶 + 𝛾𝐿
𝑆𝐽𝐶 1

10
∑ |𝑢𝑡−𝑖 − 𝜐𝑡−𝑖|

10

𝑖=1
) (16) 

where   is the logistic transformation to keep 𝜏𝑈  and 𝜏𝐿  within the (0, 1) interval. We also 

estimated the parameters based on the MSML estimation method. 

Table 6 reports the estimation results. For the copula function, 𝛽  denotes the degree of 

persistence and 𝛾 represents the adjustment in the dependence process. As shown in Table 7, the 

parameters 𝛾 and 𝛽 are significant only for the Czech Republic and Germany for all maturities, and 
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for Poland and Germany for the 10-year maturity, suggesting that significant variance and strong 

dependency existed over time in these pairs. 

Table 7. Estimation results of the SJC copula model. 

 3-Year 5-Year 10-Year 

Czech–Germany    

ωU 0.439 (0.302) 0.072 (0.078) 0.041 (0.015) *** 

γU −2.671 (0.431) *** −0.368 (0.027) *** −0.196 (0.072) *** 

βU 0.914 (0.051) *** 0.988 (0.017) *** 0.991 (0.004) *** 

ωL 0.044 (0.059) 0.094 (0.092) 0.079 (0.023) *** 

γL −0.203 (0.078) *** −0.453 (0.466) −0.399 (0.176) ** 

βL 0.995 (0.008) *** 0.986 (0.017) *** 0.988 (0.007) *** 

Log-Likelihood 78.469 230.020 352.096 

Poland–Germany    

ωU −1.035 (0.131) *** −0.180 (0.696) 0.162 (0.065) *** 

γU −0.484 (0.465) −0.538 (1.975) −0.961 (0.358) *** 

βU 2.106 (2.253) 1.256 (1.353) 0.963 (0.014) *** 

ωL −3.912 (3.450) −4.751 (2.950) −1.115 (1.018) 

γL −0.917 (1.507) −0.658 (0.900) −9.421 (1.431) *** 

βL 0.903 (1.659) 0.356 (0.371) −0.112 (0.237) 

Log-Likelihood 2.261 22.933 83.667 

Hungary–Germany    

ωU −4.377 (1.259) *** −4.849 (3.180) −4.556 (2.918) 

γU −1.021 (18.862) −1.132 (26.387) −1.079 (37.612) 

βU 0.801 (1.039) 0.707 (0.415) * 0.795 (1.840) 

ωL −9.462 (1.007) *** −9.534 (0.980) *** −9.473 (1.071) *** 

γL −1.185 (2.827) −1.406 (2.367) −1.351 (5.567) 

βL 0.303 (0.111) ** 0.301 (0.106) *** 0.317 (0.154) ** 

Log-Likelihood −11.042 −17.312 −17.291 

Notes: *, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively. 

Figures 7 and 8 compare the time paths of the conditional lower and upper tail dependence 

based on the SJC copula for Poland and the Czech Republic, respectively. In general, we found that 

the conditional upper tail dependence was greater and fluctuated more than the conditional lower 

tail dependence for Poland and for the 3- and 5-year government securities markets because the value 

of 𝜔𝐿 was less than that of 𝜔𝑈. Moreover, the variation degree increased as maturities increased. 

However, the conditional upper tail dependence fluctuated less than the conditional lower tail 

dependence for the Czech Republic in the 10-year government securities market. In addition, the 

dynamic process of tail dependence was not well specified for the Poland–Germany and Hungary–

Germany pairs since the parameters 𝛾 and 𝛽 were insignificant. Thus, they were omitted. 

Meanwhile, these results also indicated that the Czech Republic showed the highest dependence 

with Germany. In addition, both positive and negative news from Germany significantly affected 

dependence, with the former having a larger influence than the latter, which was consistent with the 

findings of Yang and Hamori [7]. In contrast to Büttner and Hayo [4] as well as Yang and Hamori 

[7,8], however, we provided the dynamic process of dependence between the CEEC-3 and Germany 

and showed that the positive and negative news affected dependence dynamically. Figures 7 and 8 

also confirmed that financial contagion occurred during the global financial and European debt 

crises, consistent with the evidence provided by Boubakri and Guillaumin [14]. 
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Figure 7. Dynamic tail correlations between Poland and Germany. Note: This figure plots the 

estimated dynamic tail correlations between Poland and Germany from the SJC copula model for 10-

year yields. 
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Figure 8. Dynamic tail correlations between the Czech Republic and Germany. Note: This figure plots 

the estimated dynamic tail correlations between the Czech Republic and Germany from the SJC 

copula model for 3-year yields (top), 5-year yields (middle), and 10-year yields (bottom). 

5. Conclusions 

In this study, we investigated the dependence of the government securities markets in the 

CEEC-3 and Germany across maturities by employing the GAS-based dynamic Gaussian copula 

model. We found a high dependence of these government securities markets in the long maturity, 

but low dependence in the short maturity. In addition, the Czech Republic showed the highest 

dependence with Germany, while Hungary showed the lowest. Consistent with the findings of Pozzi 

and Wolswijk [9], by employing the breakpoint test, we also confirmed that EU accession, the global 

financial crisis, and the European debt crisis caused structural changes in the dynamic correlation. 

Furthermore, by employing the ΔCoVaR risk measure, we observed that the German systemic 

risk was low and relatively stable, while the CEEC-3 systemic risk was high and variant. By 

considering different time horizons, we showed that the long-run bond ΔCoVaR was higher than the 

short-run bond ΔCoVaR. This evidence on the systemic risk dynamics shows that the crisis not only 

had spillover effects on countries with weak economic fundamentals (e.g., Hungary, which has the 

highest systemic risk), but also had contagion effects for both the CEEC-3 and Germany. 

We also employed the SJC copula to examine the dynamic tail dependence among these 

countries. By comparing and contrasting the results from the dynamic Gaussian copula, we found 

that both positive and negative news from Germany significantly affected dependence with the 

Czech Republic, with the former having a larger influence than the latter. These results also showed 

that the dependence structure between the CEEC-3 and Germany was asymmetric. In addition, we 

confirmed that the Czech Republic showed the highest dependence with Germany and that financial 

contagion occurred during the global financial crisis and European debt crisis. 

Our results have at least one implication for policymakers and two implications for investors. 

For policymakers, although the integration of the financial markets in the CEEC-3 has decreased 

since 2008 owing to market segmentation, becoming an EU member has increased the degree of 

dependence with European financial markets. For investors, diversification benefits still exist, 

especially since the global financial crisis. In addition, the dynamic correlations for these countries 

are more sensitive to positive shocks, indicating that government securities markets remain a good 

investment, even during a crisis period. Additionally, the risk spillovers from the German 

government securities market may not be a large concern when compared with those from the CEEC-

3 countries. 
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