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Abstract: Urban rail transit has become an indispensable option for Beijing residents. Subway
inelastic users (SIUs) are the main component among all users. Understanding the proportion of
SIUs and their characteristics is important in developing service promotions and helpful for subway
agencies in making marketing policies. This paper proposes a novel and simple identification process
for identifying regular subway inelastic trips (SITs) in order to distinguish SITs and non-SITs and
extract their characteristics. Weekly station sequence (WSS) is selected as the data-based format,
principles of SIUs are discussed and chosen, and the framework of SIT identification is applied to
a large weekly sample from the Beijing Subway. A revealed preference (RP) survey and results
analysis are undertaken to estimate the performance of the proposed methods. The RP survey
validation shows that accuracy reaches as high as 94%, and the distribution analysis of SITs and
their origin-destinations (ODs) indicate that the SIT characteristics extracted are consistent with the
situation in Beijing. The proportion of SIUs is stable on workdays and is more than 80% during
rush hour. The efforts described in this paper can provide subway managers with a useful and
convenient method to understand the characteristics of subway passengers and the performance of a
subway system.

Keywords: Subway inelastic users (SIUs); subway inelastic trips (SITs); weekly station sequence
(WSS); travel behavior; smart card data

1. Introduction

Urban rail transit has become an indispensable option for daily travel in China, especially for
commuters in metropolises such as Beijing and Shanghai [1,2]. In 2015, passenger traffic on the Beijing
Subway was 3.32 billion boarding, and the average daily passenger volume reached 9.11 million
boarding [3]. With millions of people choosing rail transit as their primary travel mode, congestion
occurs during peak hours. The Beijing Subway was designed with a low-fare policy in 2007 to attract
car commuters and offer commuters a convenient and comfortable means of transportation. However,
in a sample survey during 2012, managers of the Beijing Subway found that commuters accounted
for only about 60% of peak trips [4], which partly led to an increased fare policy in 2014 to reduce
noncommuters in rush hour. Thus, an awareness of passenger classifications during peak hours,
especially commuters, is needed for managers to make informed decisions [5,6].
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In the traditional definition, commuter refers to a person who regularly travels from one place to
another, typically for work. With rapid developments in Beijing, commuters today include not only
office workers, but also students, as well as people with specific and fixed needs, such as morning
exercisers, morning shoppers, and parents or grandparents escorting children to and from school [4].
Meanwhile, as a result of occupation diversity, the travel time of some commuters may have changed
from 08:00 through 18:00 to earlier in the morning or late at night, or from workdays to weekends [1,7].
Thus, in this paper, the term subway inelastic users (SIUs) is proposed to replace commuters, in order
to highlight workers and include more travelers, such as commuters.

SIUs include two main types of users, regular SIUs and special SIUs. Regular SIUs refers to subway
users who travel regularly by metro, and whose travel demands remain stable regardless of rush hour
congestion or price changes. Special SIUs refers to subway users with inelastic demands who travel
at random, such as job interviewers, tourists, or patients on their way to the hospital. Special SIUs
are not involved in this paper because: (1) there are far fewer special SIUs than regular SIUs and they
contribute little to congestion of the subway system [3,4]; (2) special SIUs with temporary demands
that do not last for a long time are hard to detect only by smart cards [6]; and (3) some special SIUs
might become regular SIUs in the long term when temporary demands change into lasting demands [8].
In addition, because of the amount of work and high labor costs and the number of subjects per sample,
data collected from manual surveys were not readily available [9]. Hence, a data mining algorithm is
proposed to recognize regular SIUs and discuss their proportion among all passengers in this paper
only based on smart card data.

Classification methods of public transport (PT) passengers have been discussed in several
research papers. Cluster analysis has become the most popular method in the context of user
identification studies with different indicators. For example, transit riders’ historical travel patterns
are detected by the density-based spatial clustering of applications with noise (DBSCAN) algorithm
based on the identified trip chains [6,10]. Using one-month transit smart card data, spatiotemporal
regularity of individual commuters, including residence, workplace, and departure time, are measured,
and PT commuters are identified by leveraging spatial clustering and multicriteria decision analysis
approaches [11]. User-specific areas aligned with different activity locations are used to classify PT
passengers, while clusters are characterized by a distinct sequence structure [12,13]. While these works
highlight the potential of a clustering algorithm, approaches are limited with clustering variables
that might ignore or be seriously affected by some abnormal data [14,15]. Meanwhile, it takes a great
amount of work to reduce noise and extract indicators before processing [16].

Besides clustering methods, fusion methodologies have been developed to enhance the
understanding of travelers’ behavior by combining smart card data with other information, such as
Global Positioning System (GPS) data, socioeconomic data, job–housing locations, or individual travel
graphs [16–21]. Several processing frameworks for data matching and association have been proposed
to define commuting trips and extract commuter characteristics [2,7,22]. However, the limitations of
these approaches are obvious: (1) the process might not fit all formats of multisource data, and (2)
the method is not as efficient as clustering methods, because additional information needs to be
collected [23].

On the other hand, variability and loyalty of PT passengers are detected to reveal factors that
affects their commuter patterns and choices [18,19,24–27]. Disparity in locations of occupations and
residences in cities leads to a large amount of commuting, and the geographic relationship between
occupation and residence is the core factor that influences the choice of commuting mode [1,2,10,11,28].
Locations of jobs and housing partly determine commuting trip mode, and the level of service
(LOS) of the subway system contributes significantly in terms of customer satisfaction and route
selection [9,13,25,27]. Moreover, personal characteristics and preferences are also related to the mode
and choice of commuting travel, such as age, household income, and occupation level [14,25,29].
Additionally, fare policy has a significant impact on the user’s degree of satisfaction, but not the
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passenger flow volume [30–32]. Ridership statistics and performance indicators mentioned in these
studies offer helpful information to determine the principles of SIUs used in this paper.

Automatic fare collection (AFC) has provided transit agencies with huge amounts of operational
data, which are widely recognized as having the potential to serve functions beyond the designated
purpose of revenue management [9,16,23]. Based on AFC data mining, understanding SIUs and their
behaviors with less labor costs is possible, and efforts can be made to enhance the LOS of the subway
system to maintain the major users. For subway agencies, the data mining results can be helpful in
marketing, encouraging non-SIUs to shift their travel times to less busy hours, and implementing
special fare policies for peak travel. Furthermore, defining regular SIUs is useful to provide basic and
important data in a subway planning program.

In line with understanding SIUs’ travel patterns, the contribution of this work is twofold. From a
methodological perspective, we provide a novel and simple framework for classifying regular subway
inelastic trips (SITs) based on three principles, which measure the regularity of SITs spatially and
temporally. From an empirical perspective, we analyze and expose the nature of SITs in the Beijing
Subway system. The data mining framework is used to understand SIT and non-SIT characteristics
from a typical week in 2016 and a similar period in 2017.

The remainder of this paper is organized as follows. Section 2 discusses the data foundation of
the Beijing Subway. Section 3 provides an overview of the methodology, and Section 4 describes its
application and validation in the Beijing Subway. Finally, the conclusions and limitations of the work
are discussed in Section 5.

2. Data Foundation of the Beijing Subway

In the case of the Beijing Subway, an AFC system was adopted around the time of the 2008
Olympics. Subway users need to swipe a smart card both inbound and outbound, and transfers do
not require reswiping, with the exception of the airport line [1,9]. Beijing Subway AFC data contain
37 fields, 7 of which are extracted in this paper [22]. Transaction records collected for use in this paper
comprise the user’s card number, entry and exit times, inbound and outbound lines, and stations.
Table 1 shows an example of a transaction record.

Beijing Subway has a total mileage of 574 km, 19 operating lines, and 276 stations as of 2017.
A subway map is shown in Figure 1. To validate the accuracy of the proposed methods, AFC data
were collected in two typical weeks from 16 October to 22 October 2016 and 2017. There are no special
holidays within 7 days before and after the selected weeks, therefore the data are more likely to
accurately reflect the daily travel characteristics of users. There are more than 7 million smart cards and
more than 32 million transaction records in a week. Figure 2 shows the distribution of Beijing Subway
smart cards and transaction records in 2016. The average number of trips (number of transaction
records/smart cards) a subway user makes in a day is about 1.74 on workdays, which is extremely
stable from Monday to Thursday and a little higher on Friday [22,32].

Table 1. Example of Beijing Subway automatic fare collection (AFC) transaction record.

Card Number Number of
Entry Line

Number of
Entry Station Entry Time Number of

Exit Line
Number of
Exit Station Exit Time

15***0 6 59 7:56 17 October 2016 4 37 9:04 17 October 2016
15***0 4 37 18:43 17 October 2016 6 59 19:37 17 October 2016
15***0 6 59 7:59 18 October 2016 4 37 8:51 18 October 2016
15***0 4 37 19:09 18 October 2016 6 59 20:04 18 October 2016
15***0 6 59 7:48 19 October 2016 4 37 8:41 19 October 2016
15***0 4 37 19:15 19 October 2016 6 59 20:10 19 October 2016
15***0 6 59 7:32 20 October 2016 4 37 8:26 20 October 2016
15***0 4 37 18:25 20 October 2016 6 59 19:20 20 October 2016
15***0 6 59 8:02 21 October 2016 4 37 9:05 21 October 2016
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Figure 1. Beijing Subway map. Data source: https://www.bjsubway.com/. Figure 1. Beijing Subway map. Data source: https://www.bjsubway.com/.

https://www.bjsubway.com/
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Figure 2. Distribution of Beijing Subway transaction records and smart cards in a week in 2016.

3. Methodology

In addition to the growth in passenger traffic attracted by the construction of new lines, fixed user
groups are the key to a stable passenger flow in the Beijing Subway system [3,4]. This paper focuses
on regular SIU identification to understand the main composition of passenger types. A discussion
of the methodology follows to present the data mining process in 3 steps: (1) Section 3.1 presents
the data preprocessing, by which the data format used in the study is prepared; (2) Section 3.2
presents the principle characteristics of regular SIUs and SITs by conclusions from previous studies;
and (3) Section 3.3 presents the data processing framework of SITs for detecting every principle
characteristic proposed in Section 3.2.

To begin with, the abbreviations we use are listed here: subway inelastic users (SIUs), subway
inelastic trips (SITs), station code (SC), site number (SN), weekly station sequence (WSS), single station
sequence (SSS), daily station sequence (DSS), weekly traveling days (WTDs), repeated station sequence
(RSS), and entry time difference (ETD).

3.1. Weekly Station Sequence (WSS)

Weekly station sequence (WSS) is selected as the data-based format in this paper, which refers to
a string of numbers consisting of station code (SC) within a week. WSS includes the user’s inbound
and outbound station number by comparing whether the station is the same with the previous ones.
Figure 3 shows the data mining procedure for extracting WSS from weekly transaction records of the
AFC data system. The details of the WSS tagging process are shown in Table 2.

Table 2. WSS tagging process.

Step Main Tasks

0 Read AFC data for a week
1 Site Number (SN) = (Entry/Exit) Line Number + (Entry/Exit) Station Number
2 Site Number of Transfer Station = Min {Site Number 1, Site Number 2, . . . }
3 Rank transaction records by Card Number from 1 to n, and extract all records of Card Number i
4 Rank transaction records by Entry Time from 1 to m, and extract Record j

5

For Record j, tag station code (SC):

SC(2j− 1) =


1, if j = 1

SC(2j− 1) = SC(x), if j ≥ 2 & SN(2j− 1) = SN(x), x = (1, 2, 3, . . . , 2j− 2)
max{SC(1), SC(2), . . . , SC(2j− 2)} + 1, if j ≥ 2 & SN(2j− 1) 6= SN(x), x = (1, 2, 3, . . . , 2j− 2)

SC(2j) =


2, if j = 1

SC(2j) = SC(x), if j ≥ 2 & SN(2j) = SN(x), x = (1, 2, 3, . . . , 2j− 1)
max{SC(1), SC(2), . . . , SC(2j− 1)} + 1, if j ≥ 2 & SN(2j) 6= SN(x), x = (1, 2, 3, . . . , 2j− 1)

6 Have all records of Card Number i been tagged? Yes→ Output WWS and Step 7; No→ Step 4.
WWS(i) = SC(1)→ SC(2) + SC(3)→SC(4) + . . . + SC(2m − 1)→ SC(2m)

7 Have all AFC records been tagged? Yes→ End; No→ Step 3.
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Taking an example of the transaction records in Table 1, the data mining results of WSS are
computed as the array format shown in Figure 4. Single station sequence (SSS) presents a single trip
from origin to destination, which constitutes a daily station sequence (DSS). It can be determined in
Figure 4 that the user traveled between the first station and the second station from Day 1 to Day 4,
and did not return by subway on Day 5. Furthermore, in WSS format, we adopt an arrow to indicate
a trip and a plus sign to distinguish different trips. Therefore, WSS contains information about the
selected stations, which is useful for detecting the regular stations and trips.
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Figure 4. Example of weekly station sequence (WSS).

3.2. Subway Inelastic Trip (SIT) Identification Principles

Many studies have discussed how to recognize SIUs’ travel patterns by detecting the temporal and
spatial characteristics of their trip chains [12,13,22]. Indicators such as traveling days, route sequences,
stops, and departure times are defined to measure the commuting intensity of each transit rider [6,11].
The frequency of the indicators or the thresholds of the frequency are the main factors to describe SIUs’
behavior. For example, traveling days in a week (≥3) with a time interval (≥7 h) is used as a condition
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to distinguish public transport commuters [20]. Complex indicators such as the travel space balance or
a sequence of intervals are introduced to identify passengers’ travel patterns [9,12,13].

Most studies have concluded that: (1) SITs always repeat stops and lines with high probability,
and (2) SIUs are used to choosing the same travel route and time every day. These conclusions provide
the rationale to identify SITs. If the spatiotemporal characteristics of subway trips can be detected
in a proper way, SITs can be recognized and identified [2,8,33]. Hence, we focus on checking the
spatiotemporal regularity and repeatability of trips to distinguish SITs and non-SITs in this paper.
The repeated routes and stations are identified by detecting the WSS, and the repeated travel time is
checked by comparing the entry time of the repeated station sequence (RSS) subsequently.

In summary, we determine to set SIT identification principles from 3 aspects: (1) number of
weekly traveling days (WTDs), (2) number of repeated station sequences (RSSs), and (3) entry time
difference (ETD) of RSSs. The specific principles for SITs are described as follows.

3.2.1. Principle 1: WTDs ≥ 2

Weekly traveling days (WTDs) refers to the number of the days that users travel by subway in
a week. Figure 5 shows the distribution of subway users according to WTDs. It indicates that the
proportion in a week or on workdays is around 42% when WTDs is equal to 1. About 23.1% of subway
users travel by subway 5 or more days a week, of which 7.7% have 6 WTDs and 3.2% have 7.

If a user only takes the subway once a week, the transaction record might not contain enough
information to understand the user’s travel demand [33]. These are usually called one-way
trips, and users are considered random users who might not travel regularly by subway [17].
Hence, the condition WTDs ≥ 2 is employed to exclude random users and improve the efficiency
of the SIT identification algorithm. In addition, the authors do not adopt traveling on workdays as a
principle, because there is still a small group of SIUs who travel on weekends in Beijing.
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3.2.2. Principle 2: RSS ≥ 2

Repeated station sequence (RSS) refers to an SSS that happens more than once. RSSs show the
stations and routes that subway users choose every day, which indicates their origin and destination.
RSSi is presented to the i RSS in a WSS. For example, in Figure 4, there are 2 RSSs in the WSS. RSS1 is
1→2, which appears 5 times, and RSS2 is 2→1, which repeats 4 times. In this case, the first station can
be predicted as the one near home and the second station as the one near the workplace.

Principle 2 focuses on the spatial regularity of SITs. The condition RSS ≥ 2 is employed to check
that SITs at least repeat more than once. Though some studies require 3 times as a condition, we made
it 2 to prevent missing some SITs [2,11,33].
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3.2.3. Principle 3: ETD ∈ [0, 30 min]

Entry time difference (ETD) of RSS refers to the entry time difference between repeated SSSs.
It can be counted by Equation 1:

ETDk = Min { | ETk
i − ETj

i | } j = 1, . . . , n and j 6= k (1)

where ETk
i is the entry time of trip k of RSSi; ETDk is the minimum of the absolute value of the time

difference between ETk
i and the other trips of RSSi; and n refers to the repeated times of RSSi.

Principle 3 aims to measure the temporal regularity of SITs. Previous research has found that
commuter travel time is concentrated in the morning and evening rush [2,8]. In Beijing, the average
travel time in the morning and evening rush is 62.3 min and 52.8 min, respectively [3,4]. The threshold
30 min (about 50% of the average travel time) is set, for beyond that threshold riders might be late for
their destination.

3.3. SIT Identification Framework

Based on the principles mentioned in Section 3.2, the framework of SIT identification is designed
as in Figure 6. The input is the foundation database of all trips, and the output is the SIT database,
which contains the identified inelastic trips. First, we read the data prepared in Section 3.1 and
renumber all cards. For Card Number i, transaction records are checked by Principle 1. If WTDs ≥ 2,
proceed to the next step; if not, transaction records of Card Number i will be removed to {Non-SITs}.
Then transaction records are judged by Principle 2 and Principle 3 until records of Card Number i
are recognized and SITs are tagged and stored in {SITs}. When all cards and records are detected,
the process ends.Sustainability 2018, 10, 4725 9 of 16 
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4. Validation and Discussion

To validate the effectiveness of the proposed SIT identification method, a detailed revealed
preference survey (RP) was conducted to collect the travel attributes of smart card holders in Beijing
in May 2017. The RP survey was carried out around five subway stations by asking users to answer
a questionnaire on the spot. The questionnaire included questions about personal information such
as age, income, and occupation, and travel information such as trip purpose, travel route (origin and
destination stations), and travel time. Crucially, every respondent was required to input his/her smart
card number and trips were defined as a SIT or not based on this trip information.

The survey finally collected 453 samples, of which 389 card numbers can be matched to data
collected in 2016 and 396 card numbers in 2017. In the available information, 247 of 389 and 224
of 396 are SIUs, and 142 of 389 and 172 of 356 are non-SIUs. We verify the accuracy of the SIT
identification method by detecting collected data in {SITs} or {Non-SITs}, and the results are shown
in Table 3. The average accuracy rate of SIUs is as high as 94%, a little lower than the accuracy rate
of non-SIUs, which is favorable proof of the proposed framework for SIT identification. Though the
average accuracy rate is not higher than the results from previous studies (94.1% in [11] and 94.5%
in [21]), the framework works in a simple way without as much work in mining data and collecting
personal information.

Table 3. Results of validation of subway inelastic users (SITs) and non-SITs.

Data
Foundation

SIUs in
Survey

Non-SIUs
in Survey

SIUs in
{SITs}

Non-SIUs
in {SITs}

Accuracy Rate
of SIUs (%)

Accuracy Rate
of Non-SIUs (%)

2016 247 142 231 139 93.5 97.8
2017 224 172 212 165 94.6 95.9

We analyzed the distribution of entry times of all trips and SITs to estimate classification and
stability of SITs. With 14 distribution figures extracted from two weeks of data from the Beijing Subway,
the curves and values of these distributions are found to be extremely similar for workdays and
weekends. Hence, only four representative figures are demonstrated in Figure 7. The horizontal axis
presents entry times in 5 min intervals from 05:00 to 23:55, and the left ordinate shows number of trips
(transaction records), while the right ordinate presents the ratio of SITs to all trips from 0% to 100%.
Distributions of three indicators are shown in the figure: (1) trips refers to number of all trips, (2) SITs
refers to number of SITs, and (3) ratio refers to the ratio of SITs to all trips.
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Figure 7. Distribution of entry times of all trips and SITs in 2016 and 2017: (a) Wednesday in 2016;
(b) Wednesday in 2017; (c) Saturday in 2016; (d) Saturday in 2017.
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Figure 7a,b shows two distributions of trips on Wednesday, for which the SITs curve is close to
the trips curve with two peak hours (07:00 to 09:00 and 17:05 to 19:05). Meanwhile, the distribution of
ratio has three peak areas (07:00 to 09:00, 17:40 to 19:40, and 23:20 to 23:35). The highest ratio reaches
more than 80% in peak hours, and the average of ratio is about 75.6% in morning peak hours and
about 64.2% in evening peak hours. The peak area from 23:20 to 23:35 indicates that a small percentage
of passengers prefer to regularly travel at night.

Figure 7c,d shows two distributions of trips on Saturday. The similarity of the SITs curve and
trips curve on weekends is not as high as what appears in Figure 7a,b. The ratio is below the value on
workdays; however, there are still about 40% of SITs travelling in the morning and night peak hours.

The distributions of trips suggest that SITs extracted by the proposed method are stable in number
of SITs, travel time, and ratio of SITs to all trips on workdays, which is consistent with the definition
of SITs. Additionally, some special SITs (such as those on late nights and weekends) were detected,
which is in line with the diversity of occupations in Beijing [1,18]. In short, the distribution of trips
strongly proves the feasibility of the proposed method.

We further analyzed origin–destination (OD) distribution of SITs based on subway stations,
and the distributions are also found to be similar on workdays and weekends. An example of OD
distributions is shown in Figure 8. First, distributions of origin are matched to distributions of
destination, which indicates that most SIUs always prefer the same station as an origin or a destination
and return to the origin station. This characteristic of SIUs has been proved and discussed in many
studies [1,6,11,21]. Second, high passenger flow volumes of SITs are concentrated at the center of
Beijing City, especially around and within the Fourth Ring Road. Third, the highest volumes are
focused around two areas, Zhongguancun and Guomao, the two largest central business districts in
Beijing, with millions of jobs. To some extent, OD distribution of SITs proves the stability of SIUs in
choosing subway stations.

In summary, the proposed SIT identification methods have practicability in distinguishing subway
users, which is very important to the future of the transit industry. Regular SITs are a large part
of ridership on many transportation systems around the world. By data mining with extensive
data, SITs and inelastic demand can be easily recognized for further infrastructure planning and
system optimization.
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5. Conclusions

A data mining methodology is proposed for identification of regular SITs and understanding
of regular SIU characteristics of the Beijing Subway. WSS, used in this paper, is a novel and simple
data format to enhance the visibility of data mining results. Three specific principles to identify
SITs are presented, of which Principle 1 aims to enhance the data mining efficiency, Principle 2
to check the spatial regularity of SITs, and Principle 3 to measure the temporal regularity of SITs.
Finally, the framework of the data mining process is proposed and applied to distinguish SITs and
non-SITs in the Beijing Subway system. RP survey and analysis are performed to demonstrate the
effectiveness of the proposed method. Results confirm that the method proposed in this paper is
feasible for SIT identification and is easy to use in practice.

By applying the proposed method, managers of transit agencies can understand the features
of SITs and have insight into the elaborate travel demands of passengers only based on AFC data
without high cost and the effort of collecting extra information and preprocessing different data.
The characteristics of SITs are helpful in assessing the LOS of the subway system and improvements
can be proposed in the periods with a high ratio of SITs. The method also can be used to predict
the origins and destinations of travelers. However, the principles for identifying SITs in this paper
only focus on the repeatability of stations and travel time, and the conditions of SITs might not be
as constant as we discussed. SITs might have different manifestations and characteristics when the
influencing factors change, such as job and housing locations, congestion, and fare policies, which are
not detected in this paper. In addition, the dataset used in this paper does not include the users’
personal attributes, and special SITs are hard to detect, which might lead to deviation in identifying
SITs. Further studies will focus on examining and tracing the characteristics of SIUs over a longer term
and improving the accuracy of the discrimination methods.
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