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Abstract: Grazing land ecosystem services including food provision and climate regulation are greatly
influenced by soil health. This paper provides a condensed review of studies on the response of three
important soil properties related to soil health to grazing land management: water infiltration, carbon
(C) sequestration, and nitrogen use efficiency (NUE). Impacts of management strategies that are
often used in grazing lands are discussed in this review including vegetation composition, grazing
methods, and other factors such as fertilizer use and climatic conditions. In general, proper grazing
management such as continuous moderate grazing and rotational/deferred-rotational grazing with
low or moderate stocking rates tends to benefit all three soil properties. Water infiltration can usually
be increased with full vegetation cover, increased soil C, and aggregate stability, or be decreased with
greater soil bulk density. Adoption of highly productive plant species with faster turnover rates can
promote soil C sequestration by increasing C input. However, excessive C removal from ecosystems
due to overgrazing or improper soil fertilization management results in higher C loss, which can have
detrimental effects on soil C sequestration. Proper stocking rate and a balanced manure/fertilizer
management was found to be critical for enhancing NUE. Grazing land management sometimes
simultaneously influence the three soil properties. Techniques that can increase soil C such as
introduction of high productive plant species can often promote water infiltration and soil nitrogen
(N). Some other practices such as adoption of N fertilizer may enhance C sequestration while being
detrimental to NUE. An integrated management plan for a specific location or farm should be
considered carefully to improve soil health as well as ecosystem production. This review provides
farmers and policy makers the current state of general knowledge on how health-related soil processes
are affected by grazing land management.
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1. Introduction

Grazing lands comprise 3.6 billion ha globally and various management strategies are adopted on
these lands to meet the demand for greater productivity and climate resilience [1]. Ecosystem functions
such as forage production, nutrient cycling, carbon (C) accumulation, root processes [2–4], and the
ecosystem sustainability [5] can be enhanced if a good grazing land management plan is adopted.
Grazing management practices can also impact soil properties (e.g., [6]), which play an important
role in determining ecosystem productivity and sustainability [7,8]. As a result, adopting improved
management for building soil health, which is defined as the sustainable ability of soil to function
as a vital living ecosystem that can continuously support plants, animals, and humans [9] is critical.
Specifically, three important components of soil health including soil water infiltration, C sequestration,

Sustainability 2018, 10, 4769; doi:10.3390/su10124769 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0003-4238-0817
https://orcid.org/0000-0003-4831-3308
http://dx.doi.org/10.3390/su10124769
http://www.mdpi.com/journal/sustainability
http://www.mdpi.com/2071-1050/10/12/4769?type=check_update&version=2


Sustainability 2018, 10, 4769 2 of 26

and nitrogen use efficiency (NUE) present water, carbon, and nutrient dynamics and are strongly
influenced by the grazing management practices.

Soil water infiltration, which regulates the ecosystem water cycle and indicates the soil’s resistance
to erosion, can be influenced by grazing land management (e.g., [10]). When management leads to a
decrease in water infiltration, it can cause increased runoff and soil erosion, which are detrimental
to ecosystem functions such as livestock productivity [11]. Thus, understanding and improving soil
water infiltration is particularly important especially in dry lands [12], which accounts for about 40% of
the global land area [13,14]. Past studies investigating the response of soil water infiltration to grazing
land management strategies are very few and are often conducted in specific farms or rangelands,
which are not representative to the entire grazing lands in the world.

Soil C regulates nutrient and water supply, soil erosion, and soil physical and chemical
properties [15] and can also be strongly influenced by grazing land management (e.g., [16]). Under
different management, soil C sequestration can be influenced by changes in both C inputs and outputs.
In grazing lands, soil C accumulation accounts for ~90% of the total ecosystem C [17]. Therefore, a
slight change in soil C in grazing lands can have a large impact on the global C cycling. Considering the
benefits of soil C sequestration on ecosystem functions such as sustaining productivity and mitigating
climate change, knowledge on better ways to manage grazing lands is highly needed. However,
contradictory results on the response of soil C to similar grazing land management are often reported.

Nitrogen use efficiency is the ability of plants to use available nitrogen (N), which determines
the yield per unit of N input and can be affected by grazing land management such as plant species
(e.g., [18]), fertilizer management (e.g., [19]), and grazing activities (e.g., [20]). Improper management
such as overuse of synthetic fertilizers can increase the cost of production as well as N loss from the
ecosystem, which leads to water contamination and greenhouse gas emissions. Thus, improving NUE
on grazing lands is essential for both economic and environmental benefits.

Considering the need for achieving the overall impacts of grazing land management towards
improved soil health, we reviewed existing refereed manuscripts investigating the changes in
infiltration, C sequestration, and NUE by different grazing land management strategies including
the vegetation structures (e.g., different grass species, legume incorporation, conversion of forest to
pastures, afforestation), grazing methods (e.g., grazing exclusion, grazing intensity, rotational grazing),
and other land management approaches (e.g., fertilization, irrigation, prescribed fire) in tandem with
climatic and soil factors (Table 1). The goal is to provide the readers a quick and condensed review of
the grazing management strategies to improve the sustainability of grazing lands.

Table 1. Grazing land management options influencing the three soil properties surveyed in this review.

Grazing Management Vegetation Composition Other Factors

Infiltration

Grazed vs. exclosure
Intensity (heavy vs.

moderate vs. light grazed)
Frequency (continuous vs.

rotational grazed)

Trees/shrubs vs.
bunchgrasses vs. sodgrasses

Grass vs. forbs
Conversion from woodlands

to pastures

Management duration
Topography

Burning
Animal type

Carbon
Sequestration

Grazed vs. exclosure
Intensity (heavy vs.

moderate vs. light grazed)
Frequency (continuous vs.

rotational grazed)

Legume incorporation
Conversion from cultivated

lands to pastures
Crop-pasture rotation

Pasture establishment after
deforestation

Fertilization
Irrigation
Burning

Management duration
Soil type
Climate

Nitrogen Use
Efficiency

Grazed vs. ungrazed
intensity (heavy vs.

moderate vs. light grazed)

Crop vs. pasture
Legume incorporation

C4 vs. C3 grass
Fertilization
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2. Methods

The literature was retrieved in 2017 by searching the Google Scholar using the following search
words: “grazing lands/grasslands management,” “soil health,” “soil water infiltration,” “soil C
sequestration,” and “nutrient/ N use efficiency.” No restrictions were imposed for article selections on
study locations or the year of publication to prepare this review as long as the articles were written in
the English language and focused on grazing land management effects on the three soil properties
considered in this review. The reference list of articles used to derive the statements and conclusions in
the present review are shown in Appendix A. If there is more than one article with similar conclusions,
one or two of the latest ones were cited in the text as example references. The majority of these studies
are peer-reviewed articles and books. Study sites reported in the articles were mapped and shown
in Appendix B (Figure A1 for soil water, Figure A2 for soil C, and Figure A3 for NUE). If referred
articles showed data from a specific country, the coordinates of the corresponding country capital
were included in the maps. For comparative analysis of water infiltration, we only selected articles
in which the water infiltration rate was given in cm hr−1 or can be converted to cm hr−1 (Table 2).
The infiltration rate in Table 2 is shown as the percentage of difference between the two management
options, which was calculated as:

Percentage of infiltration rate difference (%) = (Management 1 infiltration rate −
Management 2 infiltration rate)/Management 2 infiltration rate × 100%

(1)

Articles describing soil C was selected if the data were in Mg C ha−1 or can be converted to
Mg C ha−1 (Table 3). The C sequestration rate after management changes shown in the Table 3 was
calculated as:

C sequestration rate (Mg C ha−1 yr−1) = (Management 1 C content −
Management 2 C content)/years of management

Different parameters associated with NUE were selected from the literature including NUE (%),
N balance (kg N ha−1), N uptake (kg N ha−1), inorganic N (mg N ha−1), and the mineralization rate
(mg N kg−1 d−1) (Table 4). The difference of each parameter between two types of management in
Table 4 was calculated as:

Difference in parameters = Management 1 − Management 2

3. Soil Water Infiltration

Soil water infiltration refers to the rate of rainfall or the irrigation water that enters the soil.
To sustain soil water infiltration, vegetation cover is critical since it protects soil from high intensity
rainfall [21] and improves soil aggregation and other physical properties [22]. Compacted soils
negatively influence soil water infiltration rates due to the decreased amount and size of surface pore
space [23]. Thus, water infiltration is negatively affected if the vegetation cover is considerably
decreased due to intensive grazing [24,25] and/or the soil bulk density is increased by animal
trampling [26].

Because of the negative effect of grazing on infiltration rates (e.g., [25]), more recent studies have
found that using long-term exclosures can be an effective management strategy to improve hydrological
cycling, which can increase water infiltration by 11% to 132% (Table 2). Since mismanagement of
grazing lands (e.g., overgrazing and undesirable vegetation) can result in soil compaction and water
run-off, a balanced livestock management on grazing lands are critical in providing food provisioning
to animals while sustaining/improving soil water infiltration and conservation.
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Table 2. Water infiltration rate as affected by grazing land management practices.

Management Infiltration
Rate (%) § Location Precipitation

(mm)
Temperature

(◦C) Soil Type References

Exclosure vs.
Grazed

11 to 132

Texas, USA 572 9 to 30 Clay [27]

New Mexico, USA 384 −6.7 to 18.9 Fine loam [28]

Arizona, USA 350 N/A N/A [29]

Queensland, Australia 452 to 828 19 to 24 Loamy sand to
clay loam [30]

Eastern Cape, South Africa 373 8 to 21 Silt loam [31]

Light vs. Heavy
Grazed

0 to 119

Colorado, USA 305 N/A Sandy loam [32]

Texas, USA 609 N/A Silty clay [33]

Addis Ababa. Ethiopia 650 N/A Clay [34]

Oklahoma, USA 900 N/A Loam, silt loam [35]

Moderate vs. Heavy
Grazed

0 to 116

Texas, USA 428 to 556 N/A Silty clay [21]

Colorado, USA 305 N/A Sandy loam [32]

Texas, USA 609 N/A Silty clay [33]

Addis Ababa, Ethiopia 650 N/A Clay [34]

Oklahoma, USA 900 N/A Loam, silt loam [35]

Texas, USA 156 to 1054 N/A Silty clay [36]

Rotation vs.
Continuous Grazed

−20 to 136
Texas, USA 572 9 to 30 Clay [27]

New Mexico, USA 384 −6.7 to 18.9 Fine loam [28]

Texas, USA 680 4 to 29 Clay, clay loam [37]

Tree vs. Bunchgrass 18 to 30
Texas, USA 624 N/A Clay [38]

Texas, USA 156 to 1054 N/A Silty clay [39]

Bunchgrass vs.
Sodgrass 12 to 93

Texas, USA 428 to 556 N/A Silty clay [21]

Texas, USA 680 4 to 29 Clay, clay loam [37]

Texas, USA 624 N/A Clay [38]

Texas, USA 156 to 1054 N/A Silty clay [39]

Silvopasture vs.
Forest −38 Oregon, USA N/A N/A Silty clay [40]

§ The range of difference of first management from second management (e.g., infiltration rate in exclosure is 11% to
132% higher than that in grazed areas). N/A means the information is not available from the article.

3.1. Grazing Intensity and Frequency

Overgrazing is one of the most common mismanagement of the grazing lands. Besides the
negative impacts in terms of soil compaction and loss of vegetation cover, overgrazing may also
influence the botanical composition, changing it from long-lived perennials to annuals and forbs
resulting in lower productivity [41], and higher land degradation [42]. Thus, adopting appropriate
grazing methods can be an effective way to improve soil water infiltration while maintaining livestock
productivity. Water infiltration rates can be decreased with higher stocking rates (e.g., [43]) especially
with heavy-weight cattle [34]. In contrast, the water infiltration rate under light or moderate grazing
can be as high as 119% greater than that under heavy grazing (Table 2). However, the benefits of
decreased stocking rates on water infiltration may only be experienced in soils with higher clay and
silt contents because soils with higher sand content are generally not vulnerable to compaction from
trampling [34].

Besides adjusting grazing intensity, managing grazing frequency such as rotational grazing can
also benefit hydrological properties relative to overgrazing by lowering runoff [44], increasing ground
cover [45], and increasing water infiltration [46] to decrease soil erosion and nutrient losses [47].
Specifically, multipaddock grazing [46] and deferred-rotational grazing [27,38] systems were found to
benefit water infiltration in some studies. However, the benefit of rotational grazing on infiltration
may be offset by higher grazing intensity [35]. The infiltration rates under rotational grazing can be
20% lower to 136% higher than continuous grazing (Table 2). This wide variability of the rotational
grazing effect on water infiltration in the literature is mainly attributed to the different stocking rates
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used in each ecosystem. In the study [27], the rotational grazing system had 136% greater infiltration
rates than continuous grazed systems despite having similar animal types, study region, vegetation
composition, and equal stocking rates (~5 ha/AU). However, it should be noted that, in this study,
the continuously-grazed system was heavily stocked for 27 years while the rotational grazing system
was rotationally grazed for only seven years after 20 years of continuous grazing under a moderate
stocking rate (16.2 ha/AU). The study [27,28] showed that rotational grazing at a heavy stocking rate
can have a lower infiltration rate than continuous grazing at a moderate rate. Other factors such as
lower precipitation or a higher stocking rate in the sampling area due to the unevenly distributed
livestock movements in the rotational grazed area can result in a lower infiltration rate than continuous
grazing [28]. These results indicate that management approaches encompassing both proper grazing
intensity and frequency are important for improving soil water infiltration and that the grazing
methods need to be adjusted according to the specific ecosystem conditions such as climate.

The response of hydrologic processes to grazing methods is influenced by other factors such as
management duration [29], topography [34], fire [25], and animal types [12], which are important to
consider when determining the grazing intensity and frequency for a specific farm for better water
management. For instance, a study on Arizona grasslands observed that grazing exclusion for 54 years
had a greater infiltration rate than no-grazing for 25 or 10 years [29]. A study conducted on Ethiopian
highlands [34] revealed that proper management such as decreasing the grazing intensity or improving
plant cover largely alleviates an adverse effect of grazing in steep than flat lands. Prescribed early fire
tended to decrease water infiltration [25] and larger size animals can decrease the water infiltration
rate more than smaller size animals such as rabbits and kangaroos [12]. Despite this complexity, the
majority of earlier studies have demonstrated that heavy grazing has a detrimental impact on soil
water infiltration while light and moderate grazing can be beneficial. Rotational grazing has the
potential to improve water infiltration even though this benefit can be nullified if it is associated with
heavy grazing.

3.2. Vegetation Composition

The vegetation type controls water infiltration rates by influencing soil properties [36]. Water
infiltration rates are usually the highest under trees and shrubs (15.1–20 cm hr−1), which is followed
by bunchgrasses (8.4–17 cm hr−1) and the lowest under sodgrasses (6–13 cm hr−1) (Table 2). It was
also shown that the infiltration rate is higher under grass cover than under annual forbs because
grass has lower decomposition rates, which may protect the soil from raindrop for a longer time [48].
When both shrub canopy and grass pastures were studied, the grazing effects on water infiltration
were not detected [38]. However, the vegetation’s impacts are influenced by grazing intensity if only
grass pastures are studied. For example, bunchgrass pastures could have lower infiltration rates than
sodgrass pastures under heavy grazing conditions [21]. Furthermore, the vegetation cover is the key
factor determining water infiltration. One study in Cardigan, Australia found that, if the conversion
from native woodlands to managed pastures can increase vegetation cover, it can decrease the runoff
by 30% [49]. Thus, grass species selection in grazing pastures for greater soil water infiltration should
also be considered while making a decision on grazing intensities and frequencies.

4. Soil C Sequestration

Grazing lands can offset about 20% of the annual CO2 emitted from land use changes [1].
Therefore, these lands play an important role in mitigating greenhouse gas emission. Soil C
sequestration in grazing lands is controlled by above-ground and below-ground plant composition
and inputs, C lost from animal consumption, soil characteristics, C distribution in labile and stable
pools, and litter and root deposition and decomposition rates [50–59]. Management strategies such as
adjusting stocking rates to regulate the vegetation utilization rate [16] and adoption of improved grass
species or conversion from agricultural lands or woodlands to grasslands would increase C input and
potentially promote soil C accumulation [3,60]. However, since soil C decomposition rates can also be



Sustainability 2018, 10, 4769 6 of 26

influenced by management, the response of both C input and loss should be evaluated to assess the
overall effect of grazing land management on C sequestration.

Based on published studies, the C sequestration rate under improved grazing managements
can be from 0 to 4.2 Mg C ha−1 yr−1 (Table 3). Earlier reviews on soil C responses to grazing land
managements were regional-specific. For example, References [2,3] mainly focused on countries
such as Australia, the United Kingdom, New Zealand, Canada, Brazil, and the United States, which
encompasses only 26% of the world’s grazing land area. Some other reviews such as Reference [61]
considered only one country. However, geographic location was not a factor in selecting articles for
the current review.
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Table 3. Soil carbon (C) sequestration as affected by grazing land management practices.

Management C Sequestration (Mg
C ha−1 yr−1) Location Precipitation (mm) Temperature (◦C) Soil Type Reference

Exclosure vs. Grazed −1.5 to 4.2

Wyoming, USA 384 N/A Sandy loam [52]
Wyoming & Colorado, USA 366 N/A Sandy loam [54]

Alberta, Canada 310 to 500 N/A Sand to clay loam [62]
Colorado, USA 325 N/A Fine sandy loam [63]

Inner Mongolia, China 366 5.1 to 7.7 Sandy [64]
Lanzhou, China 382 6.7 Sandy loam [65]
Wyoming, USA 200 to 210 N/A Sandy loam to clay loam [66]

Queensland, Australia 150 to 500 >36 in summer, <6 in winter Loam, clay, sand [67]
Nagqu Prefecture, China 410 to 480 −1.2 to −0.6 Loam to clay [68]

Sichuan, China 749 −36 to 26 Silt to loam [69]
New South Wales, Australia 582 4 to 18 Sandy clay [70]
Borana rangeland, Ethiopia 436 19 to 26 Sandy clay loam [71]
Borana rangelands, Ethiopia 238 to 896 17 to 28 Sandy clay loam [72]

Light vs. Heavy
Grazed

−0.22 to 2.2

Wyoming, USA 384 N/A Sandy loam [52]
Wyoming & Colorado, USA 366 N/A Sandy loam [54]

Sichuan, China 752 −10 to 11 Loam to clay [73]
Wyoming, USA 425 N/A Fine loam [74]

Inner Mongolia, China 280 3.4 Loamy sand [75]

Moderate vs. Heavy
Grazed

−1.4 to 1.8

North Dakota, USA N/A N/A Silt loam [51]
Sichuan, China 752 −10 to 11 Loam to clay [73]

Inner Mongolia, China 280 3.4 Loamy sand [75]
North America (Review) N/A N/A N/A [76]

North Dakota, USA 414 −11 to 21 Silt loam [77]

Pasture & Legume
Incorporation vs.

Crop
0.3 to 1.6

Australia, the United Kingdom, New Zealand,
Canada, Brazil, and the United State (Review) N/A N/A N/A [2]

South Dakota, USA 380 13 Loam, fine sandy loam [78]
Goiás, Brazil 280 to 1500 23 Clay [79]

The range of the C sequestration rate of first management from second management (e.g., exclosures result in −1.5 Mg C ha−1 yr−1 to 4.2 Mg C ha−1 yr−1 soil C compared to grazed areas).
N/A means the information is not available from the article.
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4.1. Grazing Intensity and Frequency

Grazing may decrease soil C input through animal consumption of forages and promotion of C
emissions [80]. Grazing activities may decrease soil porosity and increase bulk density [69,81] to limit
gas exchange, which can be detrimental to plant production and then negatively affect C accumulation.
Hence, a viable strategy for promoting soil C sequestration is grazing exclusion especially for areas
under long-term over-grazing history [72,82]. In a study conducted in the Qinghai–Tibetan Plateau,
it showed that grazing decreased 33% soil organic C (SOC) at the top 10 cm when compared to
grazing exclosure for five years [69]. However, based on past studies, grazing exclusion may not
always result in soil C sequestration [83] because this practice is often associated with an invasion of
forbs or weeds with the shallow root system [52,84]. Sometimes grazing adds carbon to the soil by
improving plant productivity [85], stimulating tillering [86], promoting compensatory photosynthesis
after defoliation [87], and increasing litter incorporation through trampling [58]. The stimulated plant
production through grazing can contribute to greater C input, which results in low soil C sequestration
under a grazing exclusion [70,88]. In addition, grazing can change the vegetation composition through
animal diet selection [89], shoot and root C allocation (e.g., [54]), or microbial activities [90], which
will influence both the C input quantity and quality and decomposition rates in different ways. As a
result, soil C stocks can respond positively or negatively to grazing methods. Past studies showed
that grazing increased [70], decreased [69], or did not affect [66] soil C stocks when compared to
un-grazed or grazing exclusion strategies (Table 3). Thus, the grazing exclusion strategy can benefit
soil C sequestration in areas under long-term overgrazing [82] while the effect may not be positive in
other locations.

Due to this complexity, adoption of proper grazing methods such as the appropriate grazing
intensity and frequency is the key to enhance soil C sequestration while sustaining ecosystem
productivity. If the stocking rates were low in the grazed areas, they may have a similar amount of
soil C as exclusions [66,71]. Several studies indicated that slight or moderate grazing intensity can
usually increase aboveground and belowground biomass or plant biodiversity [91–93] or improve soil
properties and root dynamics [94], which can promote C sequestration (e.g., [76]). Differently, heavy
grazing often decreases soil C accumulation due to a lower infiltration rate and higher erosion or soil
compaction, which can limit plant production [25,95,96]. The adoption of light and moderate grazing
can sequester as high as 2.2 Mg C ha−1 yr−1 more C compared to heavy grazing (Table 3).

Some studies, however, reported increased soil C content under heavy grazing due to the shift in
plant composition such as changing to C4 grass, which can allocate more below-ground carbon [54].
Thus, it is also possible that the light grazing can lose SOC at a rate of 0.22 Mg C ha−1 yr−1 when
compared to heavy grazing (Table 3). Despite this, moderate grazing, in general, showed promise for
long-term accumulation of soil C due to the favorable effect on biodiversity and plant structure [97].

In contrast to the grazing intensity, rotational grazing can promote C sequestration [98] by
increasing plant productivity through a recovery period [99]. For example, grazing increased SOC
stocks by 30% at 0 to 30 cm than grazing exclusions in a study conducted in New South Wales, which
may be due to the promoted root turnover and forage production under grazing because there was 4 to
6 weeks of rest over late spring/summer and late summer/autumn to allow seed set and recruitment.
However, some studies reported a decreased effect [100] or no effect of rotational grazing on soil C
sequestration [98] due to the interactive effect of other factors such as vegetation composition, climate
conditions, fertilizer application, and soil type. Thus, grazing intensity should be adjusted to sustain
or improve soil C sequestration when the rotational grazing method is used.

4.2. Vegetation Composition

Adoption of a highly productive plant species with faster turnover rates usually results in higher
soil C stocks. For instance, legume incorporation in pasture lands can increase SOC since the legume
can promote N fixation to increase aboveground biomass and soil C input [78,101,102]. Including
C4 grass in C3 grasslands under a warm and humid climate can enhance C sequestration because
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C4 grass can be more productive under this climate condition and benefit the net ecosystem carbon
exchange [103]. Conversion from cultivated lands to pastures [2] or crop-pasture rotations [79] can
often exhibit a positive effect on SOC accumulation because of the higher forage litter input.

The conversion of the forest to pasture was also found to increase C sequestration in soils by
0–41% [104–107] due to the redistribution of more C from aboveground biomass to the soil. Effects
of the pasture establishment after clearing the forest of soil C can be influenced by grazing intensity,
which can be decreased by 0% to 26% if the pastures are under higher stocking rates [108] while it can
be increased under low stocking rates [109]. The plant species adopted after afforestation determines
the response of soil C. It was found that planting pines in pastures can decrease soil C [110–113] while
planting a broadleaf tree can benefit soil C sequestration in native pastures [104].

4.3. Fertilization, Irrigation, Burning, and Other Factors

Applying fertilizer on grazing land can improve plant production because nutrients are needed to
meet the plant growth demand [114]. At the same time, litter and root production and turnover
can be increased to promote soil C sequestration [50,60,61,115]. Conversely, ecosystems under
limited soil nutrients can decrease C sequestration due to the competition between plant and soil
microbes [116–118]. It was also demonstrated that use of organic fertilizers can lead to a higher C
sequestration rate than inorganic fertilizers (0.82 vs. 0.54 Mg C·ha−1·yr−1) [3] because of the increase
C input from organic fertilizers. However, organically fertilized systems often have low NUE due
to poor management [119]. It was reported that fertilizer inputs decrease soil C in ecosystems with
higher initial soil C such as New Zealand dairy farms [120]. A prudent fertilizer management with
appropriate selection of the fertilizer type and rate is critical to improve C sequestration.

Together with the fertilizer application, irrigation can also improve soil C [121,122]. It should be
noted that the benefit of irrigation on soil C may only be realized in dry areas [50]. Conversely, excess
water may decrease soil C accumulation [50] because of higher soil respiration [123] or lower C input
(root biomass) to soil [124,125]. Moreover, the response of soil C to irrigation sometimes may only be
observed under long-term management [122,126].

Soil C sequestration can be influenced by fire since it can change the plant species
composition [127], affect nutrient loss [128,129], and promote C transformation to more stable
compounds [130,131]. It was shown that prescribed fire in tandem with light grazing can have
little negative or even potentially positive effect on soil C content due to the faster regeneration of
improved quality grasses and eventual turning over of such plant inputs to soil C [113].

In reality, grazing land management normally encompasses multiple and inter-related
management strategies. For example, the impacts of vegetation on C sequestration may be influenced
by grazing intensity [132]. In addition, although higher stocking rates are not desirable, combining
it with fertilization may promote C accumulation [133]. Therefore, it is important to consider all
management options collectively to evaluate the soil C response.

A multitude of other factors such as the duration of management [72], soil type [134], and
climate [94] can alone or interactively influence how soil C accumulation respond to grazing
management. For example, the soil C change can be a slow process [135] or it can be increased
within a few years after imposing the management and reaching an equilibrium [136]. According
to Reference [122], irrigation, legume incorporation, grassland establishment, and earthworm
introduction enhance C sequestration within 10 years while a longer-time scale of 20 to 40 years
is needed to detect changes in soil C from management such as plant species conversion, fertilizer
application, or grazing. It was revealed that clay soils under high precipitation and heavy grazing can
be more vulnerable to soil erosion [137] and soil C loss compared to sandy soils [138]. In addition,
similar to irrigation, excessive rainfall (>3000 mm) may increase soil erosion and decrease soil C [104]
which could be more serious under grazing [56]. Thus, these factors should be considered when
developing the best grazing land management strategies for long-term soil C sequestration.
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5. Nitrogen Use Efficiency

Nitrogen use efficiency often refers to the proportion of the N exports from the ecosystem of N
imports to the ecosystem [139]. The global NUE is low in animal production systems (~10%) [140]
because a large amount of N is lost through emissions and leaching [141]. Based on past studies, the
NUE of feed ranges from 16% to 36%, manure/fertilizer ranges from 16% to 77%, and the entire dairy
farm ranges from 8% to 64% [141]. These broader ranges indicate that there is a great potential to
improve NUE and it is critical to promote the plant’s ability to utilize nutrients or to increase nutrient
availability for production. In earlier studies, the N surplus (difference between N inputs and outputs)
was also often used to evaluate the N loss [142,143], which can provide similar information as the
directly measured NUE. Beyond that, some other measurements, as indicated in Table 4, are also used
to evaluate NUE.

Table 4. Nutrient use efficiency as affected by grazing land management practices.

Management Measurement Parameter ‡ Location Precipitation
(mm) Temperature (◦C) References

No/low vs. High
fertilizer

NUE (%) 0.8 to 26

Hamilton, New
Zealand 1200 N/A [144]

Legume/grass
pastures (Review) N/A N/A [145]

Inner Mongolia,
China 346 −22 to 19 [146]

Ireland (Review) N/A N/A [147]

No fertilizer vs.
Fertilizer

N balance
(kg N ha−1) −25.1 Ireland (Review) N/A N/A [147]

N uptake
(kg N ha−1) 49 New South Wales,

Australia 609 to 750 N/A [20]

Non-grazed vs.
Grazed

Inorganic N
(mg N kg−1) −0.3 to 1.9

Sichuan, China −10 to 11 690 [148]

Mineralization rate
(mg N kg−1 d−1) −0.4 to 0.12

Light vs. Heavy
Grazed NUE (%) ‡ 6.2 Legume/grass

pastures (Review) N/A N/A [145]

Moderate vs.
Heavy Grazed

Inorganic N
(mg N kg−1) 2.2

Sichuan, China −10 to 11 690 [148]

mineralization rate
(mg N kg−1 d−1) 1.6

Clover/Grass vs.
Mixed pasture NUE (%) −3.5 Legume/grass

Pastures (Review) N/A N/A [145]

‡ The amount is the difference between the first management and the second management (e.g., the difference in
NUE between light and heavy grazed areas is 6.2%).

To improve the NUE in grazing lands, strategies such as lowering the stocking rate on overgrazed
farms, promoting plant production, managing animal manure efficiently, providing N feed based on
animals’ needs, decreasing synthetic N application, using low-protein high-energy feed, or introducing
legumes are recommended [140,144].

5.1. Grazing Intensity

Grazing can benefit soil N cycling by facilitating litter decomposition, increasing N availability
(e.g., [90]), promoting N mineralization in excreta, decreasing N immobilization [120], or enhancing
soil microbial activities [149]. The N dynamics were shown to be promoted under grazing with greater
N accumulation at 0–30 cm soil depth [52]. Livestock integration on row production systems can
also benefit N dynamics by enhancing N mineralization and plant assimilation [120] or affecting crop
development to realize greater production [20]. However, heavy grazing may be detrimental to N
cycling since it can cause a loss of more nitrate N due to the higher urinary N [150] and may decrease
the soil N mineralization rate [148]. Nevertheless, moderate grazing was found to benefit N cycling.
A study in Sichuan, China detected that the non-grazed area had 1.9 mg N kg−1 more inorganic N
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than a heavy grazed area while it was 0.3 mg N kg−1 lower than the moderately grazed area [148]
(Table 4). The similar trend was also found in the N mineralization rate in this study.

5.2. Vegetation Composition

Vegetation species can influence N cycling through different N fixation abilities or root activities.
It was reported that plant species, which exhibit higher N utilization by animals and higher N uptake
from soil will increase NUE [145]. Including legumes in grasslands can increase the N yield [151] and
improve efficiency of the conversion of forage into animal products due to the enhanced nutritive
value and voluntary intake [152]. It was also found that clover-ryegrass mixtures exhibit higher
NUE compared to pure clover or ryegrass pastures [153] and deep-rooted perennial species showed
increased NUE due to increased resiliency to weather fluctuations [145]. It was demonstrated that
C4 grasses show higher NUE since they release N slowly belowground due to lower litter quality
compared to C3 grasses [154].

5.3. Fertilization

A synthetic N fertilizer is often applied on grazing lands to increase plant productivity. However,
a major part of the N input is lost to the environment. Higher N fertilizer application increases
NH3-N loss and N% in animal urine [155], which could result in decreased NUE ranging from 0.8%
to 26% compared to un-fertilized or lower fertilized grazing lands (Table 4). As in the case of other
management, the fertilizer’s effect may be influenced by other factors such as the stocking rate and
climate [147].

Manure management and application are also critical to increase NUE especially for smallholder
farms [156]. It was shown that the NUE in African crop–livestock integrated systems with limited
resources for manure handling is between 6% and 99% and, for manure storage, it is between 30% and
87% [157], which indicates great potential to increase whole farm NUE through manure management.

5.4. Fire

Fire can decrease the quantity of above ground biomass while it may benefit the N dynamics by
promoting N fixation because of the increased temperature [158]. Burning can result in more available
light, less litter cover, and higher N immobilization in roots [159,160]. However, the benefit of fire on
NUE usually only happens when fires are short-term since long occurring fires will decrease the litter
quality, which will decrease soil organic N and available N [158].

6. Interplay between Soil Moisture, C, and Nutrient Dynamics

In some cases, grazing land management practices simultaneously influence soil moisture, C,
and nutrient dynamics [26]. It was suggested that one of the important factors controlling the
water infiltration rate is soil organic matter since it can enhance the soil resistance to the raindrop
impact [21,25]. Thus, the water infiltration rate can be enhanced if the soil organic matter is increased
by changing grazing intensities [28]. A study in north Texas tall grass prairie indicated that adoption
of moderate grazing can not only increase SOC but also soil aggregate stability and fungal/bacterial
ratio, which ultimately benefit the hydrologic process, nutrient availability, and retention [22]. Water
infiltration is also closely related to NUE as the lower infiltration usually results in greater runoff,
which will increase soil erosion and nutrient losses [46]. Improper management such as overgrazing
and prescribed early fire can be detrimental to nutrient availability, aggregate structure, and the
infiltration rate [25].

Soil C and N often exhibit a similar response to grazing management. For example, both soil C
and N increase under a proper grazing intensity or frequency compared to overgrazing [161,162].
Even under intensive grazing, soil C and N can be increased with the incorporation of highly
productive C4 grass and with N fertilization [163]. A study in resource-poor Africa grazing lands also
suggested that both SOC and NUE can be improved under manure application and management [157].
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Conversely, some management such as irrigation in non-arable areas may promote nutrient leaching
and decomposition of soil organic matter and decrease the root biomass, which will result in lower
soil C and N [164]. Sometimes adoption of specific management may lead to a diverse response of
different soil properties. Synthetic N fertilizer application, for instance, can improve C sequestration
in many cases [3] due to the improved forage productivity and C input while it often diminishes the
NUE in grazing lands (Table 4).

7. Research Gaps

Despite the importance of water, C and N dynamics on soil health, the impact of grazing land
management on water infiltration, and NUE were much less studied than C sequestration. The number
of literature we found on soil C sequestration was three times more than that for water infiltration and
NUE (~120 vs. 40). Studies on soil water infiltration responding to different grazing land management
is geographically limited and the temporal effect is also not well understood. Although a lot of
studies focused on soil C sequestration, there are still many uncertainties such as the mechanisms
of soil C cycling, the climate effects, the response of deeper soils, the dynamics of soil inorganic C,
and region-specific management strategies. Many studies on NUE were conducted on dairy farms.
However, how to better manage these farms to limit N loss is still unclear. Moreover, other grazing
lands besides dairy farms should also be investigated. In addition, the use of new approaches based
on microbial analysis and modeling on NUE studies are rare.

8. Conclusions

Grazing land management strategies such as the change of vegetation composition, grazing
intensity and duration, fertilizer use, irrigation, and fire can affect soil processes pertaining to healthy
soil. Adoption of plant species with higher productivity and light or moderate grazing are desirable
strategies to improve overall soil health. However, grazing land management often encompasses
multiple practices, which can interactively influence soil health positively or negatively. Furthermore,
factors such as grazing duration, climate, and soil type can also influence the impacts of grazing
land management on soil properties. This review points to the need for more studies to establish
regional-specific best grazing land management practices that support long-term soil health.

Author Contributions: S.X. literature and data collection, writing original draft, and editing; S.X., J.R., and S.J.,
funding acquisition, methodology, writing, and revising.

Funding: This literature review work is funded by Soil Health Literature and Information Review Grants by the
Soil Health Institute (Grant number - PD 26238). A final report with a complete literature review and citations is
submitted to the Soil Health Institute. The work was also partially supported by USDA National Institute of Food
and Agriculture Grant Number: 2017-51106-27003.

Conflicts of Interest: The authors declare no conflict of interest.



Sustainability 2018, 10, 4769 13 of 26

Appendix A

Table A1. Papers associated with the effects of grazing land management on soil water infiltration.

Author name Journal/Book name Year, volume, page# Note

Abdel-Magid et al. Journal of Range Management 1987, 307-309
Bharati et al. Agroforestry systems 2002, 56 (3), 249-257
Blackburn Water Resources Research 1975, 11 (6), 929-937
Castellano & Valone Journal of Arid Environments 2007, 71 (1), 97-108
Coughenour Journal of Range Management 1991, 44 (6), 530-542
Dadkhah & Gifford Journal of the American Water Resources Association 1980, 16 (6), 979-986
Daniel et al. Transactions of the ASAE 2002, 45 (6), 1911
Eldridge et al. Ecological Applications 2016, 26 (4), 1273-1283 G
Fraser & Stone The Rangeland Journal 2016, 38 (3), 245-259
Gamougoun et al. Journal of Range Management 1984, 538-541
Gilley et al. Applied engineering in agriculture 1996, 12 (6), 681-684
GR McCalla et al. Journal of Range Management 1984, 265-269
Greenwood & McKenzie Australian Journal of Experimental Agriculture 2001, 41 (8), 1231-1250
Haan et al. Rangeland Ecology & Management 2006, 59 (6), 607-615 G
Hillel Book Introduction to environmental soil physics 2003 Book
Linnartz et al. Journal of Forestry 1966, 64 (4), 239-243
McGinty et al. Journal of Range Management 1979, 33-37
McIvor et al. Australian Journal of Experimental Agriculture 1995, 35 (1), 55-65
Moyo et al. African Journal of Range & Forage Science 1998, 15 (1-2), 16-22
Mwendera & Saleem Soil Use and Management 1997, 13 (1), 29-35 G
Naeth & Chanasyk Journal of Range Management 1995, 528-534
Park et al. Journal of Soil and Water Conservation 2017, 72 (2), 102-121 G
Pluhar et al. Journal of Range Management 1987, 240-243
Proffitt et al. Australian Journal of Agricultural Research 1993, 44 (2), 317-331
Rauzi & Smith Journal of Range Management 1973, 126-129
Rietkerk et al. Plant Ecology 2000, 148 (2), 207-224
Russell et al. Journal of Range Management 2001, 184-190
Sanjari et al. Soil Research 2010, 47 (8), 796-808
Savadogo et al. Agriculture, Ecosystems & Environment 2007, 118 (1-4), 80-92 G
Takar et al. Journal of Range Management 1990, 486-490
Teague et al. Agriculture, Ecosystems & Environment 2011, 141 (3-4), 310-322
Thurow et al. Journal of Range Management 1986, 505-509
Thurow et al. Journal of Range Management 1988, 296-302
Van Haveren Journal of Range Management 1983, 586-588
Vandandorj et al. Ecohydrology 2017, 10 (4), e1831 G
Warren et al. Journal of Range Management 1986, 486-491
Warren et al. Journal of Range Management 1986, 500-504
Weltz & Wood Journal of Range Management 1986, 365-368
West et al. Rangeland Ecology & Management 2016, 69 (1), 20-27
Wood & Blackburn Journal of Range Management 1981, 331-335
Yisehak et al. Journal of arid environments 2013, 98, 70-78

Notes: Articles related to several ecosystem functions including water infiltration are marked as “G” and books are
marked as “Book” in the “Note” column.
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Table A2. Papers associated with the effects of grazing land managements on soil carbon sequestration.

Author name Journal name Year, volume, page# Note

Alemu et al. Journal of Animal Science 2017, 95, 145-146
Allard et al. Agriculture, Ecosystems & Environment 2007, 121 (1-2), 47-58
Ardö & Olsson Journal of Arid Environments 2003, 54 (4), 633-651
Asner et al. Global Change Biology 2004, 10 (5), 844-862
Aynekulu et al. Geoderma 2017, 307 1-7
Bagchi et al. Agriculture, Ecosystems & Environment 2017, 239 199-206 G
Balogh et al. Cereal Research Communications 2005, 33 (1), 149-152
Bardgett & Wardle Ecology 2003, 84 (9), 2258-2268
Berthrong et al. Ecological Applications 2009, 19 (8), 2228-2241
Bikila et al. Agriculture, Ecosystems & Environment 2016, 223 108-114
Bowden et al. Forest Ecology and Management 2004, 196 (1), 43-56
Bremer et al. Environmental Conservation 2016, 43 (4), 397-406

Brewer
Influences of fuel moisture and repeated burning on
black carbon production and loss in masticated fuels:
An experimental combustion study.

2012 Thesis

Briggs et al. AIBS Bulletin 2005, 55 (3), 243-254 G

Briske & Richards Wildland plants: physiological ecology and
developmental morphology 1995, 635-710 Book

Burke et al. Biogeochemistry of managed grasslands in central
north america 1997, 85-98 G, Book

Buytaert et al. Catena 2007, 70 (2), 143-154
Carvalho et al. Soil and Tillage Research 2010, 110 (1), 175-186 N
Carvalho et al. Agriculture, Ecosystems & Environment 2014, 183 167-175
Chan et al. Soil Research 2010, 48 (1), 7-15
Chen et al. Scientific reports 2015, 5 10892
Chimner & Welker Pastoralism: Research, Policy and Practice 2011, 1 (1), 20
Conant et al. Ecological Applications 2017, 27 (2), 662-668
Conant & Paustian Global Biogeochemical Cycles 2002, 16 (4),
Conant et al. Ecological Applications 2001, 11 (2), 343-355
Conrad et al. Agriculture, Ecosystems & Environment 2017, 248 38-47
Cui et al. Ecological Research 2005, 20 (5), 519-527
de Figueiredo et al. Journal of Cleaner Production 2017, 142 420-431
De Rose Earth Surface Processes and Landforms 2013, 38 (4), 356-371
Derner et al. Plant and Soil 1997, 191 (2), 147-156
Detling et al. Oecologia 1979, 41 (2), 127-134
Doescher et al. Journal of Range Management 1997, 285-289
Don et al. Global Change Biology 2011, 17 (4), 1658-1670
Dormaar et al. Journal of Range Management 1977, 195-198
Dormaar et al. Journal of Range Management 1997, 647-651
Dyer & Bokhari Ecology 1976, 57 (4), 762-772
Eclesia et al. Global Change Biology 2012, 18 (10), 3237-3251
Elmore & Asner Global Change Biology 2006, 12 (9), 1761-1772
Fearnside & Barbosa Forest Ecology and Management 1998, 108 (1-2), 147-166
Feyisa et al. Catena 2017, 159 9-19
Follett & Reed Rangeland Ecology & Management 2010, 63 (1), 4-15
Fontaine et al. Ecology letters 2004, 7 (4), 314-320
Frank et al. Journal of Range Management 1995, 470-474
Frank et al. Ecology 2002, 83 (3), 602-606
Frank &
McNaughton Oecologia 1993, 96 (2), 157-161

Franzluebbers &
Stuedemann Agriculture, Ecosystems & Environment 2009, 129 (1-3), 28-36

Giardina et al. Oecologia 2004, 139 (4), 545-550
González-Pérez et al. Environment international 2004, 30 (6), 855-870 G
Grünzweig et al. Global Change Biology 2003, 9 (5), 791-799
Guo & Gifford Global Change Biology 2002, 8 (4), 345-360
He et al. Ecosphere 2011, 2 (1), 1-10
Hewitt et al. Soil Use and Management 2012, 28 (4), 508-516
Hiernaux et al. Journal of Arid Environments 1999, 41 (3), 231-245 G
Hik & Jefferies The Journal of Ecology 1990, 180-195 G
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Table A2. Cont.

Author name Journal name Year, volume, page# Note

Houlbrooke et al. Soil Use and Management 2008, 24 (4), 416-423
Hunt & Phillips Biogeosciences 2016, 13 (10), 2927 N
Ingram et al. Soil Science Society of America Journal 2008, 72 (4), 939-948
Jastrow et al. Climatic Change 2007, 80 (1-2), 5-23
Jobbágy & Jackson Ecological Applications 2000, 10 (2), 423-436
Jones & Donnelly New Phytologist 2004, 164 (3), 423-439
Kallenbach et al. Nature communications 2016, 7 13630
Kang et al. Journal of Soils and Sediments 2013, 13 (6), 1012-1023
Kauffman et al. Oecologia 1995, 104 (4), 397-408
Kelliher et al. Agriculture, Ecosystems & Environment 2012, 148 29-36
Kelliher et al. New Zealand Journal of Agricultural Research 2015, 58 (1), 78-83
Khan et al. Journal of Environmental Quality 2007, 36 (6), 1821-1832
Kirschbaum et al. Forest Ecology and Management 2008, 255 (7), 2990-3000
Kirschbaum et al. Science of the Total Environment 2017, 577 61-72
Knicker Biogeochemistry 2007, 85 (1), 91-118
Kuhry Journal of Ecology 1994, 899-910

Lal Soil Conservation and Management inthe Humid
Tropics; Proceedings of theInternational Conference 1977 Conference

Lal Annals of Arid Zone 2000, 39 (1), 1-10 G
Lal & Follett Soil carbon sequestration and the greenhouse effect. 2009 Book
Li et al. New Zealand Journal of Agricultural Research 2008, 51 (1), 45-52
Liebig et al. Agriculture, Ecosystems & Environment 2006, 115 (1-4), 270-276
Liu et al. PloS one 2012, 7 (5), e36434
Ma et al. Ecological Engineering 2016, 87 203-211 G
Maia et al. Geoderma 2009, 149 (1-2), 84-91
Manzoni et al. Ecological Monographs 2010, 80 (1), 89-106
Martınez & Zinck Soil and Tillage Research 2004, 75 (1), 3-18
McNally et al. Plant and Soil 2015, 392 (1-2), 289-299
McNaughton The American Naturalist 1979, 113 (5), 691-703 G
McSherry & Ritchie Global Change Biology 2013, 19 (5), 1347-1357
Medina-Roldán et al. Agriculture, Ecosystems & Environment 2012, 149 118-123
Meersmans et al. Global Change Biology 2009, 15 (11), 2739-2750
Miller Soils: An introduction to soils and plant growth. 1990 Book
Moinet et al. Geoderma 2016, 274 68-78
Moinet et al. Science of the Total Environment 2017, 579 1715-1725
Mortenson et al. Environmental Management 2004, 33 (1), S475-S481
Naeth et al. Journal of Range Management 1991, 7-12 G
Navarrete et al. Global Change Biology 2016, 22 (10), 3503-3517 G
Orgill et al. Land Degradation & Development 2018, 29 (2), 274-283
Parfitt & Ross Soil Research 2011, 49 (6), 494-503
Piñeiro et al. Global Biogeochemical Cycles 2009, 23 (2)
Pineiro et al. Global Change Biology 2006, 12 (7), 1267-1284 G
Powers & Veldkamp Biogeochemistry 2005, 72 (3), 315-336

Reeder et al. The potential of US grazing lands to sequester
carbon and mitigate the greenhouse effect. 2001, 139-166 G, Book

Reeder & Schuman Environmental pollution 2002, 116 (3), 457-463 G
Reeder et al. Environmental Management 2004, 33 (4), 485-495
Rong et al. Agriculture, Ecosystems & Environment 2017, 237 194-202 G
Rufino et al. Livestock Science 2007, 112 (3), 273-287 N
Sanderman et al. PloS one 2015, 10 (8), e0136157 G
Sanjari et al. Soil Research 2008, 46 (4), 348-358
Schipper et al. Soil Science Society of America Journal 2013, 77 (1), 246-256
Schipper et al. New Zealand Journal of AgriculturalResearch 2017, 60 (2), 93-118
Schipper et al. Agriculture, Ecosystems & Environment 2010, 139 (4), 611-617
Schipper & Sparling Biogeochemistry 2011, 104 (1-3), 49-58
Schulz et al. Forest Ecology and Management 2016, 367 62-70
Schuman et al. Ecological Applications 1999, 9 (1), 65-71 N
Stahl et al. Regional environmental change 2016, 16 (7), 2059-2069
Steffens et al. Geoderma 2008, 143 (1-2), 63-72
Stiles et al. Science of the Total Environment 2017, 593 688-694
Talore et al. Journal of the Science of Food andAgriculture 2016, 96 (6), 1945-1952
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Author name Journal name Year, volume, page# Note

Wang et al. Agriculture, Ecosystems & Environment 2016, 232 290-301
Wang & Houlton Geophysical Research Letters 2009, 36 (24)
Wei et al. Journal of soil science and plant nutrition 2011, 11 (4), 27-39
Witt et al. Agriculture, Ecosystems & Environment 2011, 141 (1-2), 108-118
Wright et al. Soil Biology and Biochemistry 2004, 36 (11), 1809-1816
Wu et al. Journal of Environmental Quality 2008, 37 (2), 663-668
Xiong et al. Chinese geographical science 2014, 24 (4), 488-498
Xiong et al. Ecological Engineering 2016, 94 647-655
Xu et al. Plant and Soil 2016, 399 (1-2), 233-245
Su et al. Catena 2005, 59 (3), 267-278

Notes: Articles related to several ecosystem functions including carbon sequestration are marked as “G” in the
“Note” column. Articles related to both carbon sequestration and nitrogen use efficiency are marked as “N” in the
“Note” column. Books, thesis and conference paper are marked as “Book”, “Thesis” and “Conference”, respectively,
in the “Note” column.

Table A3. Papers selected associated with the effects of grazing land managements on nitrogen
use efficiency.

Author name Journal name Year, volume, page# Note

Ball & Ryden Biological processes and soil fertility 1984, 23-33 Book
Barraclough et al. Soil Use and Management 1992, 8 (2), 51-55
Chapin III et al. The American Naturalist 1986, 127 (1), 48-58
Di & Cameron New Zealand Journal ofAgricultural Research 2004, 47 (3), 351-361
Erisman et al. Environmental pollution 2007, 150 (1), 140-149

Field et al. Proceedings of the New Zealand Grassland
Association 1985, 209-214 Conference

Gong et al. Plant and Soil 2011, 340 (1-2), 227-238
Gourley et al. Animal Production Science 2012, 52 (10), 929-944
Hobbs et al. Ecology 1991, 72 (4), 1374-1382
Høgh-Jensen &
Schjørring Plant and Soil 1997, 197 (2), 187-199

Janssen Nutrient disequilibria in agroecosystems: Concepts
and case studies 1999, 27-56 Book

Knapp & Seastedt BioScience 1986, 36 (10), 662-668
Lambert et al. New Zealand Journal ofAgricultural Research 1985, 28 (3), 371-379
Ledgard et al. The Journal of Agricultural Science 1999, 132 (2), 215-225
Ledgard Plant and Soil 2001, 228 (1), 43-59
Lü et al. Plant and Soil 2015, 387 (1-2), 69-79
Monaghan et al. New Zealand Journal ofAgricultural Research 2007, 50 (2), 181-201
Ojima et al. Biogeochemistry 1994, 24 (2), 67-84
Peoples et al. Australian Journal of Agricultural Research 1998, 49 (3), 459-474
Phillips et al. New Phytologist 2013, 199 (1), 41-51
Phillips et al. Ecology letters 2011, 14 (2), 187-194
Powell et al. Environmental Science & Policy 2010, 13 (3), 217-228
Roten et al. Computers and Electronics inAgriculture 2017, 135 128-133
Rufino et al. Agriculture, Ecosystems & Environment 2006, 112 (4), 261-282
Scholefield et al. Journal of Soil Science 1993, 44 (4), 601-613
Schröder et al. European Journal of Agronomy 2003, 20 (1-2), 33-44
Seastedt & Ramundo Fire in North American tallgrass prairies. 1990, 99-117 Book
Smith Ecology 1976, 57 (2), 324-331
Tilman & Wedin Ecology 1991, 72 (2), 685-700
Trotter et al. Crop and Pasture Science 2014, 65 (8), 817-827
Van der Hoek Nitrogen, the confer-ns 1998, 127-132 Book

Van Noordwijk Nutrient cycles and nutrient budgets in global
agro-ecosystems. 1999, 1-26 Book

VandeHaar &
St-Pierre Journal of dairy science 2006, 89 (4), 1280-1291

Vitousek The American Naturalist 1982, 119 (4), 553-572
Wedin & Tilman Oecologia 1990, 84 (4), 433-441
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Author name Journal name Year, volume, page# Note

Wilkins et al. Grass and Forage Science 2000, 55 (1), 69-76
Wilkins et al. Euphytica 1997, 98 (1-2), 109-119
Yin et al. Soil Biology and Biochemistry 2014, 78 213-221

Notes: Books are marked as “Book” and conference papers are marked as “Conference” in the “Note” column.

Table A4. Papers selected associated with the effects of grazing land managements on other
ecosystem functions.

Author name Journal name Year, volume, page# Note

Al-Kaisi & Lowery Soil health and intensification of agroecosystems 2017 Book
Ayres et al. Functional Ecology 2007, 21 (2), 256-263
Bagchi & Ritchie Ecology letters 2010, 13 (8), 959-968

Bardgett & Wardle Aboveground-belowground linkages: Biotic interactions,
ecosystem processes, and global change 2010 Book

Flack
The art and science of grazing: How grass farmers can
create sustainable systems for healthy animals and farm
ecosystems

2017, 7-10 Book

Belnap Frontiers in Ecology and the Environment 2003, 1 (4), 181-189
Bond & Keeley Trends in ecology & evolution 2005, 20 (7), 387-394
Buckley et al. Nutrient cycling in agroecosystems 2016, 104 (1), 1-13
Cherif & Loreau Proc. R. Soc. B 2013, 280 (1754), 20122453
Frank & Groffman Ecology 1998, 79 (7), 2229-2241
Frink et al. Proceedings of the National Academy of Sciences 1999, 96 (4), 1175-1180
Fuhlendorf et al. Applied Vegetation Science 2001, 4 (2), 177-188
Gao et al. Research Journal of Agriculture and BiologicalSciences 2007, 3 (6), 642-647
Hamilton III & Frank Ecology 2001, 82 (9), 2397-2402
Han et al. Agriculture, Ecosystems & Environment 2008, 125 (1-4), 21-32
Hart Plant Ecology 2001, 155 (1), 111-118
Hobbs The Journal of Wildlife Management 1996, 695-713
Kersebaum et al. Physics and Chemistry of the Earth, Parts A/B/C 2003, 28 (12-13), 537-545
Keya Agriculture, Ecosystems & Environment 1998, 69 (1), 55-67
Knicker Biogeochemistry 2007, 85 (1), 91-118
Leriche et al. Oecologia 2001, 129 (1), 114-124
Manzano & Návar Journal of Arid Environments 2000, 44 (1), 1-17
McDowell. Environmental impacts of pasture-based farming 2008, 33-76 Book
Morris & Jensen Journal of Ecology 1998, 86 (2), 229-242
Mueller et al. Ecological Applications 2017, 27 (5), 1435-1450
Neff et al. Ecological Applications 2005, 15 (1), 87-95
Ning et al. Rangifer 2004, 24 (4), 9-15
Nolte et al. Estuarine, Coastal and Shelf Science 2013, 135 296-305
Oenema et al. Nitrogen, the confer-ns 1998, 471-478 Book
Oesterheld et al. Ecosystems of the world 1999, 287-306
Olsen et al. Soil Biology and Biochemistry 2011, 43 (3), 531-541
Pandey & Singh Canadian Journal of Botany 1992, 70 (9), 18851890
Peoples et al. Plant and Soil 1995, 174 (1-2), 3-28
Piñeiro et al. Rangeland Ecology & Management 2010, 63 (1), 109-119
Renzhong & Ripley Journal of Arid Environments 1997, 36 (2), 307-318
Rosser & Ross New Zealand Journal of Agricultural Research 2011, 54 (1), 23-44
Seagle et al. Ecology 1992, 73 (3), 1105-1123
Smith et al. New Zealand Journal of Agricultural Research 2012, 55 (2), 105-117
Sun et al. Plant and Soil 2017, 416 (1-2), 515-525
Thomas Grass and Forage Science 1992, 47 (2), 133-142
Vallentine Grazing management 2000 Book
Virgona et al. Australian Journal of Agricultural Research 2006, 57 (12), 1307-1319
Wang et al. Catena 2017, 158 141-147
Waters et al. The Rangeland Journal 2015, 37 (3), 297-307
Wilson et al. Journal of Soil and Water Conservation 2014, 69 (4), 330-342
Xu et al. Geoderma 2017, 293 73-81
Zhu et al. Journal of Arid Environments 2015, 114 41-48

Notes: Books are marked as “Book” in the “Note” column.
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