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Abstract: Forest fire prevention is important because of human communities near forests or in the
wildland-urban interfaces. Short-term forest fire danger rating prediction is an effective way to
provide early guidance for forest fire managers. It can therefore effectively protect the forest resources
and enhance the sustainability of the forest ecosystem. However, relevant existing forest fire danger
rating prediction models operate well only when applied to distinct climates and fuel types separately.
There are desires for an effective methodology, which can construct a specific short-term prediction
model according to an evaluation of the data from that specific region. Moreover, a suitable method
for prediction model construction needs to deal with some big data related computing challenges
(i.e., data diversity coupled with complexity of solution space, and the requirement of real-time forest
fire prevention application) when massively observed heterogeneous parameters are available for
prediction (e.g., meteorology factor, the amount of litter in the area, soil moisture, etc.). To capture
the influences of multiple prediction factors on the prediction results and effectively learn from fast
cumulative historical big data, artificial intelligence methods are investigated in this paper, yielding a
short-term Ratings of Forest Fire Danger Prediction via Multiclass Logistic Regression (or RAFFIA)
model for forest fire danger rating online prediction. Experimental evaluations conducted on a
sensor-based forest fire prevention experimental station show that RAFFIA (with 98.71% precision
and 0.081 root mean square error) is more effective than the Least Square Fitting Regression (LSFR)
and Random Forests (RF) prediction models.

Keywords: forest fire; danger rating online prediction; multiclass logistic regression; artificial
intelligence; big data

1. Introduction

Forests are a critical component in terms of protecting environmental sustainability (e.g., air,
ecological diversity, soil, and hydrological cycle, etc.). Nevertheless, forest fire is a common and natural
part of forest ecosystems. It destroys forests and woodlands, emits greenhouse gases on a massive
scale, and has been recognized as a critical disaster for humans [1]. The negative impacts of large-scale,
uncontrolled forest fires have been increasing worldwide over the past three decades [2]. Just as an
example, as a result of the growing frequency of droughts and/or warmer winters, occurrences of fires
in Canadian forests have been observed to be on the rise; resulting in a decrease in atmospheric carbon
at this source [3]. Some works also suggest that forest fires have a negative effects on water yield around
the post-fire area in Melbourne, Australia [4]. Much evidence points out that forest fire management
plays a significant role in guaranteeing the ecological environment and sustainable development.
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Reactive and proactive methods have already been used to provide some early warnings of forest
fires for forest managers [5]. In particular, the reactive methods, monitoring devices (e.g., sensor-networks,
optical-, or infrared-based screen monitoring devices, unmanned aerial vehicles, remote sensing, etc.) are
widely used for forest fire prevention. By analyzing text-, image-, or video-based data obtained from the
above monitoring devices, one can detect forest fire occurrences at an early stage. Alarms for fighting
the forest fire will be send out when fire is identified [6]. Proactive methods, by some prediction
mechanisms, can provide some warning information to help to mitigate the dangers of forest fires
before their occurrence. Therefore, following the proactive principle, an effective prediction in forest
fires is more effective for mitigating or preventing loss.

1.1. Forest Fire Danger Rating Prediction Models

To date, several well-known forest fire danger rating prediction models have been proposed and
used over the world, such as Fosberg Fire Weather Index (FFWI), McArthur Mark 5 Forest Fire Danger
Meter, McArthur Mark 4 and Mark 5 Grassland Fire Danger Meters, to name a few [7].

Different prediction models fit well for different climates and fuel types in a specific region [7].
In particular, FFWI was employed to supplement the U.S. National Fire Danger Rating System
(NFDRS [8]), e.g., it was used for Alaska wildfire danger assessment. Another well-known system is
the Canadian Forest Fire Danger Rating System (CFFDRS [9]), which is based on the Canadian Forest
Fire Weather Index (FWI) model [5]. Daily weather data are used in both NFDRS and CFFDRS to
determine fuel moisture.

The Fire Susceptibility Index (FSI) proposed in Reference [10] is another model for identifying fire
susceptibility in different spatial variations. A simplified metric (namely F) for determining the rating
of forest fire is proposed in Reference [11]. Following McArthur Mark 4 Grassland Fire Danger Meter,
McArthur Mark 5 Grassland Fire Danger Meter, and Fosberg Fire Weather Index, a simpler function is
used in F to measure the forest fire danger rating.

1.2. AI for Forest Fire Danger Prediction

In recent studies, artificial intelligence (AI) methodologies have already been applied in the
prediction of forest fire occurrence risk.

Elmas and Sönmez [12] present a Forest Fire Decision Support System (FOFDESS) based on
multi-agent technology. Artificial Neural Networks (ANN), Naive Bayes Classifier (NBC), and Fuzzy
Switching (FS) are used in the system to predict fire danger rating, estimate fire spread speed,
and quickly detect started fires. ANN was also adopted in Reference [13] to predict the danger
of forest fire occurrence. Support Vector Machines (SVM) were applied in Reference [14] for forest fire
danger prediction.

In Reference [1], data mining technology (concerning association analysis) is also used to
investigate the problems of global forest monitoring, relationship mining, and carbon danger scoring
based on remote sensing image data. Interesting results concerting dependence rules across different
spatio-temporal scale were discovered in the paper. For example, the anomalous warming of the
eastern tropical region in the area of Pacific (i.e., EI Niño phenomenon) may increase fire danger for
Indonesian forests. Geographic information systems and remote sensing technologies are used in
Reference [15,16] to assess spatial and temporal danger conditions of forest fires.

An advanced Gaussian-Process (GP)-emulator for wildland fire emission estimation was proposed
in Reference [17]. Cluster analysis results in the simulation show that fire emission has a physical
relationship with fuel and environmental conditions.

1.3. Factors Used for Forest Fire Danger Prediction

Since fuel accumulation, moisture, and forest structure are important influencing factors for forest
fires, and these factors are mainly affected by mountainous topography, Kane et al. [18] adopted
a random forest model to predict the site water balance and topography (slope position, slope,
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and insolation) using them as environmental predictors. The prediction results show substantial
portions of the variations in fire and forest structure.

Intelligent methodologies in terms of data mining and machine learning, including boosted
regression tree (BRT), generalized additive model (GAM), and random forest (RF), have been adopted
in Reference [19] for the features selection from 15 prior determined condition factors on forest fires.
In particular, the condition factors were identified by expert opinion and a comprehensive literature
review. As a result, three main driven factors (i.e., annual rainfall, distance to roads, and a land use
factors) were selected. Two environmental factors (i.e., temperature and atmospheric moisture) were
selected in Reference [20] to predict forest fire occurrence danger.

As a case study, Tian et al. [21] investigated the distribution characteristics and influence factors
of forest fires in China. In sum, forest fires are more likely to occur in humid regions of the medium
temperate zone. Pacheco et al. [22] also pointed out that terrain, fuels, as well as weather factors are
the environmental effects for forest fires. Shang et al. [23] also demonstrated the positive relationship
between accumulation of fuels and forest fire dangers.

In sum, the applications of forest fire danger rating prediction systems are extensive. Some
typical examples include NFDRS and CFFDRS [24]. They perform predictions using daily weather
indicators and the estimation of moisture content of the fuel [11]. Nevertheless, state of the art systems
remain largely in the realm of research and application. First, different models are used for a specific
region; they cannot scale for other areas because the model parameters are determined off-line by
some statistical analysis tools based on observations of the corresponding region. There are desires for
an intelligent methodology for model construction for forest fire danger rating prediction. Second,
the models perform well in predicting long-term (e.g., on a daily basis) forest fire danger, but cannot
estimate forest fires in the near future (referred to as online prediction, c.f., [25–27]) in view of real time
environmental changes [22].

Long-term prediction results can help the development of rational and sensible forest fire
prevention and protection policy for forest managers [28]. However, for some specific regions, such as
economic forest areas, forest areas near scenic spots, and forests with varied topography and climate
conditions, short-term forest fire danger rating prediction is essentially important. If the short-term
forest fire danger rating prediction problem is not attended, real time forest fire risk may be dismissed
in these regions. The social, ecological, economics, legal/institutional, and environmental policy costs
for dealing with the forest fire danger would be increased. An effective short-term forest fire danger
rating prediction can provide some early warnings for forest managers before forest fires start in these
specific regions. Proactive decisions based on the prediction results to mitigate the fire danger can
make the forest ecosystem more stable. The short-term forest fire danger rating prediction can therefore
contribute to the sustainability of forests as well as the social, ecological, economics systems.

Wireless sensor networks (WSNs) are an emerging technology that can collect environment
parameters almost in real time. Analyzing the collected data can therefore identify forest fires or even
help to predict them before they start [29,30]. The online prediction of forest fire danger rating via
WSNs-based monitoring data faces the following big data challenges.

1. Variety of Observed Data: Different forest fire danger influencing parameters have different
measurement units (e.g., ◦C, m/s, etc.) and data ranges. Some parameters have positive effect on
forest fire danger; others may be negative. There are desires for an unified metric to aggregate
the diverse influences.

2. Accuracy Guarantee for Online Prediction: To provide effective early guidance for forest fire
prevention, the prediction requires a high accuracy performance. To guarantee the prediction
accuracy, WSNs-based real-time parameters should be computed in real time and the prediction
model construction should be capable of dealing with a large-volume of cumulative sample data.

3. Complexity of Solution Space: It is very difficult to recognize complex patterns from the diverse,
large-volume of data and guarantee the effectiveness of online prediction results. To provide
a generalized model construction methodology for forest fire danger rating prediction which
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can scale for different regions, the decision-making process cannot be handled by traditional
models. The complex reasoning regularities and the high-accuracy requirements will result in a
high computational overhead.

None of the relevant existing forest fire danger rating prediction models and approaches can
systematically address these challenges and provide real-time short-term forest fire danger rating
prediction results. In particular, the popular prediction models (e.g., NFDRS, CFDRS, FSI, etc.) in existing
applications can often only provide long-term region-oriented forest fire danger rating prediction [5,8–10].
Some artificial intelligence (AI)-based prediction models [12–14,17,19] cannot directly scale for
large-scale observation data and deal with the big data related challenges.

We propose a short-term forest fire danger rating prediction approach in this paper based
on artificial intelligence technology to deal with the challenges highlighted above. In particular,
the observation parameters are first pre-processed dimensionless by min-max transformation.
Henceforth, each value is normalized into the range [0,1]: the larger value leading to a higher forest fire
danger rating. To reduce the computational complexity of model construction, a lightweight machine
learning approach is adopted, namely the multiclass logistic regression model. This model includes
less weight values and can therefore speed up the learning process. We evaluated the proposed
approach via a sensor-based forest fire prevention experimental station. The results demonstrated
the high prediction performance of our model. The remainder of the paper is organized as follows.
We describe the study approaches in Section 2. We present the effectiveness and efficiency evaluation
results in Section 3. We give some discussions regarding the main contributions of this paper in
Section 4. We conclude by identifying some important future works in Section 5.

2. Methods

This section provides a step-by-step study approach which includes information regarding
the study area, the proposed prediction model and approach, the deployed forest fire prevention
experimental station, and the data set and approaches used for comparison.

2.1. Study Area

In this paper, Xiashu Forest was selected as the study area. As demonstrated in Figure 1,
Xiashu Forest, with a total area of 314.4 ha, is located in 119◦14′ east longitude and 31◦59′ north
latitude, at the Jurong County, Jiangsu Province, China. Surrounded by low hills, the forest is divided
into 11 compartments.

Figure 1. Study area—divided into 11 forest compartments.

The highest peak in the forest, WuQi Mountain, is 377.8 m above sea level, followed by KongQing
Mountain with an altitude of 322.6 m above sea level. The surrounding area is generally about 100 m
above sea level; the valley is 75 m. The relative height difference in the forest is 302.8 m. The overall
situation of the forest farm is that the terrain is not undulating and relatively gentle, and it belongs to
the low hilly area.
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The soil in the forest farm is dominated by yellow brown soil and mountain yellow brown soil.
The surface humus content is generally 2.5%. The humus layer is not thick—about 10 cm to 20 cm.
The soil is acidic to strongly acidic; the soil texture is not sticky.

The local zonal vegetation is a deciduous mixed forest with evergreen components. Xiashu Forest
belongs to the north subtropical monsoon climate zone. The climate is characterized by four distinct
seasons of dry, wet and hot weather, sufficient sunshine and abundant water and heat resources.
According to observations of the forest for many years, the annual average temperature is 15.2 ◦C,
the annual average sunshine is 2157 h, and the sunshine percentage is 49%. The annual average rainfall
amount is 1055.6 mm, which varies greatly from year to year. The maximum amount is 1408.3 mm
(year 1962) and the minimum is 425.2 mm (year 1978). Most rainfall is in the summer, followed by
spring and autumn. The annual average relative humidity of the air is 79%.

Xiashu Forest is bordered by Jurong County Forest. Xiashu Town is in the north, and the west and
south bordering Tingzi Town. There are some residential areas in and around the forest farm where
the villagers live. Human activity is common in the forest, which makes fire prevention a very critical
issue in Xiashu Forest.

2.2. Forest Fire Danger Ratings Online Prediction

As stated in Section 1, prevention of forest fires is an extremely important issue to support
the sustainable development of forest ecosystems, economic systems, and social systems. On the
basis of the idea of proactive fault management (PFM) [27,31], predicting the occurrence of forest
fires at an early stage can help to mitigate the fire danger ahead of the fire, thus ensuring the stable
operation of the forest ecosystem. For some special forest fire prevention areas (such as Xiashu Forest),
short-term fire danger rating predictions and the subsequent proactive management can effectively
reduce the danger of fires, and lower the cost of ensuring the sustainability of forest ecosystems,
economic/social systems. We propose a Ratings of Forest Fire Danger Prediction model via Multiclass
Logistic Regression (namely RAFFIA) in this paper and validated the model in Xiashu Forest.

As demonstrated in Figure 2, the following three types of sensor data are included in RAFFIA
model. (1) Above ground environment-related forest sensor data (such as wind, rain, air temperature,
air relative humidity, etc.); (2) earth’s surface sensor data (i.e., forest litter amount); and (3) under
ground soil water content sensor data. The RAFFIA model learns the patterns from labeled
historical data.

RAFFIA: Ratings of Forest Fire Danger Prediction via Multiclass Logistic Regression

 Environment-related 
forest sensor data

forest litter 
amount

underground
water

wind, rain, air 
temperature, air 
relative humidity label fire 

rating for 
each sample

learn RAFFIA 
model

 fire risk 
rating online 

prediction

Figure 2. Framework of forest fire danger rating online prediction.

The online prediction is conducted based on a trained RAFFIA model and the real-time collected
environment-related forest sensor data. Firstly, the sufficient volume of training data set is collected
based on the historical data. After non-dimensional normalization processing of the training set
data, each record in the training data set is marked by a fire rank according to historical experience.
The training data set is used as an example and is provided for subsequent model learning. Secondly,
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the RAFFIA prediction model is trained via Multiclass Logistic Regression and the training data
set. Finally, on the basis of the forest sensor data collected in real time, the forest fire danger rating
short-term prediction is executed using the learned RAFFIA model.

2.2.1. Data Preparation

As for the WSNs-based forest fire danger rating prediction, we mainly consider six
environment-related parameters for the RAFFIA model in this paper. The parameters can be
categorized as follows (c.f., Figure 2). Category 1 is above ground indicators, i.e., air temperature (v1),
maximal horizontal wind speed (v2), air relative humidity (v3), and rainfall (v4). Category 2 is the
earth’s surface related indicator. We mainly consider forest litter amount (v5). Category 3 reflects the
underground water amount, namely soil relative humidity (v6).

Parameters for all the indicators above can be collected by forest environment monitoring WSNs.
The collected data is first be cleaned. For example, the missing values are supplemented. Wrong data
is also be corrected.

Each of the cleaned parameters has a different dimension due to the different measuring units,
e.g., parameter v4 is always measured by mm/h, while the metric for parameter v5 is m by the
popular forest litter amount sensor (e.g., SR50A). Moreover, the forest fire danger rating increases
as some parameters (namely benefit-oriented indexes) become larger, e.g., v1, v2, and v5; while as
some parameters (namely cost-oriented indexes) become lower, e.g., v3, v4, and v6. The diversity
of collected observation parameters make it difficult to discover patterns from the data. As with
Reference [32,33], we employ the min-max transformation method [34] and define dimensionless
additive utility functions to handle the parameters. Therefore, each value of the observed parameter
will be normalized into a real number with the range [0,1].

Assume that vij represents an observed value of parameter vi, for benefit-oriented indexes (i.e.,
i ∈ {1, 2, 5}), we normalized vij by

vij =


vij − vmin

i

vmax

i − vmin
i

, v
max

i 6= v
min

i

1, v
max

i = v
min

i .

(1)

For cost-oriented indexes vij, i ∈ {3, 4, 6}, we will normalized vij by

vij =


vmax

i − vij

vmax

i − vmin
i

, v
max

i 6= v
min

i

1, v
max

i = v
min

i

(2)

in Equations (1) and (2), vmax
i and vmin

i represent the maximal and minimal value of vi, respectively.

2.2.2. RAFFIA Model Construction

We first collect historical environment-related forest parameters to train the model (i.e., RAFFIA)
for the online prediction of forest fire danger rating. After normalization, each group of the six
parameter values, formally as Vj = {v1j, v2j, · · · , v6j}, are labeled by a forest fire danger rating number.
We then train a multiclass logistic regression [35] model to solve the following regression problem:

Frating
j = f (v1j, v2j, · · · , v6j), (3)

where Frating
j represents the forest fire danger rating for sample Vj.

As can be seen from Table 1, we follow the meteorological industry standard (i.e., QX/T77-2007)
of the people’s Republic of China, and divide the forest fire danger into five ratings.
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Table 1. The forest fire weather ratings in reference to QX/T77-2007.

Rating Frating Danger Degree Flammable Degree Warning Color

1 0.2 Very Low Difficult Green
2 0.4 Low Very Difficult Blue
3 0.6 High Easy Yellow
4 0.8 Very High Very Easy Orange
5 1.0 Extremely High Extremely Easy Red

Since the values in each sample Vj are normalized into the range [0,1], we train a Sigmoid function
to solve the regression problem presented in Equation (3). We have

Fj
rating =

1

1 + e−θTVj
, (4)

where θTVj is a dot product operation, in which θTVj = ∑i θivij, the vector θ = {θi}i=1 to 6 represents
the weight parameters for each valuable.

Hence, the prediction of Fj
rating mainly depends on the weights θ. As each sample vector Vj of

observed parameter is labeled by a rating number, we first convert the rating number into a real
number Frating according to Table 1. To determine the weight values and construct RAFFIA model,
the gradient descent method [36] is used.

Let Fj
rating be the converted labeled forest fire danger rating value for a sample vector Vj

(representing the actual forest fire danger value), let F̂j
rating be the output value by Equation (4)

using the current weight values. We define the following Log Loss function L to measure the cost from
the output value to the actual value.

L = − 1
S ∑S

j=1 [F
j
rating log(F̂j

rating) + (1− Fj
rating) log(1− F̂j

rating)], (5)

where S represents the total number of sample vectors.
The gradient descent for training the RAFFIA model is conducted by the following procedures.

• Step 1: we initialize each value of θi = 1.
• Step 2: We randomly select S sample vectors from the training set, and calculate the L value of

cost function according to the selected samples.
• Step 3: We update θi, for i ∈ {1, 2, · · · , 6}, using a grad function. Specifically, the purpose of

updating weight values is reducing the value of cost function. For each θi ∈ θ, we assign a new
value θ

′
i using the following equation:

θi → θ
′
i = θi − η

∂L
∂θi

, (6)

in which η ∈ [0, 1] is defined as learning rate, which is used to control the speed of updating θi.

As for Step 3, when η is too large, the process of a gradient descent may cause the cost function
to cross the bottom (i.e., the minimum value), in this situation, θ approximates the optimal solution.
On the other hand, too small values of the η setting will lead to a higher computational complexity;
it will therefore cause a low convergence speed for the learning algorithm. As regards the data, with
the improved performance of computer hardware, especially the use of GPUs, the time complexity of
the gradient descent algorithm in the process of solving the large-scale machine learning problems has
gradually gained acceptance. In general, the optimal value of η should be determined via sufficient
experimental evaluations.



Sustainability 2018, 10, 4620 8 of 16

Repeating the gradient descent procedures, Step 2 and Step 3, as stated above, we constantly
update the weight values in the RAFFIA model. When L = arg min

L
(L ≈ 0), the RAFFIA model

training process achieves convergence. In this way, we use the trained RAFFIA model for forest
fire danger rating online prediction via the real-time collected sensor-based forest environment
observation parameters.

2.2.3. Online Prediction

Let Vo = {v1o,v2o, · · · , v6o} be the real-time observed forest environment parameter values, vector
Vo is substituted into Equation (4) to obtain the numbered forest fire danger value Fo

rating. We use an
interval function to determine the danger rating (formally as Ro, where Ro ∈ {1, 2, · · · , 5}) for an
online forest fire danger rating prediction.

Ro=



1, Fo
rating ≤ ε1

2 ε1 < Fo
rating ≤ ε2

3, ε2 < Fo
rating ≤ ε3

4, ε3 < Fo
rating ≤ ε4

5, Fo
rating > ε4.

, (7)

Specifically, we set ε1 = 0.2, ε2 = 0.4, ε3 = 0.6, ε4 = 0.8, respectively, in this paper.

2.3. Framework of Xiashu Forest Fire Prevention Experimental Station

A forest fire prevention experimental station was deployed in Xiashu Forest. Located at 118◦79′

east longitude and 32◦06′ north latitude, the experimental station was behind the forest management
office, at the 9th compartment (see Figure 1). As can be seen in Figure 3, a flux tower (with 50 m high)
and some sensors continuously collected data to store at the data center servers. There were also some
optical and infrared dual lens fire monitoring equipment (the monitoring distance was 10 km) in the
flux tower. The data center servers were deployed in a container, which were used to store the data
collected from the sensors.

Data Center

 Forest Litter Amount 
Detection Sensor -

SR50A

Flux Tower -  
Temperature, Wind 
Speed, Air Relative 

Humidity, and 
Rainfall Detection 

Sensors
Soil Moisture 

Detection Sensors

Figure 3. Data collection sensors and the data center—deployed in 9th compartment.

The experimental station collected Meteorological Data (including Temperature-v1, Maximal
Horizontal Wind Speed-v2 (=Max(Ux, Uy), where Ux and Uy represent the wind speed in x and y
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axis, respectively.), Air Relative Humidity (RH)-v3, and Rainfall-v4), Forest Litter Amount-v5, and
Soil Relative Humidity-v6. The hardware platform for the data centers included two Langchao
servers—NF8460, equipped with two Xeon E7 4820 CPUs and 32GB RAM for each server, and a
Langchao optical storage server-AS500E, with a 10TB HDD. A 100M The Chinese education network
connected the experimental station to the university laboratory. This system provided a basic platform
for the evaluation of the prediction results. The data collected by the sensor networks is summarized
in Table 2.

Table 2. Forest environment-related sensor-monitored parameters

Variables Sensors Units Data Ranges

v1 Model 107 Temperature Probe ◦C [−35,+100]
v2 IRGASON Integrated CO2/H2O Open-Path Gas Analyzer and

3D Sonic Anemometer
m/s 65.553

v3 Model HMP 155A Temperature and Relative Humidity Probe %RH [0,100]
v4 TE525 Tipping Bucket Rain Gage mm/h [0,30]
v5 SR50A m [0.5,10]
v6 Model HFP01 Soil Heat Flux Plate %(m3/m3) [0,100]

Taking 16:30 real-time data on 14 November 2018 as an example, the collected sensor data
related to this paper mainly include: temperature 7.7481 ◦C, maximal horizontal wind speed
3.0710 m/s, Air relative humidity 55.6597%, rainfall 0.00 mm, forest litter amount 16.20 cm, the soil
relative humidity 0.2871%. These parameters were used to train the model and conduct fire danger
rating predictions.

2.4. Data Set

We collected the forest environment parameters using the sensors stated in Table 2 every 30 min,
continuously for 12 months. As a result, there are altogether 8760 = 365× 24 samples. As for each
sample, we labeled the forest fire danger rating based on the daily forecasting result (http://www.
slfh.gov.cn/slfhw/Category_81/Index.aspx) published by China Meteorological Administration and
the State Forestry Administration of the People’s Republic of China. We then invited a forest fire
prevention expert to artificially correct the labeled rating for each sample. We randomly selected
6000 samples for the training set, and used the remaining 2760 samples as the testing set. Specifically,
each sample in training set and testing set was labeled by a danger rating number with {1, 2, · · · , 5}
via the above artificially correction.

2.5. Metrics

We employ two popular metrics including precision and Root Mean Square Error (RMSE) to
evaluate the prediction accuracy.

Particularly, precision for forest fire danger rating online prediction is defined as

precision = (Nh/N)× 100%, (8)

where N represents total number of prediction times, Nh represents the time of prediction result hits
the labeled danger rating.

RMSE is defined as

RMSE =

√
∑N

n=1 (Ro
n − Rc

n)
2

N
, (9)

where Ro
n is the danger rating by nth time of prediction, Rc

n represents the labeled ranking, N is the
total number of predictions.

From the above metrics, higher precision and lower RMSE indicate higher prediction accuracy.

http://www.slfh.gov.cn/slfhw/Category_81/Index.aspx
http://www.slfh.gov.cn/slfhw/Category_81/Index.aspx
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2.6. Approaches Subjected to Comparison

Two relevant existing regression prediction approaches including Least Square Fitting Regression
(LSFR) and Random Forests (RF) were also conducted. These approaches were compared with the
proposed RAFFIA approach for forest fire danger ranking prediction to evaluate the effectiveness of
the proposed approach.

For LSFR, we defined a fitting function as follows

Frating
j = ∑4

k=0 ak(Vj)
k, (10)

where ak is a regression coefficient, (Vj)
k represents the k-power of sample vector Vj.

Coefficients ak were solved using MATLAB 7.0 toolkit based on the training set. The prediction
using the LSFR model with trained coefficients were conducted in Java.

The RF model is constructed in Java using Spark 1.4.0. Classes

org.apache.spark.mllib.tree.RandomFores for trainClassi f ier method, and
org.apache.spark.mllib.tree.model.RandomForestModel for predict method

in Spark were used for model training and prediction, respectively.
The proposed RAFFIA approach was conducted using Java. All the experiments were

implemented on a PC with Intel(R) Core(TM) i7 2600 CPU, 4GB RAM, Seagate 1TB HDD. The results
were obtained by averaging over 50 runs of all the predictions under the testing set, and the models
training under the training set, respectively.

3. Results

This section presents the effectiveness and efficiency evaluation results, and demonstrates the
application of the proposed RAFFIA model based on the study approach.

3.1. Impact of η and S

We first investigated the effect of learning rate η and the number of sample vector S for each step
of gradient descent on the effectiveness and efficiency of the RAFFIA model. We fixed the value of s as
20 and varied the value of η from 0.1 to 1, with a step value of 0.1. We compared the precision and
RMSE, respectively, under different parameter settings for the predictions based on the RAFFIA model.
We then fixed the value of η = 0.5, and varied the value of S for from 10 to 80, with a step value of 10,
and studied the execution time for the RAFFIA model training under different parameter settings.

As can be seen from Figures 4–6, the precision, RMSE, and execution time all exhibit an obvious
impact on the prediction accuracy. In sum, a smaller value of η and larger value of S result in lower
prediction accuracy and higher computation complexity for the RAFFIA model construction.
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Figure 6. Execution Time for Prediction Model Construction. (a) Impact of η (S = 20); (b) Impact of S
(η = 0.5).

First, when S is fixed, a smaller value of η makes the stride length for each step’s grad function
become smaller. We are more easily close to the optimal solution for the RAFFIA model construction
via gradient descent. The enlargement of η gradually makes the minimum value of cost function
L enlarge (away from 0), in this situation, the algorithm for the RAFFIA model construction converges.
Especially, when η reaches 0.5, the prediction accuracy declines more obviously as η further increases.
The results suggest that, in this case, η should be set less than 0.5 to effectively predict the forest fire
danger rating.

Second, when η is fixed at 0.5, the prediction accuracy obviously improves when S increases.
The enlargement trend gradually reduces when S reaches 20. The changes in prediction accuracy
gradually level off when S is 40. This finding indicates that larger amount of randomly selected sample
vectors for each step of the gradient descent make the RAFFIA model more effective. But when S
reaches 40, any further increment of S becomes irrelevant.

Third, when S is fixed, the execution time for the RAFFIA model construction declines significantly
as η increases. The growth trend slows down until η reaches 0.5. It is because when η ≤ 0.5,
the enlargement of η makes the step length for gradient become larger, it results in a quicker
convergence by finding the optimal values of θ for the RAFFIA model training. On the other hand,
when η > 0.5, the step value for the gradient is larger, and the convergence is determined by identifying
the minimal value of L; it, however, makes the efficiency of the RAFFIA model poorer. Moreover,
when η is fixed, the enlargement of S makes the computational complexity for each step’s gradient
descent become large. Particularly, the results show a liner growth for the time complexity.
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To sum up, reasonable values for S and η should be set as S ≥ 40, and η ≤ 0.5. Nevertheless,
trade-off decisions should also be made for optimal values of S and η regarding the prediction accuracy
and time complexity, in the situation of different applications.

3.2. Performance Comparison

According to the above findings, we set S = 40 and η = 0.5 for RAFFIA, and compared the
precision and RMSE of RAFFIA with LSFR and RF methods, respectively. Because the process of
the LSFR model construction needs an off-line Matlab toolkit calculation, we could not compare the
execution time for LSFR with other methods with a uniform metric. In this paper, we only compare
the time complexity for the model construction of RAFFIA and RF.

As can be seen from Figure 7, RAFFIA outperforms the other methods in both prediction accuracy
and computational complexity. RF is better than LSFR as regards prediction accuracy.

 80

 85

 90

 95

 100

RAFFIA LSFR RF

p
re

c
is

io
n

 (
%

)

prediction methods

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

RAFFIA LSFR RF

R
M

S
E

prediction methods

(b)

 0

 0.5

 1

 1.5

 2

RAFFIA RF

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

)

prediction methods

(c)

Figure 7. Performance Comparison for Different Approaches (η = 0.5, S = 40). (a) precision; (b) RMSE;
(c) Execution Time for Model Construction.

Moreover, we evaluated the efficiency of the proposed RAFFIA approach for online prediction.
We repeated runs of the prediction from 30 to 100 times, with a step value of 10 times, and compared
the results with the LSFR and RF methods.

As can be seen from Figure 8, the execution time for the same amount of runs of the RAFFIA
approach is very similar to that of the LSFR method. It is much better than the RF method as regards
of running times. The results also show a liner increment as for the prediction times increase. As for
each execution of prediction, RAFFIA takes around 250 ms, showing a good real-time efficiency.
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In sum, the proposed RAFFIA model is more fit for short-term forest fire danger rating prediction
applications in the situation with big data related computing challenges, i.e., a big volume and large
variety of observed data, and the complexity of solving the short-term prediction problem under the
big data environment.

4. Discussion

Different from the traditional long-term forest fire danger rating prediction methods (such as
providing monthly or daily prediction results) [5,8,9,13], the proposed RAFFIA model can perform
short-term prediction based on real-time data collected by sensor networks. Long-term prediction
methods usually focus on meteorological factors [7]. However, the distribution of soil and tree species
in forests often vary widely from one area to another. This shows that the soil relative humidity,
the forest litter amount, etc., are largely different in different regions [17]. For some key fire prevention
areas in the forest, such as the areas with intensive human activities, the areas with important social,
economic, and ecological values, it is especially important to predict small-scale, short-term fire danger
ratings to guarantee the sustainable and stable development of these areas. More real-time parameters
including meteorological and environmental parameters of the specific area should be collected based
on the sensor networks to enhance the prediction accuracy.

The experimental evaluation results in this paper show that the prediction accuracy and
computational complexity of the RAFFIA model are better than other competitive methods (i.e., LSFR
and RF [18]). In terms of dealing with the big data challenges, the RAFFIA model only spent 1.07 s
average for training a RAFFIA model under a 6000 samples’ training set. The average online prediction
time is only 250 ms, which is better than LSFR and RF methods. It can be seen that the proposed
method is more suitable for small-scale short-term forest fire danger rating prediction applications.

It is worth noting that, for the application of RAFFIA, more fire risk parameters can be easily added
to the RAFFIA model, such as terrain, population density, etc. In particular, for some non-quantitative
parameters, such as slope degree, slope direction, etc., we can first qualitatively describe the fire danger,
and then convert the qualitative value into a quantitative value according to Saaty’s 1-to-9 scale for
analytic hierarchy processes (AHP) and analytic network processes (ANP) [37]. By considering more
fire risk factors, the effectiveness of the proposed method in small-scale and short-term forest fire
danger rating prediction for specific areas can be further improved.

The application of the RAFFIA-based prediction method requires the support of sensor networks.
These devices increase the cost of forest fire prevention. However, compared to remote sensing-based,
aircraft, drone, and optical-based monitoring methods [15,16], the financial investment is still relatively
low. In addition, the monitoring methods above can only find burning fires, and cannot predict the
fire danger in the near future. From the perspective of forest fire emergency management, prediction
results can provide earlier information for decision making than monitoring results [27,31]. Early
warning and intervention mechanism can easily be set up by forest managers and emergency response
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professionals based on the RAFFIA prediction results. This will greatly reduce the fire danger in key
fire prevention areas, and reduce the investment of fire inspectors and equipment. The prediction
method proposed in this paper does not damage the environment. It can facilitate the environment
and social management.

In sum, with the deployment and application of the RAFFIA model in the fields of fire emergency
management, environmental emergency management, and social system emergency management,
the proactive emergency management ability of managers to respond to the danger of forest fires
will be improved. The ecosystem, economic system, and social system will be able to respond to
the dynamic changes of the external environment and respond in advance to forest fires to make the
systems more sustainable.

5. Conclusions

Short-term forest fire danger rating prediction has become a critical problem for avoiding
the danger of forest fires and supporting the sustainability of forest ecosystem. We propose a
RAFFIA model in this paper to cope with the big data related challenges of short-term forest
fire danger rating prediction (retrieve Section 1). On the basis of Multiclass Logistic Regression,
the RAFFIA-based prediction approach learns from the samples of labeled forest fire danger ratings
for environment-related forest sensor data, including wind, rain, air temperature, air relative humidity,
forest litter amount, and underground water amount. Experiments based on an experimental station
deployed in Xiashu Forest demonstrate the effectiveness and efficiency of the proposed approach.
Under a refined setting of RAFFIA model parameters, the precision can reach 98.74, with RMSE being
0.083. To make a trade-off with time complexity for prediction construction, the precision is 98.71,
with RMSE being 0.081, and execution time for the model construction being 1.07 s. Moreover, each
RAFFIA prediction needs around 250 ms on average.

It is worth noting that, the short-term forest fire danger rating prediction is extensively needed
for forest fire prevention in key areas. These areas are often intensive. Occurrence of fires in these key
areas can always lead to significant loss of life and property. The RAFFIA model can be deployed in
these key areas to enhance the sustainability of ecosystems as well as economic and social systems.

With the RAFFIA model and the sensor networks, a short-term forest fire warning system can
be easily constructed. Using the real-time prediction results, if the fire possibility is high, an early
warning could be activated to send to the forest fire manager. The forest fire prevention plan to reduce
the fire danger would be activated and performed. In the long run, the application of this model will
help to reduce the cost of forest fire prevention for the key forest fire prevention areas, and contribute
to the sustainable development.

This paper can be extended in the following future directions:

First, as terrain and human activities are also very important factors influencing the occurrence
and spread of forest fires, these factors can also be integrated in the RAFFIA model. Since these factors
should always be identified through remote sensing and video monitoring, we plan to extend our
model to support the prediction based on multiple types of data sources.

Second, we also plan to investigate other artificial intelligence methods, such as convolutional
neural networks (CNNs), deep belief networks (DBNs), etc., to further enhance the effectiveness of
forest fire danger rating online prediction.
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