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Abstract: Alliance networks are the underlying structures of social systems in business, management,
and society. The sustainability and dynamics of a social system rely on the structural evolutions of
the topologies. Understanding the evolution sheds light on the dynamics and sustainability of a
social system. Minority game models have been successfully applied across social science, economy,
management, and engineering. They provide simple yet applicable modeling to articulate the
evolutionary cooperation dynamics of competitive players in binary decision situations. By extending
the minority games played in alliance networks, the cooperation in structured systems of different
network topologies is analyzed. In this model, local and global score strategies are considered with
and without cooperation rewiring options. The cooperation level, the score, and the topological
properties are investigated. The research uses a numerical simulation approach on random networks,
scale-free networks, and small-world networks. The results suggest that the network rewiring
strategy leads to higher systemic performance with a higher score and a higher level of stability
in decision-making. Competitive decision-making can lead to a higher level of cooperation from
a poor initial start. However, stubbornness in decision-making can lead to a poor situation when
cooperation is discouraged. Players with local or global information adopt local and global score
strategies. The results show that local strategies might lead to imbalance, while a global strategy might
achieve a relatively stable outcome. This work contributes to bridge minority games in structured
networks to study the cooperation between formation and evolution, and calls for future minority
game modeling on social networks.

Keywords: cooperation; evolutionary game; minority game; social network; agent-based systems

1. Introduction

The cooperation in social society at an individual or institutional level is a result of social choices
made by a group of parties. The sustainability of a social system in business, management, or society
relies on the dynamics of the topology. A cooperative alliance network can enhance the benefits of the
whole system. Understanding the relationship between cooperation behaviors and the underlying
network dynamics is essential for better policy-making. Even though a rich body of literature has
studied the emergence and dynamics of cooperation from the perspective of social science, economics,
game theory, organization science, and social networks [1–4], the understanding of cooperation remains
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a major challenge, especially regarding the intersection of the above disciplines. More specifically,
in the eyes of scholars of organization science and management science, cooperations are bonds
among participating parties within which alliances are formed to achieve certain goals beyond
individual capabilities [5,6]. Alliance networks can be widely found in many aspects of human
society [6,7]. The cooperations of multiple partners in industries such as construction [8], software [9],
and enterprises [10] have been studied and modeled in alliance networks. These studies shed light
into the understanding of the dynamics and performance of whole systems. For example, in the movie
industry, creative individuals, such as directors, screen writers, actors, and actresses, are constantly
forming movie alliances when they are working on movie projects. The performance of these movie
alliances is related to network formations [11].

The alliance networks are the result of multilateral cooperations. In game theory, cooperation
is usually treated as a result of games played by two or multiple sides facing certain payoffs [3,12].
From the perspective of social dynamics, especially opinion dynamics, cooperations can also be
modeled as the result of opinion formation when players reach an agreement. In Deffuant models
[13,14], linked players adjust their opinions when their opinions reach a threshold. In this manner,
various cases can be modeled [15,16]. This work focuses on the case without a Deffuant threshold.
Considering that the cooperation diversifications of structured heterogeneous populations are naturally
modeled as the dynamics of social networks, there is an emerging thread of studies exploring the
evolutionary games played in networks [12,17–22]. Putting all the above together, in a structured
population or social ecosystem, one game player may choose, rationally or irrationally, to cooperate
with other players. In this manner, alliances are formed with newly established edges in the network.
On the other hand, if a player chooses to be uncooperative in a game, this could lead to possible
cancelation of existing edges; thus, an alliance is disbanded. To model this kind of binary decision
situation, the Minority Game (MG) was proposed [23], and due to its simplicity and broad applicability,
MG has been adopted into a wide range of domains, such as social science, economics, and beyond.
As the simplest game model, MG sheds lights on the emergence of cooperation and competition of
agents [23,24]. Along with this thread of studies, it is interesting to study how cooperation evolves
for a group of heterogeneous players in a structured alliance network when their decisions are
binary, and how the topology of the alliance network and cooperation mutually influence each other.
Meanwhile, it is important to understand how cooperation evolves in the face of local and global
information on the alliance networks. Formally speaking, to extend and combine the above threads
of studies of cooperation, alliance networks, and the minority game in social networks, in this study,
we investigate the evolutionary minority game played in networks to study how alliances form and
evolve and how the topological properties conversely influence the evolutions.

This work contributes to the literature by marrying the minority game to the alliance social
network context. Unlike most existing models in which the networks are fixed, our model introduces
the edge rewiring process to allow players to change the topologies. Meanwhile, local and global
information is considered. In this work, agent-based simulations are conducted in various topological
networks, including random networks, small-world networks, and scale-free networks. Moreover,
local and global information is considered in this work, as well as the decision-making probability,
which is adjustable for allow a player to be adaptable or stubborn. The numerical simulation results
show that in certain situations, the network rewiring strategy can lead to higher systemic performance
with a higher score and a higher level of stability in decision-making. It is also observed that
competitive decision-making can improve the network into a state with a higher level of cooperation
from poor initial starts. However, stubbornness in decision-making might lead to a poor situation in
which cooperation is discouraged.

The rest of this paper is organized as follows. Section 2 presents the theoretical background with a
review of the literature as well as the motivation of this study. In Section 3, the model of the evolutionary
minority game played on alliance networks is developed. In Section 4, numerical simulations are
conducted and the results are presented. Finally, Section 5 presents the conclusions and discussion.
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2. Theory and Motivation

Cooperation, the fundamental behavior fabricating the complexity of human society, lies at
the crossroad of two threads of study: one is the evolutionary minority game in networks (MGN),
another is the alliance network (AN).

Decision-making can be continuous or even hybrid in many cases [25,26]. However, in many
scenarios, complicated decision-making can be simplified as a chain or combination of binary decisions.
Open innovation is defined as the “use of purposive inflows and outflows of knowledge to accelerate
internal innovation and expand it to external innovation” (page 1) [27]. Open innovation suggests
that innovation activities can be extended within an organization. More importantly, open innovation
paves the way for collaboration and cooperation across different organizations [28]. In this research,
we argue that the dynamics of innovations lead to evolutionary positive changes [29]. This also leads to
a lower innovation cost across society. Open innovation is considered to be the main driving force for
sustainable development [28]. Open business model innovation entails the business model innovation
is critically important for the long-term sustainable development. Evidence of open innovation can be
found from many organizations. For example, almost 300 years ago, Mr. James Watt fundamentally
changed the world by improving the stream engine. More recently, Mr. Steve Jobs started Apple with
many innovative services and products. Those innovations were not invented from zero. Instead,
it was the cooperation and collaboration between different individuals and organizations that led to
the development [30]. The insights for the sustainability of economic growth can also be achieved by
open innovations. However, the dismantling of the inverted U-Curve of open innovation suggests that
there is not much deep learning, but rather, autonomous learning of open innovation for sustainable
artificial intelligence [29,31]. In other words, a long-term question that a lot of business owners and
policy-makers keep asking is how do we conquer the growth limits of capitalism? The dynamic model
of an open innovation economy system (OIES) is proposed to further answer the research question [32].
This research adopts the OIES and further investigates the cooperation within OIES. Thus, this paper
fills the research gap that connects the open innovation and a deep understanding of cooperation.
To catch the nature of the competitive binary decisions of a population, MG is introduced as the most
simple but non-trivial game model to study how collective cooperation and competition behaviors
emerge and evolve. Originally developed to study the El Farol Bar problem [33], MG considers an odd
number of individuals in a population in which all agents independently choose from two possible
actions based on their observations and corresponding strategy sets. For each round of MG, there will
be a minority side with fewer agents compared to the majority side with more agents. Considering the
symmetry of the two sides, without loss of generality, the agents on the minority side happen to have a
better payoff than those on the majority side. Though the game is relatively simple, studies show that
complexity and randomness arise from multiple rounds. Due to its simple beauty and applicability,
MG has inspired a thread of studies to explore the behavior complexity of competitive but cooperative
agents. Variations of MG have been developed in various fields to model the stock market [24,34],
heading behavior [35,36], network congestion control [37], resource allocation [38], and spectrum
management [39].

With the development of network science [40,41], social, biological, and technical systems are
modeled as networks in which the evolutionary dynamics and topologies are studied [42]. In light of
the fact that players are socially structured in the form of networks, it is natural to see the emergence
of playing evolutionary games in networks [3,4,12,17,18,22]. According to different payoff matrices,
games such as the prisoner’s dilemma (PD) and the snowdrift dilemma (SD) are studied in structured
populations in networks [1,3,12,43]. Recent years have witnessed a thread of the evolutionary MGN.
In existing MGN studies, different topologies have been considered; however, most have involved
simplified networks such as the square lattice [44], the one dimension linear chain and circle [45–48],
the star [49], the ring and torus [50], and the Kauffman network [51,52], while some have adopted the
weighted directed network [53], von Neumann network [54,55], Erdős-Rényi random network [48,56],
directed Kauffman network [51], or small-world and scale-free networks [48,49,57–59]. In some cases,
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these networks are fixed, so players participate in games with the same local neighborhood [60,61],
while some models incorporate varying networks in which edges might be deleted and added [53].

Most previous studies of MGN have only considered global information that is universally
available for all players as common knowledge. This is very common in reality, for example,
in presidential elections, referendums, public voting, etc. All participants have equal knowledge
of the globally available information of the outcome of a collective social outcome. However, in a social
network, it is possible to investigate how local information can influence the results. Focal players
have local information of their surroundings, and they play the local game with their neighbors
of certain distances; usually, a distance of one is considered [55,58,62,63]. Actually, by using local
information, MGN can achieve better coordination [50]. To evaluate the performance of the population,
a standard deviation between two sides—the majority and the minority—is calculated as a fluctuation.
A small deviation indicates better resource usage and better cooperation [44,46,50]. In most studies,
the network is kept unchanged. In other words, the decisions and results of one round of play have
no effects on the connectivities among players. By relaxing this constraint, agents can assign weights
to their edges with neighbors and delete poor edges in an endogenous directed network model [53].
The results show that these policies can lead to fast convergence to stable states with better overall
performance for the population. In a common setup of the MGN, a decision probability p is used
in several studies to describe the probability that the agent follows the stored strategy. In this case,
the agent chooses an opposite decision with a probability of 1− p [47,49,52,57]. The p values of all
agents are adjusted repeatedly according to the game outcomes.

In a dynamic population, the establishment and defection of cooperation among participants
leads to the formation or disbandment of existing alliances. Cooperation-based strategic alliances
can enable resource exchange, knowledge transmission, and risk sharing [6,64]. When a group of
partners comes into cooperation, an AN forms. By marrying social network theories with organization
science, economics, and management, the formation, dynamics, and studies on ANs contribute
to the understanding of performance and promote of the formation of cooperation [6,64–68]. In a
connected AN, the global position and local connectivity of a given player determine their knowledge
and importance in the structured population. This can be translated into social capital, centrality,
and structural holes for the players. In a dynamically evolving network, these properties are constantly
changing. In turn, this leads to players having to face changing local and global environments, not only
as the result of the evolutionary game, but also a condition for the game itself.

As the studies of both MGN and AN concern the emergence of cooperation and its environment,
namely the network, it would be interesting to use the simplicity of MG to study AN with the
cooperation as the bonding point. Keeping this as our motivation, we intend to bridge these two
threads of study by exploring the cooperation phenomenon in ANs modeled as the evolutionary
minority game or MGAN for short.

3. Model

We consider an artificial population of N players. In a global MG, we let N be odd as in other
MG models [23,48,59]. However, it should be noted that this constraint is not applied to local MGs
where even players might reach a tie. Each player is randomly placed on the vertex of a network
with the same scale. By connecting to each other, the players form a structured population, and one
edge between two directly connected vertices stands for the cooperative alliance. All these alliances
turn this network into an AN. To study how the topologies of ANs affect the dynamics, we consider
three kinds of initial network model, namely the Erdős–Rényi random network (ER), the small-world
network (SW), and the scale-free network (SF). For an ER network, an edge is added independently
with a probability per. To generate SW and SF networks, a standard rewiring generating process [41]
and a preferential attachment mechanism are adopted [40].

To formulate our evolutionary minority game played on ANs, we introduce some denotations.
We denote the ith player as vi. If vi and vj are directly connected, we say there is an edge connecting
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the two, thus eij = 1. In this case, vj is a neighbor of vi or vj ∈ Γi and vice versa. Usually, a focal player
vi has |Γi| alliances with its neighbors Γi. These alliances are known as an alliance portfolio of vi [69].
For vi, these alliances bind vi and Γi as cooperative partners, and in the meantime, they also directly
compete for limited resources. In this work, we focus on local games played with immediate neighbors.

At time t, a player vi must make a choice from two possible strategies, say A and B,
with probabilities of pt

i and 1 − pt
i , respectively [47,49,52,57]. In a local MG, player vi tries to be

on the minority side with its immediate neighbors vj ∈ Γi to win a positive unit score (+1) as a reward.
Otherwise, a unit of a negative score (−1) will be granted as punishment. In the rare case of a tie
occurring in the local MG, a score of zero is given. The rewarding rule is described as

rt
i =


+1 if vi ∈ minority,

0 if it’s a tie,

−1 if vi ∈ majority.

(1)

For the global MG, the players have global information and the score is simply decided on the
side one happens to be on. We refer to this score rule as the global score strategy. On the contrary,
the local MG indicates that all players have only limited information of the AN; thus, the game is
repeated locally for each focal player, and only local neighbors within the social distance of one are
considered. For the local MG, we consider two cases: one single game case and one multiple game
case. In a simple case, the score st

i for vi at time t is only determined by the one-time local MG with
vi as the focal player; the score st

i = rt
i,MGi

. In the multiple game case or accumulative case, st
i is the

sum of all scores gained from 1 + |Γi|MGs in which vi and all neighbors of Γi are considered to be
the focal player one by one. For the latter, vi is a neighbor of its neighbor, that is, vi ∈ Γj and vj ∈ Γi,
where eij = 1. In the MG with vj as the focal player, vi also gets a score from this MG. Thus, the total
score for vi in an accumulative manner is the total score vi gained from all possible MGs it is involved
in. Therefore, the local score strategy for the accumulative case can be described as

st
i = rt

i,MGi
+ ∑

j∈Γi

rt
i,MGj

, (2)

where MGi denotes the local game with vi as the focal player.
If vi happens to be in the majority, it adjusts the probability to that choice by an aversion

coefficient α. If A is the majority, vi updates pt
i as αpt

i in the hope of avoiding being in the majority
again; thus, the probability for B is increased to 1− αpt

i . However, if A happens to be the minority,
then the probability of choosing B will be published to α(1− pt

i); thus, the probability to stick to A is
strengthened to 1− α(1− pt

i). This probability updating rule is described by the following equation:

(
pt

i , 1− pt
i
)
→
{(

αpt
i , 1− αpt

i
)

if A is majority,(
1− α(1− pt

i), α(1− pt
i)
)

if B is majority.
(3)

Most literature regarding EMG in networks only adopts a simplified probability adjustment
policy in which the probability is randomly chosen from a relaxed range centered around the initial
probability [49,59]. In our model, the probability updating rule is introduced to mimic the adoptive
behaviors of intelligent agents. Moreover, in these studies, no changes are made to the connectivities of
the AN. The network topologies are kept the same through all rounds. In other words, games are played
on a fixed topological network configuration in which the game has no impact on the connectivities.
This approach omits the evolutionary effects of games upon the networks and greatly limits their
applicability to real life scenarios. In reality, the game relies on the network environment, and the
outcome of a game also inevitably brings changes to the environment, in turn. For ANs, after each
round of a game, players can form new alliances as well as abolish existing alliances. To capture
this dynamic network evolving nature, a rewiring policy is introduced in our model. After updating
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decision probabilities, a focal player, who happens to be in the majority, is granted a chance to
reconfigure their edge. In this rewiring, the focal player first abolishes an edge with a randomly chosen
neighbor who is also in the majority and establishes a new edge from a randomly chosen non-neighbor
player. This rewiring policy vividly captures the simple motivation of leaving the majority to avoid
being in the majority again. Therefore, we should understand that the networks are dynamic rather
than static. However, one should note that this rewiring policy is not the policy used to generate SW
networks [41]. In fact, SW networks with the same degree distribution can have distinct topological
features if time evolution is considered [70]. Besides, local MG which relies on the local network
structures, we also consider the global MG in which the majority and minority are determined by the
whole population of the network, indicating that global information is available for everyone. In the
global MG, the scores are calculated for all players according to their choices. After a result of global
MG is reached, the players follow the same probability updating and network evolution policies to local
MG as described above. Games are played iteratively in T rounds. We conduct numerical simulations
to investigate the evolutionary dynamics of both local and global MG on different initial networks.

4. Simulation and Results

4.1. Simulation

In this section, we present the numerical simulation results and discussion. We consider a
population with N = 101 [47,53,60,61,71,72] placed on three types of initial network topology:
random networks, SF networks, and SW networks. To conduct numerical simulations, we consider
combinations of different generating parameters (different per for ER networks (0.05, 0.075, and 0.1),
different numbers of neighbors (5, 7, and 10) for SW networks, and different numbers of added nodes
for values of the aversion coefficient α (0.9 for aversion, 1 for neural policy, 1.1 for stubbornness),
rounds of games T (from 500 to 5000, with steps of one), and different score strategies (global,
local cumulative, and local). The results share similar patterns in different settings. In the simulations,
we focus on the performance measured as the score, the number fluctuation of players choosing side A
measured as the standard deviation (due to the symmetry, it is the same as considering side B), and the
evolutions of network topologies measured as the degree, clustering coefficient, betweenness centrality,
and eigenvector centrality. All these network properties are investigated to measure the cooperations
among the structured agents.

4.2. Results

To describe the score of the whole population, we calculated the average cumulative score 〈S〉 at
time T as

〈S〉 = 1
N

N

∑
i=1

T

∑
t=1

st
i , (4)

where st
i is the score of player vi at time t. 〈S〉 indicates the cumulative wealth gained from all T

rounds of game. In Figure 1, the average cumulative score 〈S〉 for the ER random networks for two
strategies, without rewiring and with rewiring, are plotted in Figure 1a,b, respectively. The results
are based on an ER network with per = 0.05 and 500 rounds. The results of the SW and SF networks
demonstrate similar dynamics. In Figure 1a, the network is frozen and kept the same as in other
existing research [60,61]. By incorporating varying networks [53] in Figure 1b, the network will apply
the rewiring strategy for the players on the majority side. Thus, the network itself is evolving each time.
As the results show, the global score strategy allows the slowest score to decrease, while on the contrary,
the local score strategy achieves the fastest score decrease. The results also show that α = 1 and α = 1.1
output similar outcomes that are significantly different from α = 0.9. In Figure 1b, when α = 1.1,
the average score is observed to increase, but this increase is not observed in Figure 1a. The two
cases show that the network rewiring strategy can bring a higher average score. In other words,
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the rewiring strategy allows for the abandonment of existing disadvantaged cooperation to establish
new cooperation, which can benefit the whole population by achieving an increasing average score.
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Figure 1. The average cumulative scores 〈S〉 of all three score strategies without rewiring (a) and
with rewiring (b). Different α values indicate the aversion coefficients. α = 0.9 means preferring to
change the policy, while a value larger than one, such as α = 1.1, means stubbornness. Depicted
here is based on the Erdős–Rényi (ER) random network. Similar patterns are observed in SW and SF
networks. The top, middle, and bottom panels are the results of the global strategy, local cumulative
strategy, and local strategy, respectively. Since the major side has more players which all get a score of
−1, the values are negative. Steep slopes represent an imbalance between the two sides, resulting in
lower values.

Figure 2 presents the ratios of players choosing side A, denoted as rA = |A|
/

N. As previously
mentioned, the study of A or B is symmetrical because rA + rB = 1. This ratio value indicates
the collective behavior of the population. If a huge fluctuation is observed, this indicates that the
population is not close to equilibrium with stably divided agents for A or B. On the other hand, if the
value is stable, then the population is reaching a stable situation without suffering from changes to
the majority and minority. In Figure 2a, for the global score strategy, there are fluctuations within the
first 300 rounds. After that, the ratio remains stable around a value of 0.45 for all initial networks.
In Figure 2b, we see that for the global score strategy, there is a decrease in the ratio in the first
100 rounds, and a stable state of around 0.4 is reached for the ER and SW networks. However, for the
SF network, the fluctuation is still obvious after 100 rounds. The three networks have similarly stable
results for the two local score strategies. In the global score strategy, each player has the global
information and is competing with the whole population. This allows for the emergence of stability
in decision-making; in other words, the network moves closer to the expected 0.5 equilibrium state.
For the local score strategies, each player only has limited local information and makes decisions
only based on local limited information without ideas about the whole network. It is possible that
the local majority might actually be the global minority; in this case, local players change policy only
based on local observations. The results show that this limited local information could lead to global
imbalance in the population, thus collective herding is possible. In our case, as shown in Figure 2a,b,
most individuals chose B. Thus, the local score strategy did not promote score or global balance.
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Figure 2. Evolution of rA, the ratio of players choosing A for the ER, SF, and SW networks, in cases both
without rewiring (a) and with rewiring (b). Three different score strategies—global, local cumulative,
and local—are considered in top, middle, and bottom graphs, respectively. As shown, global strategies
can maintain a balance of two sides with high rA values of around 0.5; however, local strategies lead to
imbalance with small values of rA which become stable gradually.

From another perspective, to investigate the changes in the number of agents that choose a certain
side, we plotted the standard deviation σA of A in Figure 3 for the global strategy, local cumulative
strategy, and local strategy, respectively. Thanks to the symmetry, we only needed to study the case of
side A. In the figure, we see that all curves have similar shapes. This shows that the differences in score
strategies and network topologies have little influence on the standard deviation. In the beginning,
there is a noticeable fluctuation, and soon, the curves decrease steadily. This phenomenon indicates
that the number of players choosing A is becoming stable and an equilibrium is approached in the
long run. In other words, it is possible for the players to reach a stable state after rounds of evolution
in which the population becomes synchronized in decision-making with fewer fluctuations.
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Figure 3. The standard deviation σA of the number of players choosing A without rewiring (a) and with
rewiring (b). Three strategies of global, local cumulative, and local are considered in three networks of
ER, SF, and SW. Eventually, the results become stable after a fluctuating period in all cases.
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Now, for the rewiring cases, we focus on the evolution of the network by looking into how the
topological properties evolve over time. The node degree is a direct indication of the cooperation level
for a structured population. The cooperation level is positively related to the degree density or average
degree for a population with a fixed size. When a new cooperation relationship is established, edges are
created to link players. When a cooperation relationship ends, the corresponding edge is canceled.
In Figure 4a, the average degree 〈k〉 is plotted for different initial settings of three types of network.
As shown, given a higher initial 〈k〉, the network can maintain a high level of 〈k〉, or 〈k〉 can increase
from a lower level of 〈k〉. This means that competitive decision-making can improve the network to
evolve into a state with a higher level of 〈k〉 for poor initial starts. In Figure 4b, the curves show how
the average degree 〈k〉 evolves under different score strategies in different network types. The local
cumulated score strategy has the highest 〈k〉 in ER and SW, while the steadily increasing trends for
all cases in the SF network are similar. Figure 4c shows how 〈k〉 evolves for different punishment
coefficients α. We can see that for the ER network, a smaller α = 0.9 can bring a slightly larger 〈k〉;
however, the increasing trends are the same for all score strategies. For SF and SW, 〈k〉 is larger for
α = 0.9 and α = 1 than α = 1.1, which means that stubbornness in decision-making leads to poor 〈k〉;
in other words, an appropriate adjustment introduced by lower α can improve 〈k〉.

The rewiring might introduce to isolated players that the compensation process to link isolated
players is beneficial to the increase of 〈k〉. When 〈k〉 reaches a certain level, isolated players are rarely
found. Thus, the rewiring can change the distribution degree among players but will not contribute to
a greater degree. The different score strategies and different levels of punishment are not found to
promote cooperation in three types of network.

The betweenness centrality Ci describes the global importance for a given player vi. In Figure 5a–c,
the evolution of the average betweenness centrality 〈CB〉 of all networks is plotted. A lower 〈CB〉
indicates that less players act as intermediates. As shown, 〈CB〉 decreases in all cases for the three
types of network, score policies, and punishment levels. This significant decrease indicates that the
players are becoming less important for the whole structured population. After several rounds of
evolution, 〈CB〉 becomes flat in a stable system.

We also investigated the changes in the average eigenvector centrality 〈CE〉 for all setups in
Figure 6. 〈CE〉 depends on the adjacency matrix. We see that there was no significant change in 〈CE〉
after the beginning of the small fluctuations for all three types of network. 〈CE〉 quantifies the influence
that emerged through cooperation among players in the structure population. The stable 〈CE〉 with
less fluctuations indicates a tendency for stability in the whole population. For rewiring cases, it is
possible to adjust cooperation at the first stage in which 〈CE〉 experiences changes and for overall
trends to be stable in the long run.

For a structured population, the average clustering coefficient 〈CC〉 describes the average degree
of completeness for all players. When all players have relatively complete environments, the network
shows a higher 〈CC〉 indicating higher cooperation among the population. In Figure 7, the 〈CC〉 values
for all cases are plotted. The results show that the ER network has significantly larger fluctuation
compared to the SF and SW networks in all cases. A small and stable 〈CC〉 indicates that the network
has a low level of embeddedness, and the evolution has little impact on the overall cooperation among
the population. More results of large populations are available in Supplementary Materials.
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Figure 4. The average node degree 〈k〉 for different cases is plotted. (a) Different configurations
of three networks—ER (top), SF (middle), and SW (bottom)—are considered. (b) Different score
strategies—global, local cumulative, and local. (c) Different values of the aversion coefficient α.
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Figure 5. Average betweenness centrality 〈CB〉 for different cases are plotted. (a) Different
configurations of the three networks—ER (top), SF (middle), and SW (bottom)—are considered.
(b) Different score strategies—global, local cumulative, and local. (c) Different values of the aversion
coefficient α.
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Figure 6. The average eigenvector centrality 〈CE〉 for different cases is plotted. (a) Different
configurations of the three networks—ER (top), SF (middle), and SW (bottom)—are considered.
(b) Different score strategies—global, local cumulative, and local. (c) Different values of the aversion
coefficient α.
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Figure 7. The average clustering coefficient 〈CC〉 for different cases is plotted. (a) Different
configurations of the three networks—ER (top), SF (middle), and SW (bottom)—are considered.
(b) Different score strategies—global, local cumulative, and local. (c) Different values of the aversion
coefficient α.
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5. Conclusions

In this work, we presented an evolutionary minority game on ANs to study the dynamics of
cooperation. In our model, players are populated on structured networks interacting with each other.
In a scenario of binary decision-making, players try to be on the minority side to gain scores. The binary
decision-making manner of the players is modeled as a minority game in two cases, in which they
are limited to local information or share common global information, respectively. In our model,
players adjust their decision preference by dynamically adjusting the decision probability according
to the outcome of a minority game. The decision also leads to possible edge rewiring, which allows
for the evolving of the network topology. The model was simulated extensively in networks such as
random networks, SW networks, and SF networks in various settings. The network properties,
such as the degree, clustering coefficient, and centrality, were investigated. Different topologic
networks (ER, SF, and SW) demonstrated different dynamics; however, different settings for the
same network showed similar behaviors. For most cases, the network rewiring strategy led to a higher
average score. The population choosing one certain side remained stable in ER and SW networks.
The results indicate that ER networks and SW networks behave similarly in balanced side choosing
and the deviation is small and stable. However, for SF networks, the global score strategy allows the
emergence of stability in decision-making, and local score strategies lead to extreme imbalance in
the population. The results show that even with poor initial starts, competitive decision-making can
improve the network into a state with a higher level of average degree. In other words, the cooperation
is improved. However, stubbornness in decision-making leads to poor situations in which cooperation
is discouraged. Though the model proposed in this study is simple yet stylized, it captures the
inter influences of competitive decision-making and AN dynamics. This study contributes to the
literature of the minority game, the evolutionary game played in networks, and cooperation. However,
there are limitations in the current work. For simplicity, we only considered the local information of
immediate neighbors with a distance of one. However, this can be relaxed to other distances to see
how wider topologies influence the game results. On the other hand, besides the degree, the decision
balance, and the score, possible new measurements of cooperation can be introduced to model the
cooperation level in evolving games. In the current model, the global and local score strategies
are different and their results cannot be directly compared. Possible modifications might lead to a
normalized framework in which the scores are directly comparable. Also, in line with the Deffuant
model of opinion dynamics [13,14], we can model the establishing of cooperation in a similar manner.
That is, the linked two players can form a cooperation only if their decisions or opinions are above a
certain threshold. In this work, the decision is binary, regardless of the thresholds of certain decision
factors. It would be interesting to further study the cooperation of networks taking the thresholds into
consideration. These interesting extensions are beyond the scope of our present work. We hope that
this work can stimulate and inspire interested scholars to further explore this line of study of using the
minority game to model the cooperation in structured systems.

Supplementary Materials: Additional results are available online at http://www.mdpi.com/2071-1050/10/12/
4746/s1.
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