
sustainability

Article

Consistent Registration and Discovery Scheme for
Devices and Web Service Providers Based on RAML
Using Embedded RD in OCF IoT Network

Wenquan Jin and Dohyeun Kim *

Department of Computer Engineering, Jeju National University, Jeju 63243, Korea; wenquan.jin@jejunu.ac.kr
* Correspondence: kimdh@jejunu.ac.kr

Received: 28 September 2018; Accepted: 27 November 2018; Published: 10 December 2018 ����������
�������

Abstract: The Internet of Things (IoT) is comprised of connected devices which are equipped with
sensors, actuators, and applications to provide services for enabling those objects to connect and
exchange data. For these connected devices and the IoT network environment, heterogeneous
protocols and frameworks have been published and applied to provide novel IoT services in our
daily life. On the Internet, most of the services are provided by existing web service providers
which are based on the high-performance processor, storage, and stable power supply. However,
devices of the IoT are developed for constrained environments using the small size of equipment
to provide seamless services ubiquitously. For accessing the constrained devices and existing web
service providers using the clients in the IoT networks such as smart homes, the services of servers
from the devices and web service providers shall be discovered by the clients using a consistent
discovery service. In this paper, a consistent registration and discovery scheme is proposed for the
devices and web service providers in the Open Connectivity Foundation (OCF)-based IoT network.
For supporting the proposed scheme, an embedded resource directory (RD) server is proposed
to provide a consistent registration service that is used for publishing information of devices and
web service providers. For the registration, a unified profile format is used that is based on the
RESTful API Modeling Language to describes the information of devices and web service providers.
Furthermore, the discovery service provides the consistent interface to discover the registered devices
and web service providers by the client using the unified user interface. Accordingly, the client can
access the resources of devices and web service providers based on the discovered information.

Keywords: Internet of Things (IoT); resource directory (RD); RESTful API modeling language
(RAML); Open Connectivity Foundation (OCF); web service provider (WSP); constrained network

1. Introduction

The Internet of Things (IoT) is an emerging engineering paradigm to build heterogeneous
industrial systems for segments such as healthcare, residents, transportation, manufacture,
and agriculture. IoT services are provided to the professionals, clients, and providers through the
Internet-connected devices at the edge of networks. In the center of networks, powerful computers
support sufficient storage and computing ability to enable data saving and processing for smart and
ubiquitous applications. In the IoT, the devices are a most important element, which is comprised
of information and communication technologies (ICT) to implement the IoT systems in a specific
domain or cross-domain of industries. With the development of ICT, the quantity of Internet-connected
devices will be increased to reach 20.4 billion by 2020, and the quality also will be enhanced with the
deployment of the next generation (5G) communications networks [1,2]. Therefore, the heterogeneity
of devices shall be the challenge because of the increasing number of devices [3]. Moreover, most of the

Sustainability 2018, 10, 4706; doi:10.3390/su10124706 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-8404-9447
http://dx.doi.org/10.3390/su10124706
http://www.mdpi.com/journal/sustainability
http://www.mdpi.com/2071-1050/10/12/4706?type=check_update&version=2


Sustainability 2018, 10, 4706 2 of 17

existing services are developed for the hypertext transfer protocol (HTTP)-based web service provider
(WSP) on the Internet [4]. However, the IoT frameworks prefer the IoT-specific protocols such as
constrained application protocol (CoAP), message queuing telemetry transport (MQTT), and other
communication implementations based on those protocols [5]. The IoT system shall support the
HTTP-based existing services of WSPs as well as support the constrained and novel IoT-specific
protocols. For accessing those massive number of devices in various protocols, the directory service is
needed to provide a consistent service to discover the information of objects in the network.

In the IoT network, the directory service enables things to be discovered. The functionality of the
directory service supports the information of IoT devices to be stored and retrieved [6]. The resource
directory (RD) is a server that provides a set of services for enabling the services of discovery in
the network where the RD is deployed [7]. The registration and discovery services are the main
features of the RD, which are used for registering the information of services to the directory and
providing the discovery service to enable the discovery of accessible services by the clients. Services
are exposed by the resources to handle the requests from clients and communicate the results to
clients [8]. For registering those services’ information to the RD, a profile format is required to include
the information. The RESTful application programming interface (API) modeling language (RAML)
is used for describing the APIs from a service provider such as an IoT device and WSP. The RAML
is a framework to describe the APIs using a structured and unambiguous format [9]. RAML data
includes the basic information of the service provider, and the introduction of each resource that
includes resource uniform resource identifier (URI), request requirements such as query parameters,
and request body structure, response body structure, and examples. Therefore, the RAML data can be
used for describing the information of resources and registering the resource to the RD.

In the IoT network, the server applications are deployed on the devices which have a processor,
memory, storage, and network communication module. A server application provides the services
which are exposed by the resources in the network [10]. The resource discovery approaches can be
used with a multitude of techniques according to the number of parameters such as network scale,
deployed devices, and communication protocols. In the IoT network, the devices can be deployed
in the constrained networks using the constrained network protocols with limited power supply
and computing ability [11]. Moreover, some devices need a stable power supply and sufficient
storage to provide services using the professional parts such as e-Health sensors in the wireless body
area network (WBAN) [12–15]. These devices can be the standalone ubiquitous devices to support
real-time decision making through the analysis base on bit data, and also can be the local servers
which provide discovery, registration, and forwarding service to the devices and service clients in a
specific network [16,17]. However, in the IoT network, the constrained devices and local servers need
to collaborate for providing better services to the clients.

In this paper, we present a registration and discovery scheme for the IoT devices and WSPs
which are deployed in different networks using different protocols. For the IoT devices, the IoTivity
framework is applied, which is an open source implementation of the Open Communication
Foundation (OCF) specification [18]. In the OCF network, devices use OCF messages to communicate,
which are based on CoAP for the constrained IoT network. The functionalities supported by the RD
server provide service of registration, discovery and request forwarding from the OCF network and
WSPs from the Internet. The registration service is used by the client that registers the information of
discoverable resources. The client can be a publishing client as well as a part of IoT device. An IoT
device can hold the resources to provide sensing and actuating services in the OCF network. A WSP
can be developed by an organization to provide services through the APIs to enable users to use the
APIs and access services. To use the APIs in the OCF network by IoT clients, the information must be
discoverable. The proposed RD server provides a consistent registration service for the RAML-based
resource information. For the registration, a new data model is presented using the RAML definition.
The RAML definition shall be pre-defined for the IoT device as well as the WSP and deployed on the
client that can publish the RAML data to the RD server. A parser in the RD server interprets the RAML



Sustainability 2018, 10, 4706 3 of 17

data and inserts them into the database (DB). In the OCF network, the IoT clients request the RD server
to look up the registered information, then the resources shall be discovered from the OCF network
and Internet. Once the resources are discovered, the IoT client can access the services. The RD server
also provides the message forwarding service to the OCF client for accessing the HTTP-based services
on the Internet. Figure 1 shows the network architecture that presents the interactions of entities for
the registration, discovery, and accessing.

Sustainability 2018, 10, x 3 of 17 

RAML data and inserts them into the database (DB). In the OCF network, the IoT clients request the 
RD server to look up the registered information, then the resources shall be discovered from the OCF 
network and Internet. Once the resources are discovered, the IoT client can access the services. The 
RD server also provides the message forwarding service to the OCF client for accessing the HTTP-
based services on the Internet. Figure 1 shows the network architecture that presents the interactions 
of entities for the registration, discovery, and accessing. 

 
Figure 1. The proposed system architecture. 

The rest of the paper is structured as follows. Section 2 introduces related works. Section 3 
introduces the proposed methodology of registration and discovery. Section 4 introduces the 
registration and discovery scenarios using the proposed elements in the OCF-based IoT network. 
Section 5 introduces the implementation results. Section 6 introduces the performance evaluation. 
Finally, we conclude this paper in Section 7. 

2. Related Works 

For the constrained network, solutions of discovery can be considered as distributed and 
centralized for the IoT environment [19]. The discovery servers can be deployed for the large-scale 
distributed system that has multiple systems to handle the network where the server is deployed 
[20]. This fully distributed architecture can support an efficient discovery approach in low power and 
lossy networks such as the CoAP network [21,22]. The CoAP network is a constrained network 
because the CoAP is designed for the M2M services which are provided by the constrained devices 
[23]. The constrained RESTful environments (CoRE) RD is a server that is deployed in the IoT 
network for providing services to discover the constrained nodes [24]. For the registration to the 
CoAP RD, the RD provides an interface to accept a POST from an CoAP device containing the list of 
resources in the CoAP message payload. The resources are described in the CoRE link format to be 
added to the RD. Therefore, the limitation of the CoAP RD is the registration interface of a CoAP RD 
and cannot involve the extra information for describing the details of registering devices. For 
constrained devices, the registration information shall be smaller. However, according to the edge 
computing, the devices quip with high-performance parts in the IoT network. Therefore, the CoAP 
RD shall provide the registration interface for the detail registration profile that can describe more 
detailed information of the registering device. 

The server shall be based on the connected power supply to provide the lookup services for 
retrieving the registered device information that can involve URIs, accessing requirement, and status [25]. 
Therefore, the RD also can be used for the centralized solution with powerful equipment for large-

Figure 1. The proposed system architecture.

The rest of the paper is structured as follows. Section 2 introduces related works. Section 3
introduces the proposed methodology of registration and discovery. Section 4 introduces the
registration and discovery scenarios using the proposed elements in the OCF-based IoT network.
Section 5 introduces the implementation results. Section 6 introduces the performance evaluation.
Finally, we conclude this paper in Section 7.

2. Related Works

For the constrained network, solutions of discovery can be considered as distributed and
centralized for the IoT environment [19]. The discovery servers can be deployed for the large-scale
distributed system that has multiple systems to handle the network where the server is deployed [20].
This fully distributed architecture can support an efficient discovery approach in low power and lossy
networks such as the CoAP network [21,22]. The CoAP network is a constrained network because
the CoAP is designed for the M2M services which are provided by the constrained devices [23].
The constrained RESTful environments (CoRE) RD is a server that is deployed in the IoT network
for providing services to discover the constrained nodes [24]. For the registration to the CoAP RD,
the RD provides an interface to accept a POST from an CoAP device containing the list of resources in
the CoAP message payload. The resources are described in the CoRE link format to be added to the
RD. Therefore, the limitation of the CoAP RD is the registration interface of a CoAP RD and cannot
involve the extra information for describing the details of registering devices. For constrained devices,
the registration information shall be smaller. However, according to the edge computing, the devices
quip with high-performance parts in the IoT network. Therefore, the CoAP RD shall provide the
registration interface for the detail registration profile that can describe more detailed information of
the registering device.



Sustainability 2018, 10, 4706 4 of 17

The server shall be based on the connected power supply to provide the lookup services
for retrieving the registered device information that can involve URIs, accessing requirement,
and status [25]. Therefore, the RD also can be used for the centralized solution with powerful
equipment for large-scale IoT networks [26]. With the sufficient hardware specification, the RD also
can support high-performance computing to provide intelligent services based on a large amount of
data. The implementation of RD in the high-performance computer can be supported by the personal
computer, cloud services, and virtualization solutions [27]. However, many small embedded boards are
published for the high-performance such as Raspberry Pi, Intel Edison, and other devices which have
a small size with the full ability to support sufficient computation and network communication [28].
Therefore, the embedded boards also enable deployment of the RD server for providing registration
and discovery services in the constrained environment.

The web-based service discovery solutions are built with a high-performance computer to provide
searching services, such as web searching engines on the Internet. However, traditional web-based
searching solutions cannot provide the service in the same way for the IoT network because of the
heterogeneity and constrained network requirements [29]. In the IoT network, the discovery service
provider shall support resource discovery regardless of the communication protocols and technologies
used by IoT clients [30]. However, it is a challenge to fulfill all the communication interfaces for the
heterogeneous devices. There are many IoT standard solutions to support the discovery mechanism
in the framework level [31–33]. However, most of them present the discovery architecture for their
specific communication protocol and service accessing mechanism [34]. The proposed solution is based
on the OCF specification that refers to the CoAP-based service providing architecture. The proposal
of RD in the OCF specification is focused to provide registration and discovery services for the OCF
devices in the OCF network through CoAP communications.

Also, the proposed RD enables the IoT devices and WSPs together to be discovered by the IoT
clients in the OCF network. To provide the discovery service using the consistent scheme in order to
discover the resource from the HTTP and OCF network, we present a new data model using RAML.
In the OCF specification, the data model is presented for the registration of OCF devices [35]. However,
the properties of the data model are not sufficient for other IoT framework and WSPs. For example,
the presented data model of OCF cannot describe the required parameters of a URI using the properties.
The service-oriented architecture (SOA) enables the system development through the separated APIs
which are used for accessing the services with the exposed URIs. Many IoT frameworks are based
on the SOA to provide the services from the devices [36]. Therefore, the RAML-based description of
resources from the IoT network and Internet can be the information in the RD for the discovering by
the clients.

3. Proposed Methodology of Registration and Discovery

The proposed network architecture is comprised of IoT devices, WSPs, RD server, publishing
client and IoT clients. For the registration process, the IoT devices and publishing client send the
RAML data to the RD server. Then, the information of IoT devices and WSPs can be discovered by IoT
clients through the RD server. Using the discovered information, the IoT clients can access the services
which are provided by the servers in the constrained network and the Internet. Figure 2 shows the
proposed architecture of a consistent registration and discovery scheme. Each component represents
the role of the entity in the proposed system.

In the RD server, the RAML definitions are saved in the storage of the server. The data of RAML
is published by devices and the publishing client. The information of saved RAML definitions can
be retrieved by IoT clients. The RD server is comprised of resources and storage which provide a
registration service and discovery service to the IoT client and service providers in the OCF network
and Internet. The functions of the component write and read the service provider information from
the service information storage. The registration service is a function that is used by devices and



Sustainability 2018, 10, 4706 5 of 17

publishing client to publish service provider information. The discovery service is a function that is
used by clients for obtaining the service provider information.Sustainability 2018, 10, x 5 of 17 

IoT
Client

RD Server

IoT
Device

Publishing 
Client

Service Information Storage

Discovery Resource

Registration Resource

OCF

Discovery OCF

Registration

OCF

Registration

RAML RAML
 

Figure 2. Proposed architecture of consistent registration and discovery scheme. 

In the RD server, the RAML definitions are saved in the storage of the server. The data of RAML 
is published by devices and the publishing client. The information of saved RAML definitions can be 
retrieved by IoT clients. The RD server is comprised of resources and storage which provide a 
registration service and discovery service to the IoT client and service providers in the OCF network 
and Internet. The functions of the component write and read the service provider information from 
the service information storage. The registration service is a function that is used by devices and 
publishing client to publish service provider information. The discovery service is a function that is 
used by clients for obtaining the service provider information. 

The system includes the IoT client and publishing client for accessing the RD server. The IoT 
client is used for requesting to the RD server for discovering the registered information, and the 
publishing client is used for publishing the information of the HTTP service provider to register the 
provider’s information that is deployed on the Internet. The discovery is a function that is a part of 
the client. Users can, through the discovery service, find the service provider information by 
requesting the RD server. The publishing client supports the publishing function. The HTTP service 
provider can be the application that is run by other organizations or companies. Therefore, we do not 
have permission to add some functions to their application such as a publishing function. The 
publishing client reads the profile of the service provider and sends it to the RD server for 
registration. 

In the service providers, the applications can be used for providing services to clients, e.g., 
sensing services, actuating services, and web services from the Internet. The OCF service provider is 
used for providing sensing and actuating services that are hosted on IoT devices to support IoT 
services. The HTTP service provider is used for providing web services such as weather services, 
social network system (SNS) services, stock market services, etc. 

For providing services to multiple clients, the RD server includes the handlers, which handle the 
requests from the client. In the proposed OCF network, the RD server supports the storage and 
retrieval functions for the information of IoT devices and WSPs. The server includes the OCF server 
functionality to provide OCF services using OCF resources. Figure 3 shows the functional 
architecture of the RD server. The server has the RD resource and RD list resource. The resource name 
of RD resource is/rd which has a GET handler and POST handler, and the resource name of the RD 
list resource is/rd/list which has a GET handler. Through these handlers, the OCF server handlers 
OCF requests. The handlers interact with the DB in the RD server which involves the information of 
the provider, resource, method, and parameter. In the RD resource, the GET handler is used for 
handling the discovering request from the IoT client. The response message includes the detailed 
information of a provider. The POST handler is used for handling the registration request from the 
publishing client and IoT device. The registration request includes the information of IoT device and 
WSP. Once the server received the registration request, the server parses the request message and 
stores to the DB. In the RD list resource, the GET handler is used for handling the discovering request 
from the IoT client. The response message includes the provider information list. 

Figure 2. Proposed architecture of consistent registration and discovery scheme.

The system includes the IoT client and publishing client for accessing the RD server. The IoT client
is used for requesting to the RD server for discovering the registered information, and the publishing
client is used for publishing the information of the HTTP service provider to register the provider’s
information that is deployed on the Internet. The discovery is a function that is a part of the client.
Users can, through the discovery service, find the service provider information by requesting the RD
server. The publishing client supports the publishing function. The HTTP service provider can be the
application that is run by other organizations or companies. Therefore, we do not have permission to
add some functions to their application such as a publishing function. The publishing client reads the
profile of the service provider and sends it to the RD server for registration.

In the service providers, the applications can be used for providing services to clients, e.g.,
sensing services, actuating services, and web services from the Internet. The OCF service provider
is used for providing sensing and actuating services that are hosted on IoT devices to support IoT
services. The HTTP service provider is used for providing web services such as weather services,
social network system (SNS) services, stock market services, etc.

For providing services to multiple clients, the RD server includes the handlers, which handle
the requests from the client. In the proposed OCF network, the RD server supports the storage and
retrieval functions for the information of IoT devices and WSPs. The server includes the OCF server
functionality to provide OCF services using OCF resources. Figure 3 shows the functional architecture
of the RD server. The server has the RD resource and RD list resource. The resource name of RD
resource is/rd which has a GET handler and POST handler, and the resource name of the RD list
resource is/rd/list which has a GET handler. Through these handlers, the OCF server handlers OCF
requests. The handlers interact with the DB in the RD server which involves the information of the
provider, resource, method, and parameter. In the RD resource, the GET handler is used for handling
the discovering request from the IoT client. The response message includes the detailed information of
a provider. The POST handler is used for handling the registration request from the publishing client
and IoT device. The registration request includes the information of IoT device and WSP. Once the
server received the registration request, the server parses the request message and stores to the DB.
In the RD list resource, the GET handler is used for handling the discovering request from the IoT
client. The response message includes the provider information list.



Sustainability 2018, 10, 4706 6 of 17

Sustainability 2018, 10, x 6 of 17 

RD Server 

RD Resource (/rd)

POST Handler

RD List Resource (/rd/list)
OCF Server

GET Handler

GET Handler

Provider ParameterResource Method

 
Figure 3. Functional architecture of resource directory (RD) server. 

Figure 4 shows the functional architecture of the IoT device. The IoT device is a device that 
supports functions for sensing from the environment, and through actuators to update the 
environment where the devices are deployed. The devices may need to be constrained and wireless 
using the battery and wireless communication equipment such as WiFi, bluetooth low energy (BLE) 
and long-term evolution (LTE). The IoT device can be developed using IoT boards such as Raspberry 
Pi, Intel Edison board and Arduino Uno. These IoT boards support processor, storage and 
communication parts. For building an IoT device, the sensors and actuators are also required. The 
IoT device includes the OCF server to provide OCF services for sensing or actuating. In the IoT device, 
the OCF server includes resources for providing OCF based services to clients. The handler of a 
resource can be implemented for interacting with the sensors or actuators to collect the sensing data 
or update the environmental parameters such as temperature, humidity and illumination. The device 
also includes the OCF client to request RD server for registering the information. For registering the 
device to the RD server, the device sends the information to the RD server through the OCF network. 
The registration message includes the RAML definition which is used for describing the device. The 
RAML file can be deployed in each device. Once the device is started, then the device can register the 
information to the RD server by sending the RAML data. 

IoT Device Application 

{Resources} OCF Server

OCF Client

IoT Device RAML Definition

IoT Board 

Processor

Storage

WiFi

Sensors

IoT Device

 
Figure 4. Functional architecture of Internet of Things (IoT) device. 

Figure 5 shows the publishing client functional architecture. The architecture includes the 
software part and hardware part. The software part shows the application and platform for 
developing the publishing client. The hardware part shows the device information regarding the 
publishing client. For developing the publishing client, we use the Android Things platform on the 
Intel Edison board. The board includes processor, storage, and WiFi modules. The publishing client 

Figure 3. Functional architecture of resource directory (RD) server.

Figure 4 shows the functional architecture of the IoT device. The IoT device is a device that
supports functions for sensing from the environment, and through actuators to update the environment
where the devices are deployed. The devices may need to be constrained and wireless using the battery
and wireless communication equipment such as WiFi, bluetooth low energy (BLE) and long-term
evolution (LTE). The IoT device can be developed using IoT boards such as Raspberry Pi, Intel Edison
board and Arduino Uno. These IoT boards support processor, storage and communication parts.
For building an IoT device, the sensors and actuators are also required. The IoT device includes the
OCF server to provide OCF services for sensing or actuating. In the IoT device, the OCF server includes
resources for providing OCF based services to clients. The handler of a resource can be implemented
for interacting with the sensors or actuators to collect the sensing data or update the environmental
parameters such as temperature, humidity and illumination. The device also includes the OCF client
to request RD server for registering the information. For registering the device to the RD server,
the device sends the information to the RD server through the OCF network. The registration message
includes the RAML definition which is used for describing the device. The RAML file can be deployed
in each device. Once the device is started, then the device can register the information to the RD server
by sending the RAML data.

Sustainability 2018, 10, x 6 of 17 

RD Server 

RD Resource (/rd)

POST Handler

RD List Resource (/rd/list)
OCF Server

GET Handler

GET Handler

Provider ParameterResource Method

 
Figure 3. Functional architecture of resource directory (RD) server. 

Figure 4 shows the functional architecture of the IoT device. The IoT device is a device that 
supports functions for sensing from the environment, and through actuators to update the 
environment where the devices are deployed. The devices may need to be constrained and wireless 
using the battery and wireless communication equipment such as WiFi, bluetooth low energy (BLE) 
and long-term evolution (LTE). The IoT device can be developed using IoT boards such as Raspberry 
Pi, Intel Edison board and Arduino Uno. These IoT boards support processor, storage and 
communication parts. For building an IoT device, the sensors and actuators are also required. The 
IoT device includes the OCF server to provide OCF services for sensing or actuating. In the IoT device, 
the OCF server includes resources for providing OCF based services to clients. The handler of a 
resource can be implemented for interacting with the sensors or actuators to collect the sensing data 
or update the environmental parameters such as temperature, humidity and illumination. The device 
also includes the OCF client to request RD server for registering the information. For registering the 
device to the RD server, the device sends the information to the RD server through the OCF network. 
The registration message includes the RAML definition which is used for describing the device. The 
RAML file can be deployed in each device. Once the device is started, then the device can register the 
information to the RD server by sending the RAML data. 

IoT Device Application 

{Resources} OCF Server

OCF Client

IoT Device RAML Definition

IoT Board 

Processor

Storage

WiFi

Sensors

IoT Device

 
Figure 4. Functional architecture of Internet of Things (IoT) device. 

Figure 5 shows the publishing client functional architecture. The architecture includes the 
software part and hardware part. The software part shows the application and platform for 
developing the publishing client. The hardware part shows the device information regarding the 
publishing client. For developing the publishing client, we use the Android Things platform on the 
Intel Edison board. The board includes processor, storage, and WiFi modules. The publishing client 

Figure 4. Functional architecture of Internet of Things (IoT) device.

Figure 5 shows the publishing client functional architecture. The architecture includes the software
part and hardware part. The software part shows the application and platform for developing the
publishing client. The hardware part shows the device information regarding the publishing client.



Sustainability 2018, 10, 4706 7 of 17

For developing the publishing client, we use the Android Things platform on the Intel Edison board.
The board includes processor, storage, and WiFi modules. The publishing client application includes
the OCF client and HTTP service provider RAML definition. The OCF client is used for sending
the registration message to the RD server. The HTTP service provider RAML definition is a file that
includes the information of the service provider.

Sustainability 2018, 10, x 7 of 17 

application includes the OCF client and HTTP service provider RAML definition. The OCF client is 
used for sending the registration message to the RD server. The HTTP service provider RAML 
definition is a file that includes the information of the service provider. 

Publishing Client

OCF Client

WSP RAML Definition

 
Figure 5. Functional architecture of publishing client. 

Figure 6 shows the IoT client functional architecture. The architecture includes the software part 
and hardware part. The software part shows the application and platform for developing the IoT 
client. The hardware part shows the device information regarding the IoT client. For developing the 
IoT client, we use the Android platform on the Android smartphone. The Android phone includes 
processor, storage, and WiFi module. The IoT client application includes the views and OCF client. 
The views are used for displaying the information to the user. The provider information list page is 
used for displaying the provider information list. The provider information detail page is used for 
displaying the detail provider information of the selected item. The OCF client is used for sending 
the discovering message to the RD server. 

Client Device

Processor

Storage

WiFi

UI Display

IoT Client Application 

Provider Information List Page
UI

OCF Client

IoT Client

Provider Information Detail Page

 
Figure 6. Functional architecture of IoT client. 

4. Registration and Discovery Scenario 

In this section, the following sequence diagrams illustrate the scenarios of registration and 
discovery using the elements in the proposed IoT network which are the RD server, IoT device, 
publishing client, IoT client, and user. The registration process involves the interactions between IoT 
device and RD server, and between publishing client and RD server. The discovery process is 
comprised of IoT client, RD server and user. 

Figure 7 shows the sequence diagram for registering the IoT device to the RD server. The IoT 
device is an OCF entity that runs the OCF server for providing the services based on its resources. 
For starting the server, the device read and write the data to initialize the application and 
configuration settings. The device information is written in the RAML file that is used to send the 
device information to the RD server through the OCF communication network. Firstly, the IoT device 
reads the RAML file to get the RAML data. Then the IoT device gets name and data from the RAML 
data. The name and data are included in the payload of the request for the registration. The IoT device 
sends the message that uses the POST method with URI coap://{RD’s IP:5683}/rd and the payload. 

Figure 5. Functional architecture of publishing client.

Figure 6 shows the IoT client functional architecture. The architecture includes the software part
and hardware part. The software part shows the application and platform for developing the IoT
client. The hardware part shows the device information regarding the IoT client. For developing the
IoT client, we use the Android platform on the Android smartphone. The Android phone includes
processor, storage, and WiFi module. The IoT client application includes the views and OCF client.
The views are used for displaying the information to the user. The provider information list page is
used for displaying the provider information list. The provider information detail page is used for
displaying the detail provider information of the selected item. The OCF client is used for sending the
discovering message to the RD server.

Sustainability 2018, 10, x 7 of 17 

application includes the OCF client and HTTP service provider RAML definition. The OCF client is 
used for sending the registration message to the RD server. The HTTP service provider RAML 
definition is a file that includes the information of the service provider. 

Publishing Client

OCF Client

WSP RAML Definition

 
Figure 5. Functional architecture of publishing client. 

Figure 6 shows the IoT client functional architecture. The architecture includes the software part 
and hardware part. The software part shows the application and platform for developing the IoT 
client. The hardware part shows the device information regarding the IoT client. For developing the 
IoT client, we use the Android platform on the Android smartphone. The Android phone includes 
processor, storage, and WiFi module. The IoT client application includes the views and OCF client. 
The views are used for displaying the information to the user. The provider information list page is 
used for displaying the provider information list. The provider information detail page is used for 
displaying the detail provider information of the selected item. The OCF client is used for sending 
the discovering message to the RD server. 

Client Device

Processor

Storage

WiFi

UI Display

IoT Client Application 

Provider Information List Page
UI

OCF Client

IoT Client

Provider Information Detail Page

 
Figure 6. Functional architecture of IoT client. 

4. Registration and Discovery Scenario 

In this section, the following sequence diagrams illustrate the scenarios of registration and 
discovery using the elements in the proposed IoT network which are the RD server, IoT device, 
publishing client, IoT client, and user. The registration process involves the interactions between IoT 
device and RD server, and between publishing client and RD server. The discovery process is 
comprised of IoT client, RD server and user. 

Figure 7 shows the sequence diagram for registering the IoT device to the RD server. The IoT 
device is an OCF entity that runs the OCF server for providing the services based on its resources. 
For starting the server, the device read and write the data to initialize the application and 
configuration settings. The device information is written in the RAML file that is used to send the 
device information to the RD server through the OCF communication network. Firstly, the IoT device 
reads the RAML file to get the RAML data. Then the IoT device gets name and data from the RAML 
data. The name and data are included in the payload of the request for the registration. The IoT device 
sends the message that uses the POST method with URI coap://{RD’s IP:5683}/rd and the payload. 

Figure 6. Functional architecture of IoT client.

4. Registration and Discovery Scenario

In this section, the following sequence diagrams illustrate the scenarios of registration and
discovery using the elements in the proposed IoT network which are the RD server, IoT device,
publishing client, IoT client, and user. The registration process involves the interactions between
IoT device and RD server, and between publishing client and RD server. The discovery process is
comprised of IoT client, RD server and user.

Figure 7 shows the sequence diagram for registering the IoT device to the RD server. The IoT
device is an OCF entity that runs the OCF server for providing the services based on its resources.
For starting the server, the device read and write the data to initialize the application and configuration
settings. The device information is written in the RAML file that is used to send the device information
to the RD server through the OCF communication network. Firstly, the IoT device reads the RAML file



Sustainability 2018, 10, 4706 8 of 17

to get the RAML data. Then the IoT device gets name and data from the RAML data. The name and
data are included in the payload of the request for the registration. The IoT device sends the message
that uses the POST method with URI coap://{RD’s IP:5683}/rd and the payload. Once the RD server
receives the message, then the server parses the RAML data and inserts them in the DB.

Sustainability 2018, 10, x 8 of 17 

Once the RD server receives the message, then the server parses the RAML data and inserts them in 
the DB. 

Figure 8 shows the sequence diagram for registering WSPs which are deployed in the Internet 
to provide the service based on the HTTP. The information is registered by the publishing client 
through the OCF communication network. The publishing client is also an OCF device that is used 
send the RAML data to the RD server through the OCF network. Because the RD provides a 
consistent interface for the registration, the RAML need to be sent by the same publishing scheme 
with the IoT device. Therefore, the process is same as the process of registering an IoT device. Firstly, 
the publishing client reads the RAML file to get the RAML data. Then, the publishing client gets the 
name and data from the RAML data to put in the payload of the OCF request message. The publishing 
client sends the message that uses the POST method with URI coap://{RD’s IP:5683}/rd and the payload. 
Once the RD server receives the message, the server parses the RAML data and inserts it to the DB. 

Figure 9 shows the sequence diagram for discovering the IoT device and WSP through the RD 
server. The returned payload includes the information of OCF service providers as well as the HTTP 
service providers from the OCF network and the Internet. The discovery service is used by the IoT client 
that requests to the/rd/list resource of the RD server with the keyword query parameter using the GET 
method. Once the resource of RD server is requested, the handler responds registered provider 
information list. Each item involves the table of provider’s information in the response payload. Once 
the response message is delivered to the IoT client, the client displays the provider information list. The 
user needs to click an item from the list. Once the item is clicked, the IoT client requests to the/rd 
resource of the bridge device with id query parameter using GET method. The handler of the resource 
responds with the provider information in detail. The data includes all information that relates to the 
provider. 

POST 
coap://{RD's IP:5683}/rd
payload: {RAML data}

Read IoT Device RAML definition from file system 

Parse the RAML data

ack

Insert to the DB

IoT Device RD Server

Start the application and configure settings

 
Figure 7. Sequence diagram for self-registration of IoT device. 

Figure 7. Sequence diagram for self-registration of IoT device.

Figure 8 shows the sequence diagram for registering WSPs which are deployed in the Internet to
provide the service based on the HTTP. The information is registered by the publishing client through
the OCF communication network. The publishing client is also an OCF device that is used send the
RAML data to the RD server through the OCF network. Because the RD provides a consistent interface
for the registration, the RAML need to be sent by the same publishing scheme with the IoT device.
Therefore, the process is same as the process of registering an IoT device. Firstly, the publishing client
reads the RAML file to get the RAML data. Then, the publishing client gets the name and data from
the RAML data to put in the payload of the OCF request message. The publishing client sends the
message that uses the POST method with URI coap://{RD’s IP:5683}/rd and the payload. Once the
RD server receives the message, the server parses the RAML data and inserts it to the DB.Sustainability 2018, 10, x 9 of 17 

POST 
coap://{RD's IP:5683}/rd
payload: {RAML data}

Read the WSP RAML definition from the file system

Parse the RAML data

ack

Insert to the DB

Publishing ClientAdministrator

Start the application

RD Server

 
Figure 8. Sequence diagram for registering Hypertext Transfer Protocol (HTTP)-based web service 

provider (WSP). 

GET 
coap://{RD's IP:5683}/rd/list

Display the provider information list

provider information list

GET 
coap://{RD's IP:5683}/rd?id={ID}

provider information

Display the provider information

IoT Client RD ServerUser

Start the application

Retrieve the provider information list from the DB 

Click a item from the list

Retrieve the provider information by the ID 

 
Figure 9. Sequence diagram for discovering IoT device and WSP through RD server. 

5. Implementation Results 

Table 1 introduces the development environment of the proposed system. The RD server, IoT 
device, and publishing client using the Intel Edison board for the device, and the IoT client uses the 
Samsung Galaxy S4 Android smartphone as the device. For the Intel Edison board, the runtime 
operating system (OS) is Android Things 0.2 that is built by compiling software development kit 
(SDK) 25 and min SDK 24. For the smartphone, the runtime OS is Android 5.0 Lollipop that is built 
by compile SDK 25 and min SDK 21. The development tool Android Studio 2.3.1 is used for the 
Android applications. For the Intel Edison board application implementation, we use IoTivity library 

Figure 8. Sequence diagram for registering Hypertext Transfer Protocol (HTTP)-based web service
provider (WSP).



Sustainability 2018, 10, 4706 9 of 17

Figure 9 shows the sequence diagram for discovering the IoT device and WSP through the RD
server. The returned payload includes the information of OCF service providers as well as the HTTP
service providers from the OCF network and the Internet. The discovery service is used by the
IoT client that requests to the/rd/list resource of the RD server with the keyword query parameter
using the GET method. Once the resource of RD server is requested, the handler responds registered
provider information list. Each item involves the table of provider’s information in the response
payload. Once the response message is delivered to the IoT client, the client displays the provider
information list. The user needs to click an item from the list. Once the item is clicked, the IoT
client requests to the/rd resource of the bridge device with id query parameter using GET method.
The handler of the resource responds with the provider information in detail. The data includes all
information that relates to the provider.

Sustainability 2018, 10, x 9 of 17 

POST 
coap://{RD's IP:5683}/rd
payload: {RAML data}

Read the WSP RAML definition from the file system

Parse the RAML data

ack

Insert to the DB

Publishing ClientAdministrator

Start the application

RD Server

 
Figure 8. Sequence diagram for registering Hypertext Transfer Protocol (HTTP)-based web service 

provider (WSP). 

GET 
coap://{RD's IP:5683}/rd/list

Display the provider information list

provider information list

GET 
coap://{RD's IP:5683}/rd?id={ID}

provider information

Display the provider information

IoT Client RD ServerUser

Start the application

Retrieve the provider information list from the DB 

Click a item from the list

Retrieve the provider information by the ID 

 
Figure 9. Sequence diagram for discovering IoT device and WSP through RD server. 

5. Implementation Results 

Table 1 introduces the development environment of the proposed system. The RD server, IoT 
device, and publishing client using the Intel Edison board for the device, and the IoT client uses the 
Samsung Galaxy S4 Android smartphone as the device. For the Intel Edison board, the runtime 
operating system (OS) is Android Things 0.2 that is built by compiling software development kit 
(SDK) 25 and min SDK 24. For the smartphone, the runtime OS is Android 5.0 Lollipop that is built 
by compile SDK 25 and min SDK 21. The development tool Android Studio 2.3.1 is used for the 
Android applications. For the Intel Edison board application implementation, we use IoTivity library 

Figure 9. Sequence diagram for discovering IoT device and WSP through RD server.

5. Implementation Results

Table 1 introduces the development environment of the proposed system. The RD server,
IoT device, and publishing client using the Intel Edison board for the device, and the IoT client uses
the Samsung Galaxy S4 Android smartphone as the device. For the Intel Edison board, the runtime
operating system (OS) is Android Things 0.2 that is built by compiling software development kit
(SDK) 25 and min SDK 24. For the smartphone, the runtime OS is Android 5.0 Lollipop that is built
by compile SDK 25 and min SDK 21. The development tool Android Studio 2.3.1 is used for the
Android applications. For the Intel Edison board application implementation, we use IoTivity library
that is compiled on Ubuntu 16.4 64 bit for Android OS on x86 CPU. For the smartphone application
implementation, we use IoTivity is compiled on Ubuntu 16.4 64 bit for Android OS on armeabi central
processing unit (CPU). For the RAML parser, we use RAML parser library that supports RAML version
0.8 and 1.0.



Sustainability 2018, 10, 4706 10 of 17

Table 1. Development environment.

Component RD server IoT Device Publishing Client IoT Client

Physical device Intel Edison Board Samsung Galaxy S4

Runtime OS Android Things 0.2 (Build: compile SDK 25, min SDK 24) Android 5.0 Lollipop (Build:
compile SDK 25, min SDK 21)

tool Android Studio 2.3.1

Library and
Frameworks IoTivity 1.2.1(x86), raml-parser-2 1.0.13, jackson-core 2.9.0 IoTivity 1.2.1(armeabi),

jackson-core 2.9.0

Figure 10 shows the IoT device’s RAML definition. The RAML definition illustrates the service
information of the IoT device. According to the RAML definition, the IoT device provides 2 services
through the resource/led and resource/temperature. The/led resource has GET and PUT handler
for handling the request. The/temperature resource has GET handler for handling the request.
For each handler of resources in this IoT device, the query parameters and response body are defined.
The response body is defined using JavaScript object notation (JSON) format and an example also is
included in this RAML definition.

Sustainability 2018, 10, x 10 of 17 

that is compiled on Ubuntu 16.4 64 bit for Android OS on x86 CPU. For the smartphone application 
implementation, we use IoTivity is compiled on Ubuntu 16.4 64 bit for Android OS on armeabi central 
processing unit (CPU). For the RAML parser, we use RAML parser library that supports RAML 
version 0.8 and 1.0. 

Table 1. Development environment. 

Component RD server IoT Device Publishing Client IoT Client 
Physical device Intel Edison Board Samsung Galaxy S4 

Runtime OS 
Android Things 0.2 (Build: compile SDK 25, 

min SDK 24) 
Android 5.0 Lollipop (Build: 

compile SDK 25, min SDK 21) 
tool Android Studio 2.3.1 

Library and 
Frameworks 

IoTivity 1.2.1(x86), raml-parser-2 1.0.13, 
jackson-core 2.9.0 

IoTivity 1.2.1(armeabi), jackson-
core 2.9.0 

Figure 10 shows the IoT device’s RAML definition. The RAML definition illustrates the service 
information of the IoT device. According to the RAML definition, the IoT device provides 2 services 
through the resource/led and resource/temperature. The/led resource has GET and PUT handler for 
handling the request. The/temperature resource has GET handler for handling the request. For each 
handler of resources in this IoT device, the query parameters and response body are defined. The 
response body is defined using JavaScript object notation (JSON) format and an example also is 
included in this RAML definition. 

Query Parameters

Query Parameters

Response Body

Response Body

Query Parameters

Response Body

 
Figure 10. IoT device RESTful API modeling language (RAML) definition. 

Figure 11 shows the HTTP service provider RAML definition. The RAML definition illustrates 
the service information of HTTP service provider in the Internet. According to the RAML definition, 
the HTTP service provider provides one service through the resource/weather. The/weather resource 

Figure 10. IoT device RESTful API modeling language (RAML) definition.

Figure 11 shows the HTTP service provider RAML definition. The RAML definition illustrates
the service information of HTTP service provider in the Internet. According to the RAML definition,
the HTTP service provider provides one service through the resource/weather. The/weather resource
has a GET handler for handling the request. For the handler of a resource in this HTTP service provider,
the query parameters and response body are defined. The response body is defined using JSON
format and an example also is included in this RAML definition. The HTTP service provider is a



Sustainability 2018, 10, 4706 11 of 17

weather service provider that provides several weather-related services using open APIs. The service
is described in the presented RAML definition that provides the current weather information. Once the
service is accessed, the current weather information is returned to the client. The information is also
described in the RAML definition.

Sustainability 2018, 10, x 11 of 17 

has a GET handler for handling the request. For the handler of a resource in this HTTP service 
provider, the query parameters and response body are defined. The response body is defined using 
JSON format and an example also is included in this RAML definition. The HTTP service provider is 
a weather service provider that provides several weather-related services using open APIs. The 
service is described in the presented RAML definition that provides the current weather information. 
Once the service is accessed, the current weather information is returned to the client. The 
information is also described in the RAML definition. 

Figure 12 shows the result of IoT device registration that is captured from the loggings in the RD 
server. The IoT device sends the information to the RD server using OCF based on CoAP. The request 
uses the POST method with the payload that includes the RAML data for the information of the IoT 
device. The RD server is an OCF server that has the RD resource for handling the request for the 
registration. The OCF is implemented using the IoTivity framework; therefore, some loggings are 
shown in the results by the IoTivity internal functionalities. The title and information of the RAML 
definition are printed out in the figure. The title is the IoT service and the print outed string is the 
name of the RAML file that consists of the title. The RAML data is defined for the IoT device, which 
is parsed by the RD server to a JSON data, and is used for inserting the DB. The print outed data is 
the JSON data that includes information from the RAML. The IoT device has resource/humidity that 
requires parameters rt and if. 

Figure 13 shows the result of publishing client registration that is captured from the loggings in 
the RD server. The publishing clients send the information to the RD server using OCF based on 
CoAP. The request uses the POST method with the payload that includes the RAML data for the 
information of the HTTP service provider. The title is Weather Service and the print outed string is 
the name of the RAML file that consists of the title. The RAML data is defined for the HTTP service 
provider, which is parsed by the RD server to JSON data, and is used for inserting the DB. The print 
outed data is the JSON data that includes information from the RAML. The HTTP service provider 
has resource/weather that requires parameter APPID and q. 

Response Body

Query Parameters

 
Figure 11. WSP RAML definition. Figure 11. WSP RAML definition.

Figure 12 shows the result of IoT device registration that is captured from the loggings in the RD
server. The IoT device sends the information to the RD server using OCF based on CoAP. The request
uses the POST method with the payload that includes the RAML data for the information of the IoT
device. The RD server is an OCF server that has the RD resource for handling the request for the
registration. The OCF is implemented using the IoTivity framework; therefore, some loggings are
shown in the results by the IoTivity internal functionalities. The title and information of the RAML
definition are printed out in the figure. The title is the IoT service and the print outed string is the
name of the RAML file that consists of the title. The RAML data is defined for the IoT device, which is
parsed by the RD server to a JSON data, and is used for inserting the DB. The print outed data is the
JSON data that includes information from the RAML. The IoT device has resource/humidity that
requires parameters rt and if.

Figure 13 shows the result of publishing client registration that is captured from the loggings
in the RD server. The publishing clients send the information to the RD server using OCF based on
CoAP. The request uses the POST method with the payload that includes the RAML data for the
information of the HTTP service provider. The title is Weather Service and the print outed string is
the name of the RAML file that consists of the title. The RAML data is defined for the HTTP service
provider, which is parsed by the RD server to JSON data, and is used for inserting the DB. The print
outed data is the JSON data that includes information from the RAML. The HTTP service provider has
resource/weather that requires parameter APPID and q.



Sustainability 2018, 10, 4706 12 of 17

Sustainability 2018, 10, x 12 of 17 

 
Figure 12. IoT device registration result in RD server. 

 
Figure 13. Publishing client registration result in RD server. 

Figure 14 shows the result of displaying the service providers’ information in the list page and 
detail page of the IoT client. The page displays the registered service providers information list. Each 
item of the list displays the RAML name, version, and description. For requesting the page, the IoT 
client needs to include query parameters in the request URI. The parameter is the OCF resource 
interface, and the parameter keyword is used to retrieve the list with the query. The parameter 
startRowNo is used for pagination, and parameter pageSize is used for pagination. The request 
method is GET, and the handler of the method is in the RD server that is used for getting the service 
provider information list. The detail page displays the registered service provider detail information. 
The page includes the resource list because a provider can include multiple resources. For requesting 
the page, the IoT client needs to include query parameters in the request URI. The parameter is on 
the OCF resource interface, and id is used for retrieving a provider information by its ID. The request 
method is GET, and this method handler is in the RD server that is used for obtaining service provider 
information. 

Figure 12. IoT device registration result in RD server.

Sustainability 2018, 10, x 12 of 17 

 
Figure 12. IoT device registration result in RD server. 

 
Figure 13. Publishing client registration result in RD server. 

Figure 14 shows the result of displaying the service providers’ information in the list page and 
detail page of the IoT client. The page displays the registered service providers information list. Each 
item of the list displays the RAML name, version, and description. For requesting the page, the IoT 
client needs to include query parameters in the request URI. The parameter is the OCF resource 
interface, and the parameter keyword is used to retrieve the list with the query. The parameter 
startRowNo is used for pagination, and parameter pageSize is used for pagination. The request 
method is GET, and the handler of the method is in the RD server that is used for getting the service 
provider information list. The detail page displays the registered service provider detail information. 
The page includes the resource list because a provider can include multiple resources. For requesting 
the page, the IoT client needs to include query parameters in the request URI. The parameter is on 
the OCF resource interface, and id is used for retrieving a provider information by its ID. The request 
method is GET, and this method handler is in the RD server that is used for obtaining service provider 
information. 

Figure 13. Publishing client registration result in RD server.

Figure 14 shows the result of displaying the service providers’ information in the list page and
detail page of the IoT client. The page displays the registered service providers information list.
Each item of the list displays the RAML name, version, and description. For requesting the page,
the IoT client needs to include query parameters in the request URI. The parameter is the OCF resource
interface, and the parameter keyword is used to retrieve the list with the query. The parameter
startRowNo is used for pagination, and parameter pageSize is used for pagination. The request
method is GET, and the handler of the method is in the RD server that is used for getting the service
provider information list. The detail page displays the registered service provider detail information.
The page includes the resource list because a provider can include multiple resources. For requesting
the page, the IoT client needs to include query parameters in the request URI. The parameter is on
the OCF resource interface, and id is used for retrieving a provider information by its ID. The request
method is GET, and this method handler is in the RD server that is used for obtaining service
provider information.



Sustainability 2018, 10, 4706 13 of 17

Sustainability 2018, 10, x 13 of 17 

 
(a) (b) 

Figure 14. Result of displaying service provider information. (a) List page; (b) detail page. 

Figure 15 shows the results of accessing the IoT services which are discovered by the IoT client. 
The page in the Figure 15a shows the resource information with the form for sending the OCF request 
message to the/humidity resource using the GET method. The IoT client can recognize that the 
request is sent to an IoT device or an HTTP service provider through the information that is 
registered. If the request is used for requesting an IoT device, the parameters rt and if are used for 
generating the OCF request. If there are other parameters, then those parameters shall be used for the 
query parameter of the request. The result is shown in the screen using JSON format. The page in the 
Figure 15b shows the HTTP service provider service accessing the result through the service page. 
The page shows the resource information with the form for sending the OCF request message to 
the/weather resource using the GET method. To access the/weather resource, the parameters q and 
application identifier (APPID) are required. Once the parameters are filled, and then click the button 
REQUEST. The IoT client sends the request to the RD server. The RD server forwards the request to 
the HTTP service provider in the Internet. 

 
(a) (b) 

Figure 15. Results of accessing services. (a) IoT device service accessing result. (b) HTTP service 
provider service accessing result. 

6. Performance Evaluation 

The performance evaluations for registration of the IoT device, registration of the publishing 
client and discovery by the IoT client are presented. Each evaluation is tested by 20 times for the 
round-trip time (RTT) and the deviation is very small according to the average. 

Figure 14. Result of displaying service provider information. (a) List page; (b) detail page.

Figure 15 shows the results of accessing the IoT services which are discovered by the IoT client.
The page in the Figure 15a shows the resource information with the form for sending the OCF request
message to the/humidity resource using the GET method. The IoT client can recognize that the request
is sent to an IoT device or an HTTP service provider through the information that is registered. If the
request is used for requesting an IoT device, the parameters rt and if are used for generating the OCF
request. If there are other parameters, then those parameters shall be used for the query parameter of
the request. The result is shown in the screen using JSON format. The page in the Figure 15b shows
the HTTP service provider service accessing the result through the service page. The page shows the
resource information with the form for sending the OCF request message to the/weather resource
using the GET method. To access the/weather resource, the parameters q and application identifier
(APPID) are required. Once the parameters are filled, and then click the button REQUEST. The IoT
client sends the request to the RD server. The RD server forwards the request to the HTTP service
provider in the Internet.

Sustainability 2018, 10, x 13 of 17 

 
(a) (b) 

Figure 14. Result of displaying service provider information. (a) List page; (b) detail page. 

Figure 15 shows the results of accessing the IoT services which are discovered by the IoT client. 
The page in the Figure 15a shows the resource information with the form for sending the OCF request 
message to the/humidity resource using the GET method. The IoT client can recognize that the 
request is sent to an IoT device or an HTTP service provider through the information that is 
registered. If the request is used for requesting an IoT device, the parameters rt and if are used for 
generating the OCF request. If there are other parameters, then those parameters shall be used for the 
query parameter of the request. The result is shown in the screen using JSON format. The page in the 
Figure 15b shows the HTTP service provider service accessing the result through the service page. 
The page shows the resource information with the form for sending the OCF request message to 
the/weather resource using the GET method. To access the/weather resource, the parameters q and 
application identifier (APPID) are required. Once the parameters are filled, and then click the button 
REQUEST. The IoT client sends the request to the RD server. The RD server forwards the request to 
the HTTP service provider in the Internet. 

 
(a) (b) 

Figure 15. Results of accessing services. (a) IoT device service accessing result. (b) HTTP service 
provider service accessing result. 

6. Performance Evaluation 

The performance evaluations for registration of the IoT device, registration of the publishing 
client and discovery by the IoT client are presented. Each evaluation is tested by 20 times for the 
round-trip time (RTT) and the deviation is very small according to the average. 

Figure 15. Results of accessing services. (a) IoT device service accessing result. (b) HTTP service
provider service accessing result.



Sustainability 2018, 10, 4706 14 of 17

6. Performance Evaluation

The performance evaluations for registration of the IoT device, registration of the publishing
client and discovery by the IoT client are presented. Each evaluation is tested by 20 times for the
round-trip time (RTT) and the deviation is very small according to the average.

Figures 16 and 17 shows the evaluation results of the network communication delays for
registering the IoT device and WSP. For registering the IoT device, the IoT device sends the RAML
data to the RD and the RD returns the acknowledgement to the IoT device. Similarly, for registering
the WSP, the publishing client is the client for registering the WSP. Figure 18 shows the evaluation
results for the discovery by the IoT client. The IoT client requests to the RD and the RD responds the
information of registered entities. The RTTs for each registration is done in the same hardware and
network environment. The RTT is collected in the IoT device through the time difference between the
time for sending the first request and the time for receiving the last response.

Sustainability 2018, 10, x 14 of 17 

Figures 16 and 17 shows the evaluation results of the network communication delays for 
registering the IoT device and WSP. For registering the IoT device, the IoT device sends the RAML 
data to the RD and the RD returns the acknowledgement to the IoT device. Similarly, for registering 
the WSP, the publishing client is the client for registering the WSP. Figure 18 shows the evaluation 
results for the discovery by the IoT client. The IoT client requests to the RD and the RD responds the 
information of registered entities. The RTTs for each registration is done in the same hardware and 
network environment. The RTT is collected in the IoT device through the time difference between the 
time for sending the first request and the time for receiving the last response. 

[ms]

[Time]

529520526532523528544507524515507505503

652
586

491504497491488

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

IoT Device Registration

 
Figure 16. Round-trip time (RTT) for registration by IoT device. 

592602578566556553
679

587577552574551567552565564547552544548

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Publishing Client Registration[ms]

[Time]
 

Figure 17. RTT for registration by publishing client. 

436413384392391386419422381
476

366392370

505
419

345376364359365

0
100
200
300
400
500
600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

IoT Client Discovery[ms]

[Time]
 

Figure 18. RTT for discovery by IoT client. 

The evaluation result for the IoT device registration, that illustrates the RTTs are between 488 
ms and 652 ms, the average is 523.6 ms, and the standard deviation is 37.57 ms. The evaluation result 
for the WSP registration illustrates the RTTs are between 544 ms and 679 ms, the average is 570.3 ms, 
and the standard deviation is 30.26 ms. The evaluation result for the IoT client discovery illustrates 

Figure 16. Round-trip time (RTT) for registration by IoT device.

Sustainability 2018, 10, x 14 of 17 

Figures 16 and 17 shows the evaluation results of the network communication delays for 
registering the IoT device and WSP. For registering the IoT device, the IoT device sends the RAML 
data to the RD and the RD returns the acknowledgement to the IoT device. Similarly, for registering 
the WSP, the publishing client is the client for registering the WSP. Figure 18 shows the evaluation 
results for the discovery by the IoT client. The IoT client requests to the RD and the RD responds the 
information of registered entities. The RTTs for each registration is done in the same hardware and 
network environment. The RTT is collected in the IoT device through the time difference between the 
time for sending the first request and the time for receiving the last response. 

[ms]

[Time]

529520526532523528544507524515507505503

652
586

491504497491488

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

IoT Device Registration

 
Figure 16. Round-trip time (RTT) for registration by IoT device. 

592602578566556553
679

587577552574551567552565564547552544548

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Publishing Client Registration[ms]

[Time]
 

Figure 17. RTT for registration by publishing client. 

436413384392391386419422381
476

366392370

505
419

345376364359365

0
100
200
300
400
500
600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

IoT Client Discovery[ms]

[Time]
 

Figure 18. RTT for discovery by IoT client. 

The evaluation result for the IoT device registration, that illustrates the RTTs are between 488 
ms and 652 ms, the average is 523.6 ms, and the standard deviation is 37.57 ms. The evaluation result 
for the WSP registration illustrates the RTTs are between 544 ms and 679 ms, the average is 570.3 ms, 
and the standard deviation is 30.26 ms. The evaluation result for the IoT client discovery illustrates 

Figure 17. RTT for registration by publishing client.

Sustainability 2018, 10, x 14 of 17 

Figures 16 and 17 shows the evaluation results of the network communication delays for 
registering the IoT device and WSP. For registering the IoT device, the IoT device sends the RAML 
data to the RD and the RD returns the acknowledgement to the IoT device. Similarly, for registering 
the WSP, the publishing client is the client for registering the WSP. Figure 18 shows the evaluation 
results for the discovery by the IoT client. The IoT client requests to the RD and the RD responds the 
information of registered entities. The RTTs for each registration is done in the same hardware and 
network environment. The RTT is collected in the IoT device through the time difference between the 
time for sending the first request and the time for receiving the last response. 

[ms]

[Time]

529520526532523528544507524515507505503

652
586

491504497491488

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

IoT Device Registration

 
Figure 16. Round-trip time (RTT) for registration by IoT device. 

592602578566556553
679

587577552574551567552565564547552544548

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Publishing Client Registration[ms]

[Time]
 

Figure 17. RTT for registration by publishing client. 

436413384392391386419422381
476

366392370

505
419

345376364359365

0
100
200
300
400
500
600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

IoT Client Discovery[ms]

[Time]
 

Figure 18. RTT for discovery by IoT client. 

The evaluation result for the IoT device registration, that illustrates the RTTs are between 488 
ms and 652 ms, the average is 523.6 ms, and the standard deviation is 37.57 ms. The evaluation result 
for the WSP registration illustrates the RTTs are between 544 ms and 679 ms, the average is 570.3 ms, 
and the standard deviation is 30.26 ms. The evaluation result for the IoT client discovery illustrates 

Figure 18. RTT for discovery by IoT client.



Sustainability 2018, 10, 4706 15 of 17

The evaluation result for the IoT device registration, that illustrates the RTTs are between 488 ms
and 652 ms, the average is 523.6 ms, and the standard deviation is 37.57 ms. The evaluation result
for the WSP registration illustrates the RTTs are between 544 ms and 679 ms, the average is 570.3 ms,
and the standard deviation is 30.26 ms. The evaluation result for the IoT client discovery illustrates the
RTTs are between 345 ms and 505 ms, the average is 398.05 ms, and the standard deviation is 39.92 ms.

Through the performance evaluation, the results illustrate that the interactions take time. The first
reason may be the network where the elements communicate. The communication is supported by the
OCF IoTivity which is the communication solution based on the CoAP. The CoAP is novel protocol for
the constrained environment. Therefore, the implementation of CoAP may not be as mature as HTTP.
The problem may be occurred because of the delay of discovery by the IoT client. For example, in the
exhibition, there are many people using the WiFi to build the network. The WiFi speed shall be bad
even if the signal is strong. If the client requires the discovered result to be presented quickly, then the
OCF based discovery may not be sufficient. We will implement the HTTP based discovery scheme to
support stable interaction.

7. Conclusions

In this paper, we present a consistent registration and discovery scheme using RAML to enable
the information of an IoT device and WSP through the embedded RD server in the OCF-based IoT
network. The registration enables the IoT device and publishing client to register the information
of the device and WSP using the RAML-based profile. Through the registration, the IoT device
registers the IoT device information to the RD, and the publishing client registers the WSPs to the RD.
The registered information is included in the RAML definition that is the profile for describing the
resource information. The RAML-based profile in the payload of a registration request that involves
the basic information of a service provider, such as IoT device and WSP. The resource is also described
for accessing the service by the IoT client. Therefore, the RD server provides the information to
the IoT clients using the registered information that is published by IoT device and the publishing
client based on the RAML definition. The discovery service enables the users to retrieve the service
information using the IoT client. Through the discovered information, the IoT client accesses the
services of IoT device and WSP. Therefore, using the embedded RD server in the OCF-based IoT
network, the registration and discovery of services from heterogeneous providers are supported by
the consistent scheme. Moreover, through the message forwarding service of RD server, the users use
the same IoT client to consume the services from the IoT network as well as the Internet.

In the future, we will extend the functionalities to support more communication solutions for
enabling transparent access to heterogeneous IoT devices. Currently, the proposed scheme only
enables the registration of OCF devices and WSPs from the networks of the OCF over the CoAP and
the Internet based on the HTTP. The discovery interface is provided to OCF clients for discovering the
registered IoT devices and WSPs. Based on the proposed scheme, we will implement a registration
interface for the IoT devices which are deployed in the constrained environment using low-energy
based communication solutions such as zigbee, BLE, and OCF IoTivity over BLE. The registered IoT
resources shall be represented as HTTP-based virtual resources to appear in the Internet. Therefore,
this is a consistent discovery interface to provide clients for discovering IoT resources.

Author Contributions: W.J. and D.K. designed the overall system. W.J. implemented the overall system and
performed experiments. W.J. and D.K. wrote this paper.

Acknowledgments: This work was supported by Institute for Information and communications Technology
Promotion (IITP) grant funded by the Korea government (MSIT) (No.2018-0-01456, AutoMaTa: Autonomous
Management framework based on artificial intelligent Technology for adaptive and disposable IoT), and this
research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology
Research Center) support program (IITP-2017-2016-0-00313) supervised by the IITP (Institute for Information
& communications Technology Promotion). Any correspondence related to this paper should be addressed to
Dohyeun Kim.

Conflicts of Interest: The authors declare no conflict of interest.



Sustainability 2018, 10, 4706 16 of 17

References

1. Gartner. Available online: https://www.gartner.com/newsroom/id/3598917 (accessed on 2 May 2018).
2. Li, S.; Da Xu, L.; Zhao, S. 5G internet of things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [CrossRef]
3. Akpakwu, G.A.; Silva, B.J.; Hancke, G.P.; Abu-Mahfouz, A.M. A survey on 5G networks for the internet of

things: Communication technologies and challenges. IEEE Access 2018, 6, 3619–3647. [CrossRef]
4. Naik, N. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP.

In Proceedings of the 2017 IEEE International Systems Engineering Symposium (ISSE), Vienna, Austria,
11–13 October 2017.

5. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of things: A survey
on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376.
[CrossRef]

6. Kafle, V.P.; Fukushima, Y.; Martinez-Julia, P.; Harai, H. Scalable Directory Service for IoT Applications.
IEEE Commun. Stand. Mag. 2017, 1, 58–65. [CrossRef]

7. Liu, M.; Leppanen, T.; Harjula, E.; Ou, Z.; Ramalingam, A.; Ylianttila, M.; Ojala, T. Distributed resource
directory architecture in Machine-to-Machine communications. In Proceedings of the 2013 IEEE 9th
International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob),
Lyon, France, 7–9 October 2013.

8. Meshkova, E.; Riihijärvi, J.; Petrova, M.; Mähönen, P. A survey on resource discovery mechanisms,
peer-to-peer and service discovery frameworks. Comput. Netw. 2008, 52, 2097–2128. [CrossRef]

9. Park, S. OCF: A New Open IoT Consortium. In Proceedings of the 2017 31st International
Conference on Advanced Information Networking and Applications Workshops (WAINA), Taipei, Taiwan,
27–29 March 2017.

10. De, S.; Barnaghi, P.; Bauer, M.; Meissner, S. Service modelling for the Internet of Things. In Proceedings of
the 2011 Federated Conference on Computer Science and Information Systems (FedCSIS), Szczecin, Poland,
18–21 September 2011.

11. Deschambault, O.; Gherbi, A.; Légaré, C. Efficient implementation of the MQTT protocol for embedded
systems. J. Inf. Process. Syst. 2017, 13, 26–39.

12. Jin, W.; Kim, D.K. Design and Implementation of e-Health System Based on Semantic Sensor Network Using
IETF YANG. Sensors 2018, 18, 629. [CrossRef]

13. Rahmani, A.M.; Thanigaivelan, N.K.; Gia, T.N.; Granados, J.; Negash, B.; Liljeberg, P.; Tenhunen, H.
Smart e-health gateway: Bringing intelligence to internet-of-things based ubiquitous healthcare systems.
In Proceedings of the 2015 12th Annual IEEE Consumer Communications and Networking Conference
(CCNC), Las Vegas, NV, USA, 9–12 January 2015.

14. Bhanumathi, V.; Sangeetha, C.P. A guide for the selection of routing protocols in WBAN for healthcare
applications. Hum.-Centric Comput. Inf. Sci. 2017, 7, 24. [CrossRef]

15. Kim, B. A Distributed Coexistence Mitigation Scheme for IoT-Based Smart Medical Systems. J. Inf. Process.
Syst. 2017, 13, 1602–1612.

16. Zhong, C.L.; Zhu, Z.; Huang, R.G. Study on the IOT architecture and gateway technology. In Proceedings of
the 2015 14th International Symposium on Distributed Computing and Applications for Business Engineering
and Science (DCABES), Jiangsu, China, 18–24 August 2015.

17. Ludovici, A.; Calveras, A. A proxy design to leverage the interconnection of coap wireless sensor networks
with web applications. Sensors 2015, 15, 1217–1244. [CrossRef]

18. Surwase, V. REST API Modeling Languages-A Developer’s Perspective. Int. J. Sci. Technol. Eng. 2016,
2, 634–637.

19. Djamaa, B.; Yachir, A.; Richardson, M. Hybrid CoAP-based resource discovery for the Internet of Things.
J. Ambient. Intell. Humaniz. Comput. 2017, 8, 357–372. [CrossRef]

20. Boukhadra, A.; Benatchba, K.; Balla, A. Efficient distributed discovery and composition of OWL-S process
model in P2P systems. J. Ambient. Intell. Humaniz. Comput. 2016, 7, 187–203. [CrossRef]

21. Djamaa, B.; Richardson, M.; Aouf, N.; Walters, B. Towards efficient distributed service discovery in low-power
and lossy networks. Wirel. Netw. 2014, 20, 2437–2453. [CrossRef]

22. Cirani, S.; Davoli, L.; Ferrari, G.; Léone, R.; Medagliani, P.; Picone, M.; Veltri, L. A scalable and self-configuring
architecture for service discovery in the internet of things. IEEE Internet Things J. 2014, 1, 508–521. [CrossRef]

https://www.gartner.com/newsroom/id/3598917
http://dx.doi.org/10.1016/j.jii.2018.01.005
http://dx.doi.org/10.1109/ACCESS.2017.2779844
http://dx.doi.org/10.1109/COMST.2015.2444095
http://dx.doi.org/10.1109/MCOMSTD.2017.1700027
http://dx.doi.org/10.1016/j.comnet.2008.03.006
http://dx.doi.org/10.3390/s18020629
http://dx.doi.org/10.1186/s13673-017-0105-6
http://dx.doi.org/10.3390/s150101217
http://dx.doi.org/10.1007/s12652-017-0450-3
http://dx.doi.org/10.1007/s12652-015-0313-8
http://dx.doi.org/10.1007/s11276-014-0749-3
http://dx.doi.org/10.1109/JIOT.2014.2358296


Sustainability 2018, 10, 4706 17 of 17

23. Bormann, C.; Castellani, A.P.; Shelby, Z. Coap: An application protocol for billions of tiny internet nodes.
IEEE Internet Comput. 2012, 16, 62–67. [CrossRef]

24. Shelby, Z.; Bormann, C.; Krco, S. CoRE Resource Directory; IETF: Fremont, CA, USA, 2018.
25. Jin, W.; Kim, D. A Sleep-Awake Scheme Based on CoAP for Energy-Efficiency in Internet of Things. Int. J.

Inform. Vis. 2017, 1, 110–114. [CrossRef]
26. Yachir, A.; Amirat, Y.; Chibani, A.; Badache, N. Event-aware framework for dynamic services discovery and

selection in the context of ambient intelligence and Internet of Things. IEEE Trans. Autom. Sci. Eng. 2016, 13,
85–102. [CrossRef]

27. Huh, J.H.; Seo, K. Design and test bed experiments of server operation system using virtualization technology.
Hum.-Centric Comput. Inf. Sci. 2016, 6, 1. [CrossRef]

28. Blundo, C.; Orciuoli, F.; Parente, M. An AmI-based and privacy-preserving shopping mall model.
Hum.-Centric Comput. Inf. Sci. 2017, 7, 26. [CrossRef]

29. Datta, S.K.; Da Costa, R.P.F.; Bonnet, C. Resource discovery in Internet of Things: Current trends and future
standardization aspects. In Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT),
Milan, Italy, 14–16 December 2015.

30. Datta, S.K.; Bonnet, C. Search engine based resource discovery framework for Internet of Things.
In Proceedings of the 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE), Osaka, Japan,
27–30 October 2015.

31. Barchetti, U.; Bucciero, A.; De Blasi, M.; Mainetti, L.; Patrono, L. Implementation and testing of an
EPCglobal-aware discovery service for item-level traceability. In Proceedings of the 2009 International
Conference on Ultra Modern Telecommunications & Workshops, ICUMT’09, St. Petersburg, Russia,
12–14 October 2009.

32. Swetina, J.; Lu, G.; Jacobs, P.; Ennesser, F.; Song, J. Toward a standardized common M2M service layer
platform: Introduction to oneM2M. IEEE Wirel. Commun. 2014, 21, 20–26. [CrossRef]

33. Klauck, R.; Kirsche, M. Bonjour contiki: A case study of a DNS-based discovery service for the internet
of things. In Proceedings of the 2012 International Conference on Ad-Hoc Networks and Wireless,
Belgrade, Serbia, 9–12 July 2012; Springer: Berlin/Heidelberg, Germany, 2012.

34. Evdokimov, S.; Fabian, B.; Kunz, S.; Schoenemann, N. Comparison of discovery service architectures for the
internet of things. In Proceedings of the 2010 IEEE International Conference on Sensor Networks, Ubiquitous,
and Trustworthy Computing (SUTC), Newport Beach, CA, USA, 7–9 June 2010.

35. OCF Specification. Available online: https://openconnectivity.org/specs/OCF_Core_Specification_v1.3.1.
pdf (accessed on 2 May 2018).

36. Da Xu, L.; He, W.; Li, S. Internet of things in industries: A survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MIC.2012.29
http://dx.doi.org/10.30630/joiv.1.4.37
http://dx.doi.org/10.1109/TASE.2015.2499792
http://dx.doi.org/10.1186/s13673-016-0060-7
http://dx.doi.org/10.1186/s13673-017-0107-4
http://dx.doi.org/10.1109/MWC.2014.6845045
https://openconnectivity.org/specs/OCF_Core_Specification_v1.3.1.pdf
https://openconnectivity.org/specs/OCF_Core_Specification_v1.3.1.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Proposed Methodology of Registration and Discovery 
	Registration and Discovery Scenario 
	Implementation Results 
	Performance Evaluation 
	Conclusions 
	References

