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Abstract: Passenger transport has become a significant producer of carbon emissions in China,
thus strongly contributing to climate change. In this paper, we first propose a model of ecological
pressure of the carbon footprint in passenger transport (EPcfpt). In the model, the EPcfpt values of
all the provinces and autonomous regions of China are calculated and analyzed during the period
of 2006–2015. For the outlier EPcfpt values of Beijing, Shanghai and Tianjin, the research areas are
classified into two scenarios: the first scenario (all the provinces and autonomous regions) and the
second scenario (not including Beijing, Shanghai and Tianjin). The global spatial autocorrelation
analysis of the first scenario shows that the EPcfpt might be randomly distributed, while it shows
positive spatial autocorrelation in the second scenario. Furthermore, we carry out the local spatial
autocorrelation analysis of the second scenario, and find that the low aggregation areas are the most
common type and are mainly located in the west of China. Then the disparities in EPcfpt between
China’s Eight Comprehensive Economic Zones are further analyzed. Finally, we put forward a
number of policy recommendations in relation to the spatio-temporal changes and the regional
disparities of EPcfpt in China. This study provides related references for proposing effective policy
measures to reduce the ecological pressure of carbon emissions from the passenger transport sector.

Keywords: passenger transport; carbon footprint; ecological pressure; Moran’s I index; spatio-temporal
changes

1. Introduction

Rapid technological and economic advances have resulted in continuously increasing human
energy consumption, which in turn induces a significant negative impact on the environment.
The transport industry has become one of the largest energy consuming and carbon emitting industries.
Greenhouse gases (GHGs), generated by the transport industry, account for 14% of global greenhouse
gas emissions [1]. By the end of 2010, GHGs generated in China accounted for 23.9% of the world’s
greenhouse gas emissions [2,3]. By 2030, both energy consumption and carbon emissions from the
transport sector have been predicted to follow a sharp 30% increase [4,5]. It can be seen that the
transport industry is facing enormous pressure to save energy and reduce emissions, especially in
passenger transport.

Related studies about transport carbon problems can be classified into three classes [6–11]. The first
class focuses on proposing new ways of calculating and forecasting carbon emissions from the transport
industry to improve accuracy. For this class, a system dynamics method has been used to simulate
scenarios of potential urban CO2 emission mitigation, depending on the selection of commuter
transport mode, based on historical data in the USA [12]. Carbon emissions of China’s industrial sector
over the period of 1992–2020 have also been modeled using input–output tables [13]. In the United
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States, a life cycle analysis was performed for the consumption and pollution of aircraft and intercity
bus emissions [14] using three independent variables, i.e., the size of the population; gross domestic
product (GDP); the number of small-, medium-, and large-sized registered vehicles. The future carbon
emissions of the transport sector were predicted for Thailand [15]. Estimates of carbon emissions
from medium and heavy-duty vehicles have been predicted in Korea [16]. The second class of related
studies focuses on assessing the factors that will likely influence the amount of transport carbon
emissions. Economic growth, energy intensity (i.e., the ratio of energy use and economic output), and
population size have been suggested as the main factors influencing carbon emissions of the Beijing
transport sector, using a generalized fisher index (GFI) decomposition model [17]; using a model of
stochastic impacts via regression on population, affluence, and technology (STIRPAT), the factors
affecting historical trends of carbon emissions in the Xinjiang transport sector were determined [18].
The third class of related studies centers on providing effective policy measures and improving energy
efficiency. For example, Andrade (2016) suggested that rail transit systems play an important role in
reducing energy and carbon dioxide emissions, based on the case of the city of Rio de Janeiro [19].
A mitigation path for carbon dioxide emission of the Chinese intercity passenger transport has also
been proposed, using a system dynamics model [20].

In recent years, many researchers have used the “carbon footprint” to evaluate the comprehensive
impacts of carbon emissions generated by human production activities on the environment. Thomas
Wiedmann and Jan Minx [21] proposed a scientific definition for carbon footprint: a measure of
the exclusive total amount of carbon dioxide emissions that are directly or indirectly caused by an
activity or are accumulated over the life stages of a product. Numerous studies have proposed
different ways of calculating the carbon footprint, as well as analyzed the factors influencing GHG
emissions [22–30]. One study, for example, analyzed the carbon footprint of eight categories of products
and services: construction, shelter, food, clothing, mobility, manufactured products, services, and
trade [31]. A hybrid carbon footprint evaluation model for enterprises, industries, and government
departments has been proposed that uses a combination of input–output models and life-cycle
assessment methods [32]. In an analysis of the carbon footprint of the public transport system
in Florida, carbon dioxide emissions were found to be the main sources of carbon emissions [33].
Some studies have used exergy to analyze the energy and environmental impacts of the transport
sector [34,35]. Ji X. et al. [36], for example, calculated gas pollutants and greenhouse gas emissions of
the Chinese transport sector between 1978 and 2004.

Although these studies have been dedicated to analyzing the carbon footprint of the transport
sector, for China in particular, very few studies have analyzed the carbon footprint of the passenger
transport sector of the country as a whole. Country-wide studies could, however, strongly contribute
to the Chinese policy goals that have been set for future carbon emissions in the transport sector,
e.g., the 13th five-year planning for national economy and social development in China [37,38].
In China, the increase in travel frequency and distance has resulted in greater energy consumption
and environmental pressures. Economic development and the improvement of the urbanization level
also stimulate the demand for passenger transport and lead to environmental pressures. In addition,
according to the research by the IPCC, the productive lands (forests, grasslands, arable lands, gardens,
and other agricultural lands) can contain a large amount of carbon stock. Therefore, attention should
be paid to the research on the relationship between the carbon footprint of passenger transport and the
productive land.

In this paper, we proposed a model to calculate the ecological pressure of the carbon footprint in
passenger transport (EPcfpt), from the view of productive lands in the provinces scope. EPcfpt is defined
as a measure of the amount of total carbon dioxide emissions in passenger transport that result in
pressure on the land ecosystems of China. To determine the EPcfpt, we used the ratio of the carbon
footprint of passenger transport and the productive land area, which illustrates the conflict between
passenger transport and the environment. Based on the data of passenger turnover and productive
land area, the EPcfpt indexes in all the provinces and autonomous regions of China were calculated and
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the spatio-temporal changes were studied during the period of 2006 to 2015. From the results of EPcfpt,
we can find that the EPcfpt values of Beijing, Shanghai and Tianjin are very high (outlier values). In order
to analyze the spatial aggregation characteristics in more detail, the research area was classified into
two scenarios: the first scenario (all the provinces and autonomous regions) and the second scenario
(not including Beijing, Shanghai and Tianjin). The global and local spatial autocorrelation analysis
of EPcfpt was carried out according to the above two scenarios. Furthermore, via the coefficient of
variation of the EPcfpt, the regional disparities among China’s Eight Comprehensive Economic Zones
were also analyzed. As such, this study analyzed the current situation to provide a basis for proposing
effective policy measures to reduce the ecological pressure of the carbon footprint from the passenger
transport sector in China.

The paper is organized as follows: first, we use the concept of EPcfpt to quantitatively describe
the ecological pressure of the carbon footprint in the passenger transport sector and its computational
model in Section 2. In Section 3, the research areas and data sources are introduced. The annual EPcfpt
index results from 2006 to 2015 and the spatial autocorrelation of EPcfpt in China are presented in
Section 4, as well as the disparities in the EPcfpt characteristics of the Eight Comprehensive Economic
Zones. Conclusions and recommendations are presented in Section 5.

2. Methodology

By presenting the concept of the ecological pressure of the carbon footprint in passenger transport,
we estimate the EPcfpt during the period 2006–2015 of all the provinces and autonomous regions in
China. With a spatial autocorrelation analysis using the ArcGIS and GeoDa software, we analyze the
spatial and temporal evolution in EPcfpt for each region. We further discuss the regional disparities
in the EPcfpt among the Eight Comprehensive Economic Zones, using the coefficient of variation.
The overall research framework of the paper is shown in Figure 1.
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2.1. Carbon Footprint Model for Passenger Transport

Carbon footprint is a concept that refers to the total amount of carbon dioxide produced either
directly or indirectly during the life cycle of an activity [39]. To calculate the carbon footprint for
passenger transport, we combined the transport carbon emissions of different transport modes with
their passenger turnover (Formula (1)). Four transport modes were accounted for: road, railway,
aviation, and waterway transport.

CFPT =
4

∑
i=1

(Vi × βi) (i = 1, 2, 3, 4) (1)

where CFPT refers to the carbon footprint of passenger transport; Vi is the passenger turnover of the ith
transport mode, which refers to the product of passenger transport quantity in a certain area and
average distance in a certain period of time, and the measure unit is “pkm”; and βi is the carbon
emission factor of the ith transport mode, i.e., the average carbon dioxide emissions for one passenger
transported over 1 km using the ith transport mode. The unit of βi is kg CO2/pkm. βi is set by the
results of carbon dioxide emission factors for different transport modes [40,41]. The detailed carbon
emission factors of different transport modes are shown in Table 1.

Table 1. Carbon emission factors of different transport modes.

Transport Mode Road Railway Aviation Waterway

βi (kg CO2/pkm) 0.132 0.065 0.369 0.07

2.2. Model for the Ecological Pressure of the Carbon Footprint in Passenger Transport (EPcfpt)

According to the data provided by the IPCC (2006), the world’s productive lands (forests,
grasslands, arable lands, gardens, and other agricultural lands) contain a large amount of carbon stock.
The carbon storage of forests and grasslands accounts for 93% of the total carbon stock of productive
lands [42–44]. In fact, the climate impacts are global and do not pertain only to the specific area where
passengers generate the carbon emissions. It can be studied at a different level such as provinces
and prefectures. Due to the limitations of data acquisition, this paper only focuses on the pressure of
the carbon footprint in passenger transport at the province level. We used the model for ecological
pressure of the carbon footprint in passenger transport (EPcfpt) to denote this problem. The EPcfpt
refers to the pressure on natural ecosystems caused by carbon emissions from energy consumed by
passenger transport.

As such, we used the ratio of the carbon footprint in passenger transport and the productive land
area of each province to determine the EPcfpt (Formula (2)). In doing so, we aimed to measure the
pressure of the amount of carbon emissions per unit of productive land area on the land ecosystem,
thus revealing the impacts of carbon emissions on the environment.

EPc f pt =
CFPT

S f + Sg1 + Sa + Sg2 + So
(2)

where EPcfpt represents the ecological pressure of the carbon footprint in passenger transport
(kg CO2/ha); CFPT represents the carbon footprint of passenger transport (kg CO2); Sf, Sg1, Sa,
Sg2, and So are the areas of forests, grasslands, arable lands, gardens, and other agricultural lands,
respectively (ha).

2.3. Spatial Autocorrelation Analysis of EPcfpt in China

Spatial autocorrelation analysis is used to reveal the spatial structure of spatial variables. It is also
a spatial statistical method to test whether the attribute of a certain unit is associated with its adjacent
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units. Moran’s I index is used to analyze the global spatial autocorrelation in the EPcfpt of all the
provinces and autonomous regions of China. Moran’s I index ranges from −1 to 1, with values close
to 1 indicating high spatial similarities. Moran’s I above 0 indicates positive spatial autocorrelation;
Moran’s I close to 0 indicates that it might be randomly distributed in space; Moran’s I below 0
indicates negative spatial autocorrelation. Moran’s I is calculated from Formula (3):

I =

n∑
i

∑
j

wij(EPc f pti
− EPc f pt)(EPc f ptj

− EPc f pt)

(∑
i

∑
j

wij)∑
i
(EPc f pti

− EPc f pt)
2 (i, j = 1, 2, 3 · · · n) (3)

where EPc f pti
and EPc f ptj

represent the ecological pressure of the carbon footprint in passenger
transport of region i and j, respectively; EPc f pt represents the average of the former two; n represents
the total number of regions; wij is an element that belongs to the spatial weight matrix W (Formula (4)),
which denotes the adjacent relations between the spatial units. In order to explore the spatial relations
between geographical objects, it must first define the adjacent relationship of the spatial objects.
Because of the irregularity of the boundaries of every province or autonomous region, we built
the spatial weight matrix W by way of “queen contiguity” (public edges or public points between
geographical objects). By this method, the value of wij can be found by using Formula (5).

W =


w11 w12 · · · w1n
w21 w22 · · · w2n
· · · · · · · · · · · ·
wn1 wn2 · · · wnn

 (4)

wij =

{
1, i and j is adjacent;
0, i and j is not adjacent.

(5)

To ensure the accuracy of the value of global Moran’s I after calculating it, we checked its
significance according to the rules of the hypothetical test in statistics via Formula (6). The null
hypothesis for this test is that the analyzed value (EPcfpt) is randomly distributed in space. We retained
the threshold of Z (1.96) in the normal distribution table at a significant level of 0.05. On this basis,
a spatial autocorrelation among provincial units was detected when the Z-value was above 1.96 or
below −1.96. Otherwise we accepted the null hypothesis, i.e., that EPcfpt values might be randomly
distributed in space.

Z =
I − E(I)√

V(I)
(6)

where E(I) = 1/(n − 1) is the expected value; V(I) = E(I2)− E(I)2 represents the standard deviation.
Generally, after analyzing the global spatial autocorrelation, the local spatial autocorrelation of

EPcfpt should also be carried out. The local Moran’s I index and the local Getis and Ord Gi* are the most
common indicators that are used to analyze the local spatial autocorrelation. By contrast, the local Getis
and Ord Gi* is better than the local Moran’s I index [45]. The local Getis and Ord Gi* can reflect and
identify the high and low level of aggregation. The local Getis and Ord Gi* is defined in Formula (7).

G∗
i =

n
∑

j=1
wijxj

n
∑

j=1
xj

(i, j = 1, 2, 3 · · · n) (7)

where xj represents the EPcfpt value of region j.
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2.4. The Coefficient of Variation of EPcfpt in Eight Comprehensive Economic Zones

The coefficient of variation (CV) represents the ratio of the standard deviation and the mean
value of the EPcfpt. For China, the traditional regional division is unable to completely describe
the characteristics of provincial development and relation. Therefore, the classification of the Eight
Comprehensive Economic Zones was proposed by the Development Research Center of the State
Council in the Eleventh Five-Year Plan [46] (Table 2).

Table 2. The classification of the Eight Comprehensive Economic Zones.

Economic Zones Provinces a Economic Zones Provinces a

North Coastal 1, 2, 3, 15 East Coastal 9, 10, 11
South Coastal 13, 19, 21 Northwest 26, 28, 29, 30, 31

The Middle of the Yangtze River 4, 5, 16, 27 Southwest 20, 22, 23, 24, 25
The Middle of the Yellow River 12, 14, 17, 18 Northeast 6, 7, 8

Note: a Province number: 1. Beijing, 2. Tianjin, 3. Hebei, 4. Shanxi, 5. Inner Mongolia, 6. Liaoning, 7. Jilin,
8. Heilongjiang, 9. Shanghai, 10. Jiangsu, 11. Zhejiang, 12. Anhui, 13. Fujian, 14. Jiangxi, 15. Shandong, 16. Henan,
17. Hubei, 18. Hunan, 19. Guangdong, 20. Guangxi, 21. Hainan, 22. Chongqing, 23. Sichuan, 24. Guizhou,
25. Yunnan, 26. Tibet, 27. Shaanxi, 28. Gansu, 29. Ningxia, 30. Qinghai, and 31. Xinjiang.

Using the Eight Comprehensive Economic Zones in China as regional units, the coefficient of
variation can hence be interpreted as the deviation of the sample value of each region from the
mean EPcfpt over all regions. We used the coefficient of variation to denote the disparities among
different Comprehensive Economic Zones (Formula (8)). When the coefficient of variation is larger for
a Comprehensive Economic Zone, the difference in each region increases.

CVi =

√
∑
j
(EPc f ptij

−EPc f pti
)

2

n

EPc f pti

(i = 1, 2, · · · , 8; j = 1, 2, · · · , 31) (8)

3. Data Sources

The passenger transport turnover data of road, railway, aviation and waterway transport were
extracted from the China Statistical Yearbook (2006–2015) [47]. According to China’s administrative
region, there are 31 provinces and autonomous regions in China. As passenger transport turnover
data of aviation in Hebei, Shanxi, Inner Mongolia, Zhejiang, Shandong, Guangxi, Guizhou, and
Fujian province were not available, we calculated them by combining passenger volumes and average
distances. Specific statistics of passenger turnover for each province were shown in the appendix.
Here, we generally counted the change of four transport modes of passenger turnover (Figure 2)
from the view of the whole country. We found that road passenger transport turnover increased
from 2006 to 2012. In 2013, there was a significant decline in road passenger transport turnover from
the perspective of the whole country; the decline was 7216.79 × 108 pkm. The sharp decrease in
road passenger transport turnover is mainly due to the fierce competition between road and railway
transport. High-speed railways have developed rapidly since 2013. Railway and aviation passenger
transport turnover showed a rising trend from 2006 to 2015. Waterway passenger transport turnover
of has not obviously changed. We can deduce that the volume of passengers in waterway transport is
the smallest among the four transport types.
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Figure 2. The changes of passenger turnover of different transport modes from 2006 to 2015.

The data of productive land areas were extracted from China’s Land and Resources Yearbook
(2006–2015) [48]. As the productive land area of Fujian province was not available, we calculated it
using linear interpolation and the method of average growth rate. The data of different provinces
can be obtained in the appendix due to limited space. Here, we counted productive land areas of the
whole country from 2006 to 2015 in Figure 3. From the overall change, China’s productive land areas
are increasing, especially from 2012 to 2013, and the extent of the increase is reaching 1833.02 × 104 ha,
which shows that China is increasingly focusing on green development. In this process, the growth
of woodland and grassland is more prominent. Productive land areas are increasing, benefitting
mainly from the call of land-saving that was proposed by the Chinese government in November
2012. The related call of land-saving includes optimizing the pattern of land space development,
strengthening the natural ecological system and environmental protection, and vigorously promoting
the construction of ecological civilization. This is one of the main reasons why the productive land of
2013 is rapidly increasing.
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4. Results and Discussion

4.1. EPcfpt Results

Using Formulas (1) and (2), we calculated EPcfpt values from 2006 to 2015 for all the provinces
and autonomous regions. The results of EPcfpt values are summarized in Table 3.
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Table 3. The EPcfpt of China’s provinces and autonomous regions from 2006 to 2015.

Province a Ecological Pressure of Carbon Footprint in Passenger Transport (102 kg CO2/ha)

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

1 234.42 265.33 273.69 276.58 350.37 386.91 406.72 410.92 439.37 483.87
2 33.89 37.14 54.68 55.47 62.74 69.78 104.94 106.21 119.31 133.00
3 8.09 8.92 6.98 7.40 8.76 10.17 10.97 8.66 9.37 9.12
4 4.42 4.86 5.43 5.22 5.41 5.78 5.99 5.64 5.65 5.72
5 0.51 0.54 0.45 0.48 0.64 0.72 0.85 0.80 0.82 0.86
6 8.14 8.88 9.69 10.09 10.97 11.29 11.94 11.65 13.86 14.21
7 1.90 2.26 3.10 3.28 3.79 4.03 4.19 3.26 3.48 3.65
8 1.85 2.14 1.92 2.25 2.47 2.70 3.12 2.99 3.39 3.53
9 387.68 469.68 494.49 550.19 680.25 745.00 684.33 762.19 830.60 890.25

10 25.43 29.80 24.26 26.73 29.93 33.93 37.70 27.49 29.11 29.44
11 22.45 26.41 28.69 30.12 34.06 35.64 37.04 33.11 35.80 38.32
12 9.00 10.03 12.50 13.85 15.11 16.82 19.18 12.66 13.80 11.35
13 7.68 8.92 8.60 9.42 10.47 11.75 12.85 13.44 15.20 16.52
14 5.70 5.19 5.55 4.70 6.41 6.79 7.09 6.69 7.05 6.89
15 11.44 13.04 17.04 18.95 19.56 20.49 21.48 13.10 13.53 13.31
16 9.49 11.14 13.56 15.02 16.75 18.90 20.12 14.31 16.19 15.15
17 6.31 7.34 8.38 8.36 10.10 11.28 12.40 9.29 10.57 11.71
18 6.61 7.27 7.54 8.03 9.16 10.26 10.95 10.41 11.19 10.46
19 20.39 36.23 33.97 38.60 45.44 50.74 57.71 49.81 57.87 62.78
20 5.99 6.91 7.32 8.47 9.54 10.70 11.67 8.97 9.94 10.70
21 25.71 29.02 41.46 38.20 41.29 46.32 49.99 52.37 58.83 63.84
22 6.32 8.22 9.65 10.87 12.74 14.57 18.84 17.82 20.07 22.55
23 11.91 11.97 13.53 13.71 11.85 16.79 18.15 17.37 19.35 20.84
24 3.10 3.33 3.59 3.76 4.27 5.09 5.89 5.62 6.04 5.30
25 2.81 3.06 2.98 2.98 3.40 3.85 4.30 3.80 4.09 3.87
26 0.07 0.08 0.10 0.10 0.10 0.10 0.11 0.10 0.11 0.11
27 4.45 4.63 5.12 5.26 6.11 7.08 6.89 5.94 7.09 7.21
28 1.35 1.49 1.89 2.03 2.16 2.52 2.70 3.20 3.30 3.50
29 0.16 0.20 0.24 0.28 0.32 0.37 0.42 0.41 0.47 0.51
30 2.26 2.57 3.46 3.59 4.19 4.86 5.37 5.00 5.68 6.20
31 0.97 1.09 1.18 1.17 1.28 1.42 1.64 1.70 1.62 1.57

Note: a Province number: 1. Beijing, 2. Tianjin, 3. Hebei, 4. Shanxi, 5. Inner Mongolia, 6. Liaoning, 7. Jilin,
8. Heilongjiang, 9. Shanghai, 10. Jiangsu, 11. Zhejiang, 12. Anhui, 13. Fujian, 14. Jiangxi, 15. Shandong, 16. Henan,
17. Hubei, 18. Hunan, 19. Guangdong, 20. Guangxi, 21. Hainan, 22. Chongqing, 23. Sichuan, 24. Guizhou,
25. Yunnan, 26. Tibet, 27. Shaanxi, 28. Gansu, 29. Ningxia, 30. Qinghai, and 31. Xinjiang.

In general, the EPcfpt of all the Chinese provinces and autonomous regions increased, albeit at
varying degrees, over the period 2006–2012, due to a sharp increase of passenger volumes of road,
rail, and aviation transport. In 2013, the EPcfpt of many provinces and autonomous regions, except for
Beijing, Tianjin, Fujian, Hainan, Gansu, and Xinjiang, showed a decline. The reasons include not only
the decline of road passenger turnover, but also the decrease of specific emissions per vehicle. However,
in the long run, the decrease of specific emissions per vehicle will not significantly change the total
EPcfpt of China. Relatively large declines occurred in Jiangsu, Zhejiang, Anhui, Shandong, Henan and
Guangdong, among which the decline of Jiangsu was the most pronounced (10.21 × 102 kg CO2/ha),
i.e., a decrease above 27%. After 2013, the EPcfpt of other Chinese provinces and autonomous regions
show a continuous increase.

Pressures on the productive land are very small in Inner Mongolia, Gansu, Xinjiang, Qinghai,
Ningxia, which are classified as the Middle of the Yellow River and the Northwest Economic Zone, and
typically have a large amount of productive land and small amounts of passenger transport. In Tibet,
in particular, the EPcfpt has remained stable at a low level of 10 kg CO2/ha. The productive lands
of Tibet are well protected, and the volume of passenger transport is rather low. In Hainan, rapid
development of tourism in recent years has resulted in an increasing number of passengers. As a result,
the EPcfpt increased to 63.84 × 102 kg CO2/ha from 25.71 × 102 kg CO2/ha in 2006, i.e., a decrease
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above 50%. The change of EPcfpt index for Jiangxi, Guizhou, and Shaanxi was 2.0 × 102 kg CO2/ha,
which was lower than in all other provinces.

The EPcfpt values of Beijing, Shanghai, and Tianjin are very high due to rapid economic
development, small amounts of productive land, and huge passenger transport turnover.
The maximum EPcfpt of Shanghai is 890.25 × 102 kg CO2/ha, i.e., 89,025 kilograms of carbon emissions
stored in productive land per hectare. This figure reflects the per unit productive land that absorbs the
amount of carbon emissions.

According to the results of different provinces and autonomous regions in each year, it can be
seen that the EPcfpt values of Beijing, Shanghai and Tianjin are outliers. The mean EPcfpt values
of Beijing, Shanghai and Tianjin during the period of 2006–2015 are 341.2 × 102 kg CO2/ha,
637.8 × 102 kg CO2/ha and 66.1 × 102 kg CO2/ha, respectively, which are much higher than the
mean values of the other 28 provinces and autonomous regions. In order to show the change of EPcfp
of different provinces and autonomous regions more clearly, we used Figure 4 to show the change of
outlier values of Beijing, Shanghai and Tianjin, and used Figure 5 to show the change of other values
which basically distributed averagely. The EPcfpt values of Beijing and Tianjin showed a linear increase
from 2006 to 2015 (Figure 5), and the EPcfpt values of Shanghai appeared to slightly decline in 2013, but
showed a rising trend overall.
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Figure 5. The changes of other EPcfpt values from 2006 to 2015.
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Figure 6 shows the spatial distribution of EPcfpt for all the Chinese provinces and autonomous
regions in the years of 2006, 2009, 2012, and 2015. We can clearly see the spatial distribution feature
and EPcfpt changes of different provinces. In general, the EPcfpt of Chinese provinces and autonomous
regions have increased from different levels. The EPcfpt of Chinese eastern and central regions,
especially, increased significantly. The regions with a high ecological pressure are mainly located in
the eastern areas. The EPcfpt values of provinces in western areas are low.Sustainability 2018, 10, x FOR PEER REVIEW  10 of 17 

 
2006 2009 

2012 2015 

Figure 6. Spatial change of EPcfpt in 2006, 2009, 2012, and 2015. 

4.2. Spatial Autocorrelation of EPcfpt in China 

4.2.1. Global Spatial Autocorrelation Analysis 

As can be seen from Table 3 and Figure 6, the outlier EPcfpt values of Beijing, Shanghai and Tianjin 
are very high, which might influence the global autocorrelation. Therefore, the research regions are 
classified into two scenarios: the first scenario is the whole province area, and the second scenario is 
the area without Beijing, Shanghai and Tianjin. In order to explore the effect of these outlier EPcfpt 
values of Beijing, Shanghai and Tianjin, we calculated Moran’s I in the two scenarios. One is to 
calculate Moran’s I of all China’s provinces and autonomous regions (this can be called unadjusted 
Moran’s I), and the other is to calculate Moran’s I of China’s provinces and autonomous regions 
without Beijing, Shanghai and Tianjin (this can be called adjusted Moran’s I). The results of 
unadjusted Moran’s I and adjusted Moran’s I are shown in the Table 4. We also chose the scatter plots 
of Moran’s I in the first and the second scenario in 2012, as an example, to obtain a more intuitive 
contrast (Figure 7). 

In the first scenario (i.e., unadjusted), the results of Moran’s I index are close to 0 over the entire 
period of 2006–2015 (Table 4), the Z values are below 1.96 and the P values are above 0.05, so 
according to the standards of the spatial autocorrelation, the EPcfpt of all the provinces and 
autonomous regions might be randomly distributed in the province units at the 0.05 significant level. 
However, in the second scenario (i.e., adjusted), we found that the results of Moran’s I index are 
above 0 over the entire period of 2006–2015 (Table 4), which indicates that the EPcfpt of the other 
provinces and autonomous regions have positive autocorrelation relationships. Furthermore, this 
positive autocorrelation relationship was proved statistically significant because the Z values were 
above 1.96 and the P values were below 0.05. That is, all the EPcfpt values of the provinces and 
autonomous regions without Beijing, Shanghai and Tianjin showed a state of spatial aggregation. In 
contrast to these scenarios, we found that the outlier EPcfpt values of Beijing, Shanghai and Tianjin 
have great influences on the EPcfpt of the whole country. One of the most likely explanations for the 

Figure 6. Spatial change of EPcfpt in 2006, 2009, 2012, and 2015.

4.2. Spatial Autocorrelation of EPcfpt in China

4.2.1. Global Spatial Autocorrelation Analysis

As can be seen from Table 3 and Figure 6, the outlier EPcfpt values of Beijing, Shanghai and Tianjin
are very high, which might influence the global autocorrelation. Therefore, the research regions are
classified into two scenarios: the first scenario is the whole province area, and the second scenario is the
area without Beijing, Shanghai and Tianjin. In order to explore the effect of these outlier EPcfpt values
of Beijing, Shanghai and Tianjin, we calculated Moran’s I in the two scenarios. One is to calculate
Moran’s I of all China’s provinces and autonomous regions (this can be called unadjusted Moran’s I),
and the other is to calculate Moran’s I of China’s provinces and autonomous regions without Beijing,
Shanghai and Tianjin (this can be called adjusted Moran’s I). The results of unadjusted Moran’s I and
adjusted Moran’s I are shown in the Table 4. We also chose the scatter plots of Moran’s I in the first
and the second scenario in 2012, as an example, to obtain a more intuitive contrast (Figure 7).
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Table 4. Global Moran’s I and related statistics under different scenarios from 2006 to 2015.

Unadjusted (First Scenario) Adjusted (Second Scenario)

Year Moran’s I-Value Z-Value p-Value Moran’s I-Value Z-Value p-Value

2006 0.0471 1.0254 0.135 0.299 3.093 0.010
2007 0.0423 0.9367 0.150 0.232 2.427 0.020
2008 0.0469 1.0349 0.138 0.204 2.358 0.018
2009 0.0441 1.0561 0.126 0.221 2.203 0.029
2010 0.0490 0.8746 0.116 0.232 2.465 0.013
2011 0.0541 0.9045 0.110 0.214 2.246 0.023
2012 0.0718 1.1480 0.127 0.205 2.270 0.025
2013 0.0470 0.9699 0.142 0.150 1.993 0.043
2014 0.0467 1.0002 0.146 0.135 1.978 0.041
2015 0.0478 1.0815 0.133 0.115 2.149 0.036

Sustainability 2018, 10, x FOR PEER REVIEW  11 of 17 

results is that these regions have experienced too much passenger transport turnover compared to 
the amount of productive land area. From Table 4, we can find that Moran’s I-value is gradually 
decreasing in the second scenario, which indicates that the positive autocorrelation relationship is 
gradually weakening over time. 

Table 4. Global Moran’s I and related statistics under different scenarios from 2006 to 2015. 

 Unadjusted (First Scenario) Adjusted (Second Scenario) 
Year Moran’s I-Value Z-Value p-Value Moran’s I-Value Z-Value p-Value
2006 0.0471 1.0254 0.135 0.299 3.093 0.010 
2007 0.0423 0.9367 0.150 0.232 2.427 0.020 
2008 0.0469 1.0349 0.138 0.204 2.358 0.018 
2009 0.0441 1.0561 0.126 0.221 2.203 0.029 
2010 0.0490 0.8746 0.116 0.232 2.465 0.013 
2011 0.0541 0.9045 0.110 0.214 2.246 0.023 
2012 0.0718 1.1480 0.127 0.205 2.270 0.025 
2013 0.0470 0.9699 0.142 0.150 1.993 0.043 
2014 0.0467 1.0002 0.146 0.135 1.978 0.041 
2015 0.0478 1.0815 0.133 0.115 2.149 0.036 
 

 
(first scenario) (second scenario) 

Figure 7. The scatter plots of Moran’s I in different scenarios in 2012. 

4.2.2. Local Spatial Autocorrelation Analysis 

From the above analysis of the first scenario and the second scenario, we found that the special 
EPcfpt values of Beijing, Shanghai and Tianjin had influenced the spatial autocorrelation analysis 
significantly. Therefore, we removed these regions from the whole research unit area in the follow-
up analysis. In this part, the local spatial autocorrelation analysis will be carried out in the provinces 
and autonomous regions in the second scenario. 

We used the local Getis and Ord Gi* to explore the local spatial autocorrelation further and 
distinguish the aggregation types of EPcfpt values among the other provinces. The changes of 
aggregation are shown in Table 5. We can see that the low aggregation provinces mainly include 
Xinjiang, Inner Mongolia, Heilongjiang, Gansu, Ningxia, Sichuan and Tibet, and the high aggregation 
provinces mainly include Jiangsu, Anhui, Fujian and Jiangxi. During the study period, there was no 
change concerning the low aggregation phenomenon of Xinjiang and Inner Mongolia, and the high 
aggregation of Fujian did not change either. The other provinces that were characterized by 
aggregation showed slightly different changes. Furthermore, the distribution of high and low 
aggregation shows obvious characteristics in terms of geography. As shown in Figure 8, the low 
aggregation provinces are mainly located in the northwest, while the high aggregation provinces 
mainly appear in the southeast of China. 

Figure 7. The scatter plots of Moran’s I in different scenarios in 2012.

In the first scenario (i.e., unadjusted), the results of Moran’s I index are close to 0 over the entire
period of 2006–2015 (Table 4), the Z values are below 1.96 and the P values are above 0.05, so according
to the standards of the spatial autocorrelation, the EPcfpt of all the provinces and autonomous regions
might be randomly distributed in the province units at the 0.05 significant level. However, in the second
scenario (i.e., adjusted), we found that the results of Moran’s I index are above 0 over the entire period
of 2006–2015 (Table 4), which indicates that the EPcfpt of the other provinces and autonomous regions
have positive autocorrelation relationships. Furthermore, this positive autocorrelation relationship
was proved statistically significant because the Z values were above 1.96 and the P values were below
0.05. That is, all the EPcfpt values of the provinces and autonomous regions without Beijing, Shanghai
and Tianjin showed a state of spatial aggregation. In contrast to these scenarios, we found that the
outlier EPcfpt values of Beijing, Shanghai and Tianjin have great influences on the EPcfpt of the whole
country. One of the most likely explanations for the results is that these regions have experienced too
much passenger transport turnover compared to the amount of productive land area. From Table 4,
we can find that Moran’s I-value is gradually decreasing in the second scenario, which indicates that
the positive autocorrelation relationship is gradually weakening over time.

4.2.2. Local Spatial Autocorrelation Analysis

From the above analysis of the first scenario and the second scenario, we found that the special
EPcfpt values of Beijing, Shanghai and Tianjin had influenced the spatial autocorrelation analysis
significantly. Therefore, we removed these regions from the whole research unit area in the follow-up
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analysis. In this part, the local spatial autocorrelation analysis will be carried out in the provinces and
autonomous regions in the second scenario.

We used the local Getis and Ord Gi* to explore the local spatial autocorrelation further and
distinguish the aggregation types of EPcfpt values among the other provinces. The changes of
aggregation are shown in Table 5. We can see that the low aggregation provinces mainly include
Xinjiang, Inner Mongolia, Heilongjiang, Gansu, Ningxia, Sichuan and Tibet, and the high aggregation
provinces mainly include Jiangsu, Anhui, Fujian and Jiangxi. During the study period, there was no
change concerning the low aggregation phenomenon of Xinjiang and Inner Mongolia, and the high
aggregation of Fujian did not change either. The other provinces that were characterized by aggregation
showed slightly different changes. Furthermore, the distribution of high and low aggregation shows
obvious characteristics in terms of geography. As shown in Figure 8, the low aggregation provinces are
mainly located in the northwest, while the high aggregation provinces mainly appear in the southeast
of China.

Table 5. The change of low and high aggregation provinces.

Year Low Aggregation Provinces a High Aggregation Provinces a

2006 5, 8, 23, 28, 29, 31 10, 12, 13
2007 5, 8, 23, 28, 29, 31 12, 13, 14
2008 5, 23, 28, 29, 31 12, 13
2009 5, 23, 28, 29, 31 10, 12, 13, 14
2010 5, 8, 23, 28, 29, 30, 31 10, 12, 13, 14
2011 5, 23, 28, 29, 31 12, 13, 14
2012 5, 23, 28, 29, 31 13, 14
2013 5, 8, 23, 28, 29, 31 13
2014 5, 8, 23, 28, 29, 31 13, 14
2015 5, 8, 23, 31 13

Note: a Province number: 5. Inner Mongolia, 8. Heilongjiang, 10. Jiangsu, 12. Anhui, 13. Fujian, 14. Jiangxi,
23. Sichuan, 26. Tibet, 28. Gansu, 29. Ningxia, 30. Qinghai, and 31. Xinjiang.
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4.3. Regional Disparities of EPcfpt in China’s Eight Comprehensive Economic Zones

In order to further analyze the disparities of EPcfpt values in different Economic Zones, we used
the coefficient of variation from the perspective of the Eight Comprehensive Economic Zones in China.
The coefficient of variation reflects the degree of data discretization and discrepancy.

Based on the EPcfpt value of each province and autonomous region, we can obtain the total value
of the EPcfpt in each Comprehensive Economic Zone. The EPcfpt values of the Eight Comprehensive
Economic Zones from 2006 to 2015 are shown in Figure 9. It can be seen that the EPcfpt values in the
Eastern Coastal Economic Zone are the largest and amount to about 50% of the total EPcfpt. Furthermore,
the EPcfpt value of the North Coastal region is the second largest and accounts for approximately 33%
of the total EPcfpt. In combination, these two Economic Zones account for more than 80% of the total
EPcfpt in China.
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Figure 9. Proportion of EPcfpt in the Eight Comprehensive Economic Zones from 2006 to 2015.

The results of the coefficient of variation (CV) for each of the Comprehensive Economic Zones and
the whole country over the period 2006–2015 are shown in Figure 10. The change of CVs represents
the disparity of EPcfpt values in China’s Eight Comprehensive Economic Zones and the whole country.
There are three spatial trends in the EPcfpt. First, the CVs are increasing in the East Coastal, the
Northwest and the Southwest Economic Zones. This means that the difference of the EPcfpt values
of the provinces in these Comprehensive Economic Zones increased. Second, the CVs of the South
Coastal, the Middle of the Yangtze River, the Middle of the Yellow River, and the Northeast Economic
Zone have followed a fluctuating trend. Third, the CV of the North Coastal decreases by 0.1 from
2006 to 2015, which means that the regional disparity for EPcfpt is decreasing. Compared to other
Comprehensive Economic Zones, the North Coastal and East Coastal Economic Zones have high
variability, mainly because they include Beijing and Shanghai. The coefficient of variation of the rest
of the Economic Zones is smaller, indicating that the difference in EPcfpt values of each province is
smaller. However, from the perspective of the whole country, the mean CV is 2.786, which shows that
the disparities of EPcfpt values for all the provinces and autonomous regions of China are very large;
the main cause of this is the outlier EPcfpt values. The disparities between the different Economic Zones
are closely related to their economic development, land use rate, the structure of passenger transport,
and governmental policy.
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5. Conclusions and Recommendations

5.1. Conclusions

Using the data from 2006 to 2015 of all the provinces and autonomous regions in China, this study
presented an estimation of the ecological pressure of the carbon footprint of the passenger transport
(EPcfpt). Conducting spatial analysis, we subsequently analyzed the global and local autocorrelation
of EPcfpt in China’s provinces and autonomous regions. Using the EPcfpt coefficient of variation,
the disparities between China’s Eight Comprehensive Economic Zones and the whole country scale
were also assessed.

In general, the EPcfpt of all the Chinese provinces and autonomous regions have increased over
the period of 2006–2012, followed by a reduction in 2013 due to a decrease in passenger turnover.
The sharp decrease in road passenger transport turnover is mainly due to the fierce competition
between road and railway transport. High-speed railways have rapidly developed since 2013. From
2013 onwards, the EPcfpt again showed a continuous increase. Provinces with large EPcfpt values were
mainly concentrated in several major coastal areas, e.g., Shanghai, Beijing, and Tianjin had the highest
EPcfpt, and also showed the fastest growth in the EPcfpt.

The EPcfpt of all the Chinese provinces and autonomous regions might be randomly distributed
in space. However, from our analysis, the outlier EPcfpt values of Beijing, Shanghai and Tianjin are
very high, which might influence the global autocorrelation. Therefore, we classified the research
regions into two scenarios, and found that there are different spatial autocorrelation results in different
scenarios. There are positive autocorrelation relationships in the second scenario. Furthermore,
according to the local spatial autocorrelation analysis, the low aggregation provinces are mainly
located in the northwest, while the high aggregation provinces appear in the southeastern of China.

The relative disparities in EPcfpt between China’s Eight Comprehensive Economic Zones varied
strongly. The disparities in EPcfpt of the East Coastal, the Northwest and the Southwest Economic Zones
increased over the years. The South Coastal, the Middle of the Yangtze River, the Middle of the Yellow
River, and the Northeast Economic Zone followed fluctuating trends over the years. The regional
disparity in the North Coastal Economic Zone decreased gradually. The EPcfpt of the North Coastal and
East Coastal Economic Zone showed strong differences, because they contain Beijing and Shanghai,
respectively, which are the top two regions of China in terms of EPcfpt.

5.2. Recommendations and Future Research

Rapid economic development, and the growth of passenger travel distance and frequency, will
result in further increases in China’s EPcfpt. Consequently, the productive land of each province and
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autonomous region will be under great pressure, and the energy conservation and carbon emission
mitigation will remain challenging. As such, we proposed a number of policy recommendations in
relation to the reduction of EPcfpt. Foremost, based on the proposed model and the analysis results,
every province or autonomous region should mitigate its passenger transport carbon emission to
prevent the increasing EPcfpt. On the one hand, China should further optimize the traffic structure
of passenger transport, especially in big cities such as Beijing, Shanghai, and Tianjin. For example,
road transport passengers can shift to more low-carbon rail and other modes of transport. On the
other hand, China should adjust the energy consumption structure of passenger transport, increase
the use of natural gas, solar energy and other clean energy and reduce the proportion of petrol
and diesel in passenger transport as soon as possible. Second, a stricter control policy should be
created and implemented to enlarge the area of productive land, or at least inhibit further loss in
order to further relieve EPcfpt. Third, based on the interaction of provinces in spatial aggregation
that face more EPcfpt stress, especially the high aggregation areas such as China’s eastern regions,
the government should actively carry out a collaborative policy to guide the transport sector to
reduce the pressure of productive land. The low aggregation provinces should play a leading role in
driving the adjacent provinces to reduce the ecological pressure of the carbon footprint of in passenger
transport. Fourth, the government should vigorously advocate car sharing and guide the community
to choose environmentally friendly ways to travel. This makes a profound difference in improving
the efficiency of resource utilization and alleviating the ecological pressure of the carbon footprint in
passenger transport in the long run.

In this study, we explored the ecological pressure of the carbon footprint in passenger transport.
However, the spatial autocorrelation results of EPcfpt are subject to the modifiable areal unit problem
(MAUP). The MAUP illustrates both the need for considering spatial analysis, and the fundamental
uncertainties that accompany real-world analysis [49]. In the process of spatial analysis, the map of
China is displayed as the geographical raster model, which is used to depict and mimic the green
space of all the provinces and autonomous regions of China. However, the boundaries of space units
are often created artificially or in an ad hoc manner and thus can be changed according to the data
collection. Therefore, due to the limitation of data acquisition of smaller space units at present, we only
analyzed the statistical results according to the spatial adjacency relationship of the province units.
In a future study, we will try to collect as much data as possible on smaller units and further analyze
the spatial autocorrelation in a more detailed scope.
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