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Abstract: China’s agricultural structure has undergone significant changes for the past four decades,
mainly presenting as the fall of sown proportion of grain crops and the rise of vegetables, as has
its energy consumption. Employing the panel data on 30 provinces during 1991–2016, this paper
empirically explores the impact of agricultural structure changes (ASC) on the energy intensity
of agricultural production (EIAP), direct energy intensity of agricultural production (DEIAP)
and indirect energy intensity of agricultural production (IEIAP) in China. Besides, the regional
heterogeneity of such impact is examined. The results show that: (1) ASC increases EIAP and IEIAP
significantly, while ASC decreases DEIAP, which is explained by the structural effect and different
planting modes of different crops; (2) the impact in the three administrative regions is similar to
national situation, except the impact of ASC on DEIAP in the West Region, which is explained
by regional differences of vegetable mechanization; (3) the result of the six vegetable production
regions reveals greater regional heterogeneity, and this is attributed to the scale economy effect and
the incremental effect of vegetable mechanization; and (4) fuel price, income, agricultural labor,
old dependency ratio, and fiscal expenditure have different but significant impacts on EIAP, DEIAP,
and IEIAP. Finally, some policy implications are given.

Keywords: agricultural structure changes; energy intensity; regional heterogeneity; mechanization;
chemical fertilizers

1. Introduction

Remarkable agricultural growth has been achieved in China since 1978. The real gross value of
agricultural output grew from 111.76 billion China Yuan (CNY) to 636.09 billion CNY for the years
of 1978–2016, with an average growth rate of 4.68% per year. Such growth derives not only from
institutional reforms [1–3] and technical progress [4–6], but to a large extent, from rising agricultural
inputs like chemical fertilizers and pesticides [7–9], machinery [10,11], and energy [12–14]. During
1991–2016, China’s total power of agricultural machinery soared from 282.54 million kilowatts to
1104.99 million kilowatts; meanwhile, its consumption of nitrogen fertilizer, phosphate fertilizer, potash
fertilizer, compound fertilizer, and pesticides rose from 17.26 million tons, 5 million tons, 1.74 million
tons, 4.06 million tons, and 0.76 million tons to 23.11 million tons, 8.30 million tons, 6.37 million
tons, 22.07 million tons, and 1.74 million tons, respectively. The growth of these inputs drove energy
consumption of agricultural production (ECAP) increase from 66.65 million tons of standard coal
equivalent (Mtce) to 98.05 Mtce over this time span, because energy is used directly as fuels for
agricultural machinery and indirectly as raw materials for chemical fertilizers and pesticides [15]. As a
result, nearly one-quarter of global ECAP comes from the Chinese agricultural sector [9].
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However, China’s astonishing agricultural development has come with a price [16]. The growing
ECAP is accompanied by non-point source water pollution [17], soil pollution [18], air pollution [19],
as well as extensive greenhouse gas (GHG) emissions [20]. According to China’s Bulletin on the First
National Census on Pollution Sources, agriculture has replaced industry as the major source of water
pollution since 2005, including nitrogen (57.19%), phosphate (67.27%), and chemical oxygen demand
(43.71%) [21]. In addition, China’s Initial National Communication on Climate Change showed that
agriculture-related GHG emissions are calculated to occupy nearly 17% of its total emissions [22].
The situation relating to GHG emissions and air pollution gets worse due to upstream activities
relating to fertilizer production and transportation, midstream activities associated with fertilizer
utilization, and agricultural structural changes [19,23,24], and in 2007, the proportion increased to
about one-third [25]. Correspondingly, agriculture-related CO2 emission grew from 116.26 million tons
in 2001 to 185.66 million tons in 2012 [26]. Over-exploitation of resources and severe environmental
pollution has hampered the sustainable development of China’s agricultural sector.

Chinese government has proposed to realize agricultural modernization by 2035, which is
characterized by mechanization and extensive use of chemical fertilizers [27]. The 13th Five-Year Plan
for the Development of Agricultural Mechanization has set the goals of increasing the comprehensive
mechanization rate of crops’ tillage and harvest from 63% to 70%, improving the comprehensive
mechanization rate of tillage and harvest for wheat, rice, and corn to above 80%, and increasing the
total power of agricultural machinery to 1.2 billion kilowatts during 2015–2020. It is inevitable that more
machinery and chemical fertilizers will be adopted in China’s agricultural modernization process,
thereby improving ECAP and causing associated environmental problems. Facing a dilemma of
sustaining agricultural development and tackling agriculture-rooted environmental issues, a common
consensus of promoting agricultural energy efficiency has been reached [14].

As the most energy-intensive country in the world, China has put energy conservation and
efficiency improvement on its agenda for years [28]. The latest is the 13th Five-Year Plan for Energy
Development, which aims to reduce energy intensity by 15% in 2020 compared to the 2015 level.
Meanwhile, agriculture is expected to play a key role in reducing GHG emissions [12]. Contrary to the
growing ECAP, EIAP in China reveals a declining trend. For the years of 1991–2016, EIAP decreased
from 1.31 tons of standard coal equivalent (tce)/10,000 CNY to 0.46 tce/10,000 CNY. Correspondingly,
IEIAP and DEIAP exhibited similar fluctuation trends, and declined from 0.85 tce/10,000 CNY and
0.46 tce/10,000 CNY to 0.30 tce/10,000 CNY and 0.17 tce/10,000 CNY, respectively. To achieve
sustainable agricultural modernization, it is important to figure out determinants driving the decline
of EIAP, IEIAP, and DEIAP in China.

Since 1978, the main problem of China’s agriculture has shifted from insufficient supply to
structural disequilibrium [29]. As a direct response to changing market demand, regional comparative
advantages, and government policies, China’s agricultural structure has changed significantly [9,29].
The sown proportion of grain crops decreased from 78.05% in 1991 to 69.38% in 2016, while that of
vegetable increased from 4.55% to 13.70%. Structural change and its impact on the energy intensity
of China’s agricultural sector deserve special attention because different crops vary significantly in
both the type and amount of energy-related agricultural inputs, which result in significant changes of
agricultural energy intensity [30–32]. Besides, China’s agricultural sector must undergo a significant
transformation of higher energy efficiency for food production and transportation in order to meet the
challenges of food security and climate change [33]. Due to its insignificant proportion of about 6%
of total energy consumption, agricultural energy in China has not received enough attention [12,34],
let alone the impact of ASC on EIAP, DEIAP, and IEIAP. The existing research on agricultural energy in
China mainly focuses on an energy conversion coefficient or efficiency [13,35–38], impact of energy on
agricultural output [39], current consumption situation and demand forecasting [14,40,41], affecting
factors [34,42,43], and environmental effect [12,44–46].

This study attempts to investigate the impact of ASC on EIAP, DEIAP, and IEIAP in China, and
regional heterogeneity of such an impact in terms of the administrative division of regions and the six
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vegetable production regions, which will shed light on the sustainable growth of China’s agricultural
sector. This study makes three central contributions. Firstly, to the writers’ knowledge, this study
originally estimates the impact of ASC on EIAP, DEIAP, and IEIAP in China. Secondly, while existing
literature only focuses on DEIAP and treat DEIAP as the gross EIAP in China, both DEIAP and
IEIAP are taken into consideration in this study because the latter is the major form of EIAP in China
and has been excluded from official statistics and ignored by the existing literature. Thirdly, a rich
dataset at a provincial level is used, which allows us to take the high level of regional heterogeneity
into consideration.

The remainder of this paper is organized as follows: Section 2 reviews the evolution of ASC and
EIAP in China and relevant literature; Section 3 presents the methodology and data used; Section 4
shows the empirical results and its corresponding discussion; and Section 5 ends the research with
some conclusions and policy implications.

2. ASC and EIAP in China: Evolution and Literature Review

2.1. The Evolution of ASC and EIAP in China

Economic development is often accompanied by systematic changes of economic structure [47],
and agricultural planting structure refers to the composition of different crops and their corresponding
proportion to the total sown area. In this study, agriculture in its narrow sense is adopted and refers to
the cultivation of farm crops [48]. Influenced by market demand for more commercial crops, regional
comparative advantages and government policies, remarkable ASC have been witnessed in China and
there are four stages of policy adjustment on agricultural structure since 1990 [9,29,49,50].

Before the 1990s, China’s monotonous agricultural structure, rooted in “Taking Grain as the Key
Link” policy, led to the dull sale for grain and cotton, and the shortage of commercial agricultural
products. The agricultural market reform motivated the production of commercial agricultural
products, which, however, were difficult to sell in the early 1990s. Hence, there came the first stage of
policy adjustment (1991–1997), whose goal was to develop high-yield, high-quality, and high-efficiency
agriculture. During 1997–1998, agricultural product prices fell across the board and farmers’ income
stagnated. There came the second stage of policy adjustment to boost agricultural development
(1998–2003).

After joining the World Trade Organization, Chinese agriculture faced tremendous challenges
from global agriculture. In 2004, Opinions on Some Policies for Promoting Farmers’ Income was issued
and improving the overall quality of agriculture and rural economy and raising the international
competitiveness of agricultural products became the focus of policy adjustment on agricultural
structure during 2004–2014. In 2015, the Ministry of Agriculture (MOA) started a new round
of spontaneous adjustment of agricultural structure (post 2015), which can be summarized as
“Two Stabilization, Two Increase and Two Enhancement”. Under the background that the sown
proportion of other crops kept basically unchanged, the sown proportion of grain crops decreased from
78.05% in 1991 to 69.38% in 2016, while that of vegetable increased from 4.55% to 13.70% (see Figure 1).
Simultaneously, the sown area of grain crops and vegetable increased from 112.31 million hectares and
6.55 million hectares to 113.03 million hectares and 22.33 million hectares, respectively.
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Figure 1. The structural change of agricultural sector in China and energy consumption during 1991–
2016. (Data source: [51]). 

In the provincial level, the decreasing amplitudes of the sown proportion of grain crops in 
Fujian (−27.06%), Zhejiang (−25.17%), Guangxi (−24.43%), Qinghai (−23.92%), Hainan (−23.10%), 
and Beijing (−22.47%) were lower than −20.00%, and the increasing amplitudes of the sown 
proportion of vegetable in Shanghai (28.77%), Hainan (28.17%), Fujian (23.79%), Zhejiang 
(22.50%), and Beijing (20.03%) were higher than 20.00% (see Figure 2a, b). Those changes result 
in significant changes of EIAP, DEIAP, and IEIAP because different crops vary significantly in 
both the type and volume of agricultural inputs [32]. For instance, the indirect energy 
consumed per hectare for rice is 224.67 kilograms of standard coal equivalent (kgce) in 2016, 
while that for potato is 416.58 kgce. 

(a) (b) 
Figure 2. Sown structure of China’s agricultural sector in 1991 and 2016: (a) Sown structure of 
China’s agricultural sector in 1991; (b) Sown structure of China’s agricultural sector in 2016. (Data 
source: [51]). 
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Figure 1. The structural change of agricultural sector in China and energy consumption during
1991–2016. (Data source: [51]).

In the provincial level, the decreasing amplitudes of the sown proportion of grain crops in Fujian
(−27.06%), Zhejiang (−25.17%), Guangxi (−24.43%), Qinghai (−23.92%), Hainan (−23.10%), and
Beijing (−22.47%) were lower than −20.00%, and the increasing amplitudes of the sown proportion
of vegetable in Shanghai (28.77%), Hainan (28.17%), Fujian (23.79%), Zhejiang (22.50%), and Beijing
(20.03%) were higher than 20.00% (see Figure 2a,b). Those changes result in significant changes of EIAP,
DEIAP, and IEIAP because different crops vary significantly in both the type and volume of agricultural
inputs [32]. For instance, the indirect energy consumed per hectare for rice is 224.67 kilograms of
standard coal equivalent (kgce) in 2016, while that for potato is 416.58 kgce.
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Figure 2. Sown structure of China’s agricultural sector in 1991 and 2016: (a) Sown structure of China’s
agricultural sector in 1991; (b) Sown structure of China’s agricultural sector in 2016. (Data source: [51]).

Energy intensity refers to the ratio of energy consumption to economic output, which assesses
the energy efficiency of a country or a region. The lower the energy intensity, the higher the energy
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efficiency. During 1991–2016, ECAP increased from 66.65 Mtce to 98.05 Mtce. Among the ECAP,
direct energy consumption of agricultural production (DECAP) rose from 23.24 Mtce to 35.47 Mtce,
and indirect energy consumption of agricultural production (IECAP) grew from 43.41 Mtce to
62.58 Mtce. Compared to the growing ECAP, DECAP, and IECAP, EIAP in China reveals an opposite
trend. For the years of 1991–2016, EIAP firstly decreased from 1.31 tce/10,000 CNY to 0.94 tce/10,000
CNY in 1996, maintained invariable by 2003, and continued to decease to 0.46 tce/10,000 CNY.
Correspondingly, IEIAP and DEIAP exhibited similar fluctuation trends, and declined from 0.85 tce/
10,000 CNY and 0.46 tce/10,000 CNY to 0.30 tce/10,000 CNY and 0.17 tce/10,000 CNY, respectively
(see Figure 3).
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Figure 3. ECAP, DECAP, IECAP, EIAP, DEIAP, and IEIAP in China. Data source: [52].

As a result of China’s vast territory, energy intensity exhibits huge regional heterogeneity [53],
and so does EIAP, DEIAP, and IEIAP (see Figure 4). In 1991, the EIAP, DEIAP, and IEIAP of
Central Region was higher than those of East Region and West Region (see Figure 4a,c,e). However,
the situation changed and in 2016, the EIAP, DEIAP, and IEIAP of West Region was higher than
those of Central Region and East Region (see Figure 4b,d,f). Specifically, in 1991, the EIAP of Shanxi
was 3.55 tce/10,000 CNY, around 4.67 times that of Guangdong at 0.76 tce/10,000 CNY, and in 2016,
the EIAP of Jilin was 1.04 tce/10,000 CNY, about 4.33 times that of Tianjin at 0.24 tce/10,000 CNY.
Comparing Figures in 1991 with Figures in 2016, it can be seen that, in line with EIAP, DEIAP, and
IEIAP of the national level, EIAP, DEIAP, and IEIAP, of the regional level exhibit a generally declining
trend during 1991–2016, except for several provinces. To achieve the goal of agricultural modernization,
it is necessary to discern the influential factors leading to the decline of EIAP, DEIAP, and IEIAP in the
past decades to further decrease EIAP in China.



Sustainability 2018, 10, 4591 6 of 23Sustainability 2018, 10, 4591 6 of 24 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 4. (a) EIAP in 1991; (b) EIAP in 2016; (c) DEIAP in 1991; (d) DEIAP in2016; (e) IEIAP in 1991; 
and (f) IEIAP in 2016. Data source: [52]. 

  

Figure 4. (a) EIAP in 1991; (b) EIAP in 2016; (c) DEIAP in 1991; (d) DEIAP in2016; (e) IEIAP in 1991;
and (f) IEIAP in 2016. Data source: [52].



Sustainability 2018, 10, 4591 7 of 23

2.2. The Relationship between ASC and EIAP: A Literature Review

Economic structural changes have been proved as an important factor influencing energy
intensity [54–64]. The share of added value of secondary sector or tertiary sector in GDP is often
adopted as the indicator of economic structural changes. In terms of research methods, there are two
lines of literature on energy intensity and economic structural changes.

The first line of literature attributes the change in energy intensity to some pre-defined effects using
decomposition analysis. Index decomposition analysis (IDA) and structure decomposition analysis
(SDA) are two popular techniques [65]. IDA uses aggregate sector information and decomposes
the change of energy intensity into the energy intensity effect and industrial structure effect [66–70].
In recent studies, energy structure effect has been introduced as another effect [28,65]. Under the
framework of IDA, most studies, however, fail to explain what facilitating the change of those
components [65]. However, there are some exceptional examples [28,65,71,72].

Compared to IDA, SDA had been more commonly used to decompose quantity indicators
like gross energy consumption, rather than intensity indicators like energy intensity. However, the
situation has changed due to the wide use of intensity indicators to assess economic performance and
set economic goals since 2010 [73]. Generally, SDA decomposes energy intensity into production effect,
structure effect, Leontief effect, intensity effect, and final demand effect [74]. While some use additive
decomposition analysis [75–78], others use multiplicative decomposition analysis [79–84].

However, those decomposition techniques lack “any casual relationships by nature of the identity
relation” and “fail to offer any explanations as to why a given component, for example, structural
effect, is the dominant factor in explaining actual energy consumption changes” [85]. More commonly,
another line of literature treats the economic structural changes as a determinant of energy intensity
through regression analysis. Compared to the decomposition analysis, plenty of the methods are
applied in those studies, including fixed effect model, dynamic panel data model, nonlinear threshold
co-integration model, Spatial Durbin error model, data envelopment analysis, and so on. While some
use the share of added value of tertiary sector to GDP as the structure indicator [86–88], the majority
adopts the share of added value of secondary sector [53–64,89,90]. This is because the secondary sector
consumes the majority of energy in most countries and is more energy-intensive than other industries.

According to those studies, economic structural changes affect energy intensity through two
effects. The first is called the structural effect. Compared to primary industry or tertiary industry,
secondary industry is more energy-intensive. Hence, if the share of secondary industry grows, the
overall energy intensity grows [91]. The second is the income effect. The improvement of income
through industrialization often stimulates market demand for more goods, such as automobiles,
air-conditioners, and refrigerators, which enhances energy intensity as well [92]. As can be seen,
the current literature remains in the level of primary industry, secondary industry and tertiary industry.
To the best of the authors’ knowledge, few empirical studies investigate how the internal structure of
an industry influences its energy intensity, let alone the influence of ASC on EIAP, IEIAP, and DEIAP
in China.

Besides, a massive amount of literature focuses on the determinants of the declining energy
intensity. The majority, however, stay in aggregate energy intensity, and few pay attention to the
drivers of its declining EIAP, IEIAP, and DEIAP. Only few studies are concerned with quantity
indicators like ECAP [43] and energy consumption of primary industry (ECPI) [14,34,42], and some of
them focus on efficiency indicators like energy efficiency of primary industry (EEPI, inverse of energy
intensity) [93] and total factor energy efficiency of primary industry (TFEEPI) [94,95]. Benefiting from
the same research object and proxy variables, those studies shed light on the determinants of EIAP,
IEIAP, and DEIAP in China (see Table 1).



Sustainability 2018, 10, 4591 8 of 23

Table 1. Studies on the determinants of energy consumption of agriculture/primary industry in China.

Authors Period Method Dependent
Variable Determinants

Fei and Lin, 2017. [14] 1980–2012
Co-integration analysis,
vector error correction

model, scenario analysis
ECPI 1–5

Li and Jing, 2011. [22] 1978–2009 Linear regression model EIPI 1, 2, 33, 34

Xing et al., 2014. [34] 1988, 1990, 1995,
2000, 2005, 2010 Spatial regression model ECPI 1, 3, 13, 25

Peng and An, 2012. [42] 2000–2008 Fixed-effect model ECPI 1, 3, 6, 13, 25, 26

Xing et al., 2015. [43] 1998–2013 Panel data model ECAP 21–24

Guo et al., 2012. [93] 1997–2008 Fixed-effect model EEPI 8, 11, 27–32

Zhou et al., 2016. [94] 2003–2012 DEA method, Tobit model TFEEPI 8, 9, 11–20

Ran and Zhou, 2017. [95] 2000–2013 SBM-TOBIT model TFEEPI 2, 6–10

Notes: 1. Added value of primary industry; 2. Proportion of agricultural added value to added value of primary
industry; 3. Machinery power of primary industry; 4. Fiscal expenditure on primary industry; 5. Retail price
index of power and fuel; 6. Purchasing price index of raw material, fuel and power; 7. Proportion of technicians
to labor force in primary industry; 8. Rural per capita income; 9. Ratio of added value of primary industry to
GDP; 10. Fixed capital stock per capita in primary industry; 11. Proportion of primary industry’s fiscal expenditure
to total fiscal expenditure; 12. Capital stock of primary industry; 13. Labor force of primary industry; 14. Rural
per capita expenditure; 15. Electricity consumption per mu; 16. Proportion of effective irrigation area; 17. Ratio
of foreign investment to GDP; 18. Per capita GDP; 19. Ratio of R & D expenditure to added value of primary
industry; 20. Proportion of rural labor force with education level of senior high school or above; 21. agricultural
added value; 22. Labor force of agriculture; 23. Investment in agricultural fixed asset; 24. Lagged term of ECAP; 25.
Investment in fixed asset of primary industry; 26. Lagged term of energy consumption of primary industry; 27.
Agricultural mechanization level; 28. Power of agricultural machinery per hectare; 29. Added value of primary
industry per labor; 30. Ratio of rural labor working for secondary and tertiary industry to total rural labor force; 31.
Number of agricultural professional technicians in state-owned enterprises and institutions; 32. Education level of
rural labor force; 33. Proportion of grain crops’ sown area to commercial crops’ sown area; and 34. Proportion of
non-agricultural investment to agricultural investment. Data source: Authors’ own summarization.

3. Methods and Materials

3.1. Econometric Model

Panel data models have been widely adopted to investigate the impact of economic structural
changes on energy intensity [53,59,61,86,88,92,96]. To empirically examine the impact of ASC on EIAP,
DEIAP, and IDIAP in China, a panel data regression is employed in this study as well. Compared
to conventional cross-sectional data models and time-series data models, panel data models possess
several major advantages, including decreasing multi-collinearity among explanatory variables,
controlling the impact of omitted variables, allowing for heterogeneity between individuals, providing
a more accurate inference of model parameters and uncovering dynamic relationships [97]. Hence,
a panel data model, as follows, is adopted.

EIit = β0 + β1Structureit + β2Xit + λt + µi + εit (1)

where EIit is the proxy of EIAPit, DEIAPit, and IEIAPit. EIAPit is the energy intensity of agricultural
production for province i in year t. DEIAPit and IEIAPit are the direct energy intensity and indirect
energy intensity of agricultural production for province i in year t, respectively. While DEIAPit relates
to production activities within farms, such as fuels for power machinery and electricity for processing
machinery, IEIAPit is associated with energy used as raw materials for the production of agricultural
inputs, such as chemical fertilizers and pesticides [15]. Structureit refers to the agricultural structure
for province i in year t. Xit is a set of covariates, including energy price, per capita income, agricultural
labor force, old dependency ratio, governmental fiscal expenditure on agriculture, and agricultural
mechanization. β0 is the constant; β1 and β2 are parameters to be estimated; λt is the year-specific
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effect and µi is the province-specific effect; εit is an error term with E(εit) = 0 for all i and t, capturing
all other omitted factors.

EIit = β0 + β2Xit +β3Structureit ∗ Eastt + β4Structureit ∗ Middlet + β5Structureit ∗ Westt

+λt + µi + εit
(2)

EIit = β0 + β2Xit +β6Structureit ∗ SSRt + β7Structureit ∗ YRBt + β8Structureit ∗ LPt

+β9Structureit ∗ YGPt + β10Structureit ∗ NHRt + β11Structureit ∗ HCPt

+λt + µi + εit

(3)

This paper uses data from 30 regions of China to capture the regional dimension. Specifically,
to verify the existence of regional heterogeneity, we employ two categories of regional groupings-the
administrative division of regions and the six vegetable production regions. The latter captures
some of the spatial heterogeneity, as well as the discrepancies between national and regional ASC
on EIAP, DEIAP, and IEIAP, in greater detail than the administrative division of regions. From the
perspective of the administrative division of regions, China is divided into East Region, Central Region,
and West Region (see Figure 5a) [98]. From the perspective of the six vegetable production regions,
China is divided into South and Southwest Region (SSR), Yangtze River Basin (YRB), Loess Plateau
(LP), Yunnan-Guizhou Plateau (YGP), Northern High-Latitude Region (NHR), and Huang-Huai-Hai
and Circum-Bohai-Sea Plain (HCP) (see Figure 5b) [99]. Three dummy variables for the three
administrative regions, Eastt, Middlet, and Westt, as well as six dummy variables for the six vegetable
production regions, SSRt, YRBt, LPt, YGPt, NHRt, and HCPt, are added to investigate whether there
are significant differences between regions. In a second stage, an interaction effect between each region
and agricultural structure is created to account for the differential effect of ASC in each region. β3–β11

are parameters to be estimated.
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3.2. Data and Descriptive Statistics

The paper uses data of 30 provinces, autonomous regions and directed-controlled municipalities
in mainland China for 1991–2016 to capture the spatial or regional dimension, excluding the Tibet
Autonomous Region due to severe data missing (see Figure 5). EIAP is measured by ECAP divided
by agricultural added value; DEIAP is measured by DECAP divided by agricultural added value;
IEIAP is measured by IECAP divided by agricultural added value; Structure is measured by vegetable
sown area divided by total sown area. Inspired by studies listed in Table 1 and some literature
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on aggregate energy intensity in China, energy price, per capita income, agricultural labor force,
old dependency ratio, fiscal expenditure on agriculture, and agricultural mechanization are selected as
controlled variables.

Due to data availability, this paper follows the studies [100,101], and employs rural retail price
index of fuels as an approximation for energy price. The price elasticity of energy demand is generally
negative, which has been proved appropriate in explaining China’s aggregate energy intensity [59,67,92].
However, the normal function of price mechanism bases on complete marketization, while China’s
energy system is not fully market-oriented, and the long-term energy-price regulation has resulted
in energy-price distortion [102]. For instance, the results of [100,101] have shown that the price
mechanism functions poorly in China’s rural residential energy transition. Hence, the effect of energy
price on EIAP in China depends on the game between market power and government power.

Income is measured by agricultural added value divided by agricultural labor force. Compared
to other indicators, the influence of income on energy intensity is more complicated. Firstly, economic
development is usually accompanied by income growth, while rising income often diversifies energy
demands as well as increases energy intensity [67,71]. For instance, with a higher income level, more
farmers can afford some simple agricultural machinery, which increases EIAP. Besides, income level is
actually a proxy of socioeconomic development. With the improvement of income, people’s attitude
towards environment and natural resources will be enhanced. The examples are not limited to the
adoption of more energy-efficiency technology and environmentally friendly behaviors [72].

Labor is measured by total agricultural labor force input divided by the total sown area.
Theoretically, agricultural labor force affects EIAP through two effects. Firstly, farmers’ households
are still the basic units of agricultural production in China, which impedes the mass adoption of
agricultural machinery to some degree. As a substitute of agricultural machinery, increasing the
agricultural labor force contributes to the decline of EIAP [34,43]. Secondly, agricultural labor force
is actually a reflection of agricultural production scale. More labor force input often implies a larger
agricultural production scale, while the improvement of agricultural production scale increases
EIAP [42]. Similar to the effect of energy price, the effect of labor force on EIAP in China is actually a
comprehensive result of the two effects.

Dependency refers to old dependency ratio and is measured by rural population aged over
65 divided by rural population aged 15–64. The aging population has become a prevalent social
issue globally and its impact on agricultural production is unprecedented [103]. With 106 million
agricultural workers aged 55 and above, accounting for 34% of its total agricultural workers, China is
suffering from an aging agricultural population. It has been proved that the increasing old dependency
ratio in China will improve energy consumption and the impact is growing [104].

Machinery refers to machinery power and is measured by total agricultural machinery power
divided by the total sown area. The popularization of agricultural machinery has significantly
improved agricultural productivity in China, which is the main consumer of DECAP. According to the
classification standards of the agricultural industry, agricultural machinery includes tractors, planting
machinery, farm and sideline products primary processing machinery, animal husbandry machinery,
fishery machinery, timber and fruit machinery, farmland and capital construction machinery, and farm
transport vehicles [105]. Generally, the higher the agricultural mechanization level, the higher the EIAP.
In addition, the increasing mechanization level is often accompanied by the rising energy efficiency,
which leads to the decline of energy intensity.

Fiscal expenditure refers to government’s fiscal expenditure on agriculture. Evidence from both
developed and developing countries has shown that fiscal expenditure from government significantly
affects the performance of the agricultural sector [106,107]. Since the reform of government revenue
and expenditure in 2007, Chinese government’s expenditure on agriculture, forestry and water affairs
increased to 1738.05 billion CNY by 2015, with an average growth rate of 22% per year. Of the
expenditure, a large proportion is invested in agricultural fixed assets, which are used for enlarging
agricultural production scale, purchasing or upgrading agricultural machinery and equipment,
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improving infrastructure and enhancing the capacity to withstand natural disasters [42,46]. Thus,
EIAP will also be influenced.

As for the data and variables, there are some points deserving special attention: 1) Agricultural
added value and fiscal expenditure are deflated at 1991 constant prices; 2) there is only the data of total
consumption in primary industry; hence, the proportion of agricultural added value to added value
of primary industry is used as a proxy of the proportion of DECAP to direct energy consumption of
primary industry; 3) IECAP is the total consumption of energy used for the production of applied
chemical fertilizers and pesticides, and conversion coefficients from chemical fertilizers and pesticides
to energy can be obtained from China Energy Statistical Yearbook; and 4) there is only data of the
labor force of primary industry, and the proportion of agricultural added value to added value of
primary industry is used as a proxy of the proportion of agricultural labor force to labor force of
primary industry. The data sources include China Energy Yearbook, China Statistical Yearbook, China
Population and Employment Statistical Yearbook, China Rural Statistical Yearbook, China Agriculture
Statistical Report, and Finance Yearbook of China.

Table 2 lists summary statistics of the variables in the dataset that cover 30 provinces in China from
1991–2016. On average, EIAP, DEIAP, and IEIAP are 1.02 tce/10,000 CNY, 0.61 tce/10,000 CNY and
0.41 tce/10,000 CNY, respectively; the average sown area of vegetable accounts for 12% of China’s total
sown area, and the average retail price index of fuels is 3.72. Besides, the logarithmic forms of income
and fiscal expenditure are adopted, which are 8.67 and 12.40, on average and respectively, and the
average old dependency ratio reached 0.12 in rural China. Further, labor force and machinery, used as
agricultural inputs and on average, are 1.18 persons/hectare and 4.34 kilowatt/hectare, respectively.

Table 2. Summary statistics for variables.

Variable Unit Definition Mean S. D. Min Max

EIAP tce/10,000 CNY Ratio of energy intensity of agriaucltural production to
agricultural added value 1.02 0.46 0.25 5.10

DEIAP tce/10,000 CNY Ratio of direct energy intensity of agriaucltural
production to agricultural added value 0.61 0.25 0.18 1.78

IEIAP tce/10,000 CNY Ratio of indirect energy intensity of agriaucltural
production to agricultural added value 0.41 0.34 0.05 4.16

Structure ratio Ratio of vegetable sown area to total sown area 0.12 0.08 0.01 0.41

Price ratio Rural retail price index of fuels 3.72 2.12 1.00 10.62

Income log Agricultural added value per labor 8.67 0.76 6.98 10.33

Labor person/hectare Agricultural labor force input per hectare of sown area 1.18 0.42 0.27 2.63

Dependency ratio The ratio of rural population aged over 65 to
population aged 15–64 0.12 0.04 0.05 0.31

Fiscal
expenditure log Government’s fiscal expenditure on agriculture 12.40 1.35 9.55 15.10

Machinery kilowatt/hectare Agricultural machinery power per unit of sown area 4.34 2.78 0.00 21.73

East Dummy variable East area 0.40 0.49 0 1

Central Dummy variable Central area 0.30 0.46 0 1

West Dummy variable West area 0.29 0.46 0 1

SSR Dummy variable South & Southwest Region 0.13 0.34 0 1

YRB Dummy variable Yangtze River Basin 0.27 0.44 0 1

LP Dummy variable Loess Plateau 0.17 0.37 0 1

YGP Dummy variable Yunnan-Guizhou Plateau 0.07 0.25 0 1

NHR Dummy variable Northern High-Latitude Region 0.13 0.34 0 1

HCP Dummy variable Huang-Huai-Hai & Circum-Bohai-Sea Plain 0.23 0.42 0 1

Data source: Authors’ own calculation.
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4. Results and Discussion

Pooled regression is not applied in this study because the least square estimators are inconsistent
due to individual province effects. With this in mind, the fixed-effect estimators and random-effect
estimators are adopted in this study. A fixed-effect model hypothesizes that the residuals composed
of the unobservable regional effect are related to the independent variables, while a random-effect
model hypothesizes that the residuals composed of the unobservable regional effects are randomly
distributed and strictly independent of the independent variables [108]. The Hausman test rejected
the null hypothesis under which the random-effect estimators are consistent; hence, the fixed-effect
estimators are consistent in this study, although not necessarily efficient. Table 3 reports the estimation
results for Equation (1), which focuses on the national trend. Table 4 reports the estimation results for
Equations (2) and (3), which considers regional heterogeneity.

Table 3. Estimation results for Equation (1).

(1) (2) (3) (4) (5) (6)

EIAP EIAP IEIAP IEIAP DEIAP DEIAP

Structure 0.983 ** 1.083 *** 1.216 *** 1.123 *** −0.228 −0.0366
(2.93) (3.39) (4.45) (4.14) (−1.62) (−0.28)

Price −0.155 *** −0.109 *** −0.0463 ***
(−9.33) (−7.72) (−6.86)

Income −0.628 *** −0.182 * −0.446 ***
(−6.92) (−2.36) (−12.08)

Labor −0.328 *** −0.0531 −0.274 ***
(−4.21) (−0.80) (−8.66)

Dependency 1.974 *** 1.192 ** 0.781 ***
(3.81) (2.71) (3.71)

Fiscal expenditure −0.0487 −0.0818 * 0.0331 *
(−1.24) (−2.45) (2.07)

Machinery −0.00674 −0.00931 0.00275
(−0.74) (−1.20) (0.74)

Constant 1.300 *** 7.231 *** 0.470 *** 2.909 *** 0.830 *** 4.320 ***
(24.06) (8.15) (10.68) (3.86) (36.64) (12.00)

R2 0.5019 0.5929 0.1836 0.2736 0.7068 0.7751
Year effect Yes Yes Yes Yes Yes Yes

Province effect Yes Yes Yes Yes Yes Yes
Observation 780 780 780 780 780 780

Note: t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001.

Table 4. Estimation results for Equations (2) and (3).

(1) (2) (3) (4) (5) (6)

EIAP EIAP IEIAP IEIAP DEIAP DEIAP

Structure*East 0.992 ** 1.107 *** −0.112
(3.11) (4.06) (−0.88)

Structure*Middle −0.110 1.291 −1.389 ***
(−0.12) (1.63) (−3.78)

Structure*West 2.358 *** 1.581 ** 0.801 **
(3.55) (2.78) (3.03)

Structure*SSR 1.587 ** 1.295 ** 0.296
(3.12) (3.00) (1.46)

Structure*YRB 1.093 ** 1.492 *** −0.394 *
(2.82) (4.53) (−2.55)

Structure*LP 0.300 1.643 * −1.307 ***
(0.31) (1.99) (−3.37)

Structure*YGP −0.0338 −0.760 0.740
(−0.03) (−0.75) (1.57)
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Table 4. Cont.

(1) (2) (3) (4) (5) (6)

EIAP EIAP IEIAP IEIAP DEIAP DEIAP

Structure*NHR 6.028 * 3.764 2.268 *
(2.53) (1.86) (2.39)

Structure*HCP 0.315 0.296 0.0237
(0.55) (0.60) (0.10)

Price −0.155 *** −0.132 *** −0.109 *** −0.0867 *** −0.0460 *** −0.0459 ***
(−9.35) (−6.57) (−7.70) (−5.07) (−7.00) (−5.71)

Income −0.633 *** −0.618 *** −0.181 * −0.212 ** −0.452 *** −0.406 ***
(−6.99) (−6.48) (−2.33) (−2.62) (−12.56) (−10.69)

Labor −0.315 *** −0.355 *** −0.0409 −0.119 −0.273 *** −0.236 ***
(−3.94) (−3.70) (−0.60) (−1.46) (−8.59) (−6.17)

Dependency 1.556 ** 2.149 *** 1.051 * 1.104 * 0.499 * 1.046 ***
(2.85) (3.88) (2.25) (2.35) (2.30) (4.74)

Fiscal
expenditure −0.0621 −0.0571 −0.0877 * −0.0982 ** 0.0253 0.0409 *

(−1.56) (−1.41) (−2.57) (−2.86) (1.60) (2.54)
Machinery −0.00502 0.000418 −0.00865 −0.00224 0.00384 0.00283

(−0.55) (0.04) (−1.11) (−0.27) (1.06) (0.72)
Constant 7.434 *** 7.228 *** 2.949 *** 3.389 *** 4.484 *** 3.841 ***

(8.40) (7.64) (3.90) (4.22) (12.75) (10.19)
R2 0.5982 0.5980 0.2744 0.2845 0.7874 0.7864

Year effect Yes Yes Yes Yes Yes Yes
Province effect Yes Yes Yes Yes Yes Yes

Observation 780 780 780 780 780 780

Note: t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001.

4.1. The Influence of ASC on EIA-National Trend

In Table 3, columns (1), (3), and (5) show the regression results only considering ASC, and columns
(2), (4), and (6) control additional variables that may influence energy intensity. The sown proportion
of vegetable improves EIAP and IEIAP significantly, while its impact on DEIAP is negative and
insignificant. Conclusions can be drawn that ASC improve China’s EIAP mainly through DEIAP,
ASC decrease EIAP through IEIAP. Our result is in accordance with the results of most previous studies
relating to economic structure and overall energy intensity [54–64], that is, the larger the proportion
of the added value of energy-intensive industry to GDP, the higher the aggregate energy intensity.
Similarly, the result can be explained by the structural effect.

The basic assumption underlying the structural effect is that the energy intensity of secondary
industry is larger than that of primary industry or tertiary industry [92]. With the advancement of
national industrialization, the proportion of the added value of secondary industry rises, thereby
enhancing aggregate energy intensity [61]. In China, the rising income has induced significant changes
in people’s dietary habit since 1978, and people demand for more vegetable, fruit, and other commercial
crops rather than grain crops [49]. For instance, the proportion of grain expenditure to total food
expenditure decreased from 63.75% to 51.71% during 1991–2016. In response to the changing market
demand, significant structural changes have occurred in China’s agricultural sector [9,29]. ASC in
China derive from two sources. For one thing, there is a counter-balance paradox between the sown
proportions of grain crops and vegetable. In other words, a significant proportion of area, once used
to grow grain crops, is now used to cultivate commercial crops, among which vegetable accounts
for a large proportion. For instance, the sown area used for cultivating grain crops decreased from
112.31 million hectares to 99.41 million hectares during 1991–2003. For another thing, due to increasing
market demand, the sown area of vegetable increased from 6.55 million hectares to 22.33 million
hectares, thereby facilitating ASC.
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Induced by economic benefits and due to comparatively high value of vegetable, more and
more arable land in China is used for commercial crops like vegetable. Compared to grain crops,
the cultivation of vegetable requires more application of chemical fertilizers and pesticides, leading
to an increase of IECAP in China [31]. During 1994–2016, the weighted fertilizing amount of grain
crops increased from 181.95 kg/hectare to 312.60 kg/hectare, with an average annual growth rate of
2.49%, while that of vegetable increased from 292.05 kg/hectare to 552.60 kg/hectare, with an average
annual growth rate of 2.94% (see Figure 6). Regardless of the violent fluctuation of the weighted
fertilizing amount of vegetable, the fertilizing amount of vegetable is much larger than that of grain
crops. Considering that IECAP is the major form of ECAP in China, the increasing proportion of
vegetable significantly leads to the increase of EIAP.Sustainability 2018, 10, 4591 15 of 24 
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vegetable and fruit require more procedures from planting to picking and are characterized by 
storage difficulty and pressure intolerance, the mechanization degree for those crops is far from 
enough [110]. In fact, the mechanization rate for vegetable is less than 20% in China, while that for 
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Figure 6. The weighted fertilizing amount of grain crops and vegetable in 1994 and 2016. Note: (1) we
adopt the data of 1994–2016 due to data missing during 1991–1993; (2) the average fertilizing amount of
sorghum and millet hasn’t been published after 2007, so the index of Grain crops (a) considers sorghum
and millet and the index of Grain crops (b) doesn’t consider sorghum and millet; and (3) following the
method adopted by the National Agricultural Products Cost-benefit Data Compilation, the weighted
coefficient is the arithmetic average proportion of each crop. (Data source: [109]).

One in particular is that ASC improves China’s EIAP through DEIAP rather than IEIAP, which
may be explained by different planting modes of different crops in China. As commercial crops like
vegetable and fruit require more procedures from planting to picking and are characterized by storage
difficulty and pressure intolerance, the mechanization degree for those crops is far from enough [110].
In fact, the mechanization rate for vegetable is less than 20% in China, while that for wheat, rice, and
maize is 93.21%, 68.82%, and 75.95%, respectively [111]. In addition, the cultivation of vegetable in
China is still dominated by the smallholder business model, resulting in the high cost of mechanized
operation costs and inapplicability of large-scale agricultural machinery. The degree of mechanization
of grain crops is much higher than that of vegetable [112]. Hence, the influence of ASC on DEIAP
is insignificant.

4.2. The Influence of ASC on EIA-Regional Heterogeneity

This paper employs two types of regional groupings, and our empirical results show that the
impact of ASC reveals significant regional heterogeneity. Columns (1), (3), and (5) in Table 4 show the
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regression results considering regional heterogeneity in terms of administrative division of regions.
It is observed that the impact of ASC in East Region, Central Region, and West Region is generally
in line with that of national trend, that is, the sown proportion of vegetable influences EIAP and
IEIAP significantly and positively, while its impact on DEIAP is negative and insignificant; except
for the impact of ASC on DEIAP in West Region, and the impact of ASC on EIAP and DEIAP in
Middle Region.

The significantly positive impact of ACS on EIAP and IEIAP can be explained by the aforementioned
structural effect, while the exception may be due to different levels of vegetable mechanization in
different regions. Specifically, the mechanization level for vegetable production shows an increasing
trend from East Region though Central Region to West Region due to different concentration degrees of
vegetable industry, landform, and other natural conditions [113]. For instance, Shouguang City in East
Region is mostly flat with few hills and has a long history for vegetable cultivation, which are beneficial
for the massive application of advanced equipment such as seeders and vegetable cleaning equipment.
However, limited by complicated topographic features and a labor structure dominated by female
and the old, there are limited uses of vegetable machinery in West Regions [114]. Different levels of
mechanization lead to different impact levels of ASC on DEIAP. In other words, the comparatively
high level of mechanization in East Region and Central Region brings the scale economy effect
of DECAP, thereby decreasing DEIAP, and the comparatively low level of mechanization in West
Region brings the incremental effect of DECAP, thereby increasing DEIAP. Due to the lower level of
mechanization in Middle Region than that in East Region, the scale economy effect is more significant
in Middle Region, which explains the larger absolute value of the coefficient in Middle Region than
that in East Region.

The coefficients of ASC on IEIAP reveal an increasing trend from East Region through Central
Region to West Region, which may be explained by the scale economy effect of fertilizer application.
Both the current sown proportion of vegetable and ASC during 1991–2016 show a decreasing trend
from East Region through Central Region to West Region (see Figure 2). At the same time of leading to
different levels of IEIAP in different regions, different levels of ASC bring the scale economy effect,
that is, the rising sown proportion of vegetable tends to decrease IEIAP. The regional heterogeneity
may be explained by different changing amplitudes of agricultural structure in different regions.
The sown proportion of vegetable between 1991 and 2016 varies significantly among East Region,
Central Region, and West Region (see Figure 2). The amplitude of ASC among different regions is in
line with the empirical results. In other words, the higher the amplitude of ASC, the larger the scale
economy effect, which explains the increasing coefficients of IEAP from East Region through Central
Region to West Region.

Columns (2), (4), and (6) in Table 4 show the regression results considering regional heterogeneity
in terms of the six vegetable production regions. The results in South and Southwest Region and
Yangtze River Basin are in accordance with that in East Region. As most provinces in South and
Southwest Region are provinces in East Region, the aforementioned structural effect can account for
the significantly positive impact of ACS on EIAP and IEIAP, and different mechanization levels of
vegetable production can be used to illustrate the variance of the impact of ASC on DEIAP. In the
plain areas with better economic conditions, like South and Southwest Region, the mechanization of
vegetable production is acceptable, and the mechanized operations mainly exist in the procedures
of soil ploughing and preparation and crop protection [115], which explains why the influence of
ASC in DEIAP is insignificant. Besides, despite the provinces classified into Yangtze River Basin
covering provinces in East Region, Central Region, and West Region, they are all developed provinces
in China. Benefiting from comparatively high level of vegetable mechanization and high income,
vegetable producers in those provinces are able to upgrade vegetable machinery, such as harvesting
machinery, soil ploughing and preparation machinery, and vegetable protection machinery [115],
thereby significantly decreasing DEIAP.
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Influenced by topographic conditions and economic conditions, the mechanization of vegetable in
Yunnan-Guizhou Plateau is relatively backward and the development of mechanization is limited [116].
In the hilly and mountainous areas of Yunnan-Guizhou Plateau, in addition to the mechanization of
plant protection (some of which are still driven by manpower), the cultivation of vegetable is basically
dependent on labor, and the level of mechanization is very low [115]. Similarly, the incremental effect
of ASC induced by the low and limited level of mechanization in Yunnan-Guizhou Plateau improves
DEIAP, but the impact is insignificant. The result in Northern High-Latitude Region and Loess Plateau
can be attributed to the changes of the scales of vegetable producers [117]. The most significant
growth of large vegetable producers has been witnessed in Northern High-Latitude Region and Loess
Plateau during 2010–2016, whose growth rate are 28% and 20% [117]. Compared to small vegetable
producers, large vegetable producers are more likely and able to adopt agricultural machinery. Due to
the comparatively lower mechanization degree of Northern High-Latitude Region than that of Loess
Plateau, the adoption of agricultural machinery brings incremental effect of DEIAP in Northern
High-Latitude Region, and brings scale economy effect of DEIAP in Loess Plateau.

Different from the outdoor cultivation of vegetable in other five regions, greenhouse vegetable has
been massively promoted in Huang-Huai-Hai and Circum-Bohai-Sea Plain [99]. Compared to outdoor
vegetable production, greenhouse cultivation is dependent on the large sources of direct and indirect
energy [118]. However, the impact of ASC on EIAP, DEIAP, and IEIAP is insignificantly positive in
China, which may be attributed to two reasons. As for IEIAP, despite that greenhouse vegetable systems
are featured by initial high input of nutrients, those systems maintain similar soil fertility [116,119],
which limitedly increases IEIAP. As for DEIAP, the cultivation of greenhouse vegetable in China is still
labor-intensive [120], and therefore, the impact of ASC on IEIAP is insignificant.

4.3. EIAP and Other Determinants

Consistent with most previous studies [59,67,92], the coefficient of energy price is significantly
negative as agricultural producers respond to the rising energy price by improving energy efficiency.
However, the result is contrary to the findings [100,101] that in rural China, energy prices cannot
reflect the real demand and supply of the energy market due to energy-price regulation. The difference
between agricultural energy consumption and residential energy consumption in rural China may be
explained by different levels of price regulation on different energies and different commercialization
degrees of different energies. While the regulations on coal and oil were abolished in the 1990s,
there are still some constraints on electricity tariffs [121]. Hence, the change of energy price varies in
different energies and reflects market demand and supply to a certain degree. In 2014, rural residential
energy mix includes straw (37.15%), firewood (21.00%), biogas (3.44%), coal (18.26%), oil (5.05%),
liquid petroleum gas (2.72%), and electricity (12.38) [100], while agricultural production energy mix
contains coal (32.63%), gasoline (5.74%), diesel (39.18%), and electricity (22.45%). It is seen that
agricultural energy achieves complete commercialization, while rural residential energy relies heavily
on biomass resources.

The significantly negative impact of income on energy intensity has been verified in China in
most studies [67,71,96], and the empirical result confirms such impact in the China’s agricultural
sector. As China’s agriculture becomes more developed, its energy efficiency improves and energy
intensity falls, which may be attributed to two mechanisms. For one thing, with the improvement of
income level, people’s attitude towards environment or natural resources arises [71], and the rising
environmental awareness contributes to the efficient utilization of machinery fuels, chemical fertilizers,
and pesticides. Hence, its impact on EIAP, DEIAP, and IEIAP is significantly negative. For another
thing, agricultural producers are able to afford or upgrade more energy-efficient agricultural machinery
as per capita income rises, thereby contributing to the decline of EIAP, DEIAP, and IEIAP.

The empirical result shows that agricultural labor force facilitates the decline of EIAP and DEIAP
significantly, and its impact on IEIAP is negative, but insignificant, which can be explained by the
substitution effect between energy and labor force. Through estimating total cost function and energy
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share formulas, labor force is proved to be a substitute for energy in China [122]. However, such impact
may be disadvantageous for reducing EIAP because agricultural labor force has been declining for
decades due to urbanization and labor migration. Another finding relating to agricultural labor force
is that the aging population significantly improves EIAP, IEIAP, and DEIAP. The potential explanation
is that other further agricultural inputs including chemical fertilizers, pesticides, and machinery are
adopted to make up for the deficiencies of the aging agricultural labor force [115].

Fiscal investment from Chinese government decreases IEIAP and increases DEIAP significantly,
which is related to its purposes. Of fiscal investment, a large proportion is used for agricultural fixed
assets such as agricultural machinery, which consume energy directly. As can be seen in Tables 3
and 4, the effects of agricultural mechanization on EIAP and DEIAP are not obvious. On the one
hand, the equipment structure of agricultural machinery is unreasonable, and it is inefficiently used,
resulting in that the growth of agricultural output is lower than that of EACP [67]; hence, DEIAP tends
to rise. On the other hand, agricultural mechanization is still low in China and the energy used by
agricultural machinery only accounts for a small proportion of ECAP, which means it is insufficient to
decrease EIAP significantly.

4.4. Further Discussion

Robustness is examined as follows: according to the approach of robustness checks through
“examining how certain ‘core’ regression coefficient estimates behave when the regression specification
is modified in some way, typically by adding or removing regressors” [123], the stepwise regress is
employed, and the core variable and control variables are successively added to test the plausible signs
and magnitudes of the estimated regression coefficients [124]. Comparing Tables 3 and 4, it is shown
that the empirical results are robust.

Reverse causality is one significant fact that may lead to the endogenous problem, which exists
in the research relating to energy consumption and energy prices. In other words, consumers make
their consumption decisions according to the current price, while the consumption codetermines
current price with other factors. However, it is believed that energy price is an exogenous variable for
agricultural consumption because, although the energy market in China is not a perfectly competitive
market, its agricultural producers can be treated as price-takers. From the perspective of agricultural
electricity, its price have been regulated at a lower level and is not allowed to adjust quickly [102,125].
Power plants in China face market-oriented prices for their inputs, mainly coal, while their output
needs to follow the mandatory price. For instance, coal price increased by 80% during 2007 and
mid-2011, but the electricity price was only allowed to increase by 15% [125]. Besides, there exists
an electricity price subsidy for agriculture, which further lowers the electricity price. The electricity
price for small and medium chemical fertilizer plants is 0.357 CNY/kilowatt-hour, while the price for
residential purposes is 0.4883 CNY/kilowatt-hour [126].

While the prices of coal, gasoline, and diesel adjust according to changes in the international
fossil fuels prices to a certain degree and are more market-oriented when compared to electricity
price, Chinese government still regulates those prices [102]. Those measures aim to reduce the
fast-growing input cost for farmers and support the development of rural economy [126]. In addition,
agricultural energy consumption accounts for a small proportion of overall energy consumption and
consumers are scattered across China, which further decreases their bargaining power on energy prices.
Consequently, to some degree, it is believed that there exists no reverse causation between agricultural
energy consumption and energy prices.

5. Conclusions and Policy Implications

China’s agricultural structure has undergone significant changes for the past four decades, as has
its agricultural energy consumption. To achieve sustainable agricultural growth, it is important to
investigate the impact China’s ASC on energy consumption. On the national level, ASC is characterized
by the fall of sown proportion of grain crops and the rise of vegetable, and EIAP, DEIAP, and IEIAP all
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reveal a decreasing trend. Employing the panel data on 30 provinces during 1991–2016, this paper
investigates the impact of ASC on EIAP, DEIAP, and IEIAP in China. On the provincial level, ASC,
EIAP, DEIAP, and IEIAP reveal significant regional heterogeneity. Adopting two division standards,
we further analyze the role of regional ASC on EIAP, DEIAP, and IEIAP in terms of the administrative
division of regions and the six vegetable production regions. Further, some key factors influencing
agricultural energy intensity are distinguished. The main conclusions are as follows.

The empirical results show that: (1) ASC increase EIAP and IEIAP significantly, while its impact
on DEIAP is negative and insignificant, which may be explained by the structural effect and different
planting modes of different crops; (2) the impact in the three administrative regions is similar to
national situation, except the impact of ASC in DEIAP in West Region, which can be explained
by different mechanization levels of vegetable production in different regions; (3) compared to
the administrative division of regions, the results of the six vegetable production regions reveal
greater regional heterogeneity, and this is attributed to the scale economy effect and the incremental
effect of different levels of mechanization for vegetable production; and (4) fuel price, per capita
income, agricultural labor forces, old dependency ratio, and government fiscal income are verified to
disproportionately affect EIAP, DEIAP, and IEIAP. According to the empirical results, there are four
policy implications.

Firstly, this paper finds out that ASC in China increase EIAP through the channel of IEIAP,
and the utilization of chemical fertilizers and pesticides is directly related to IEIAP. However, the
recent agricultural planning from Chinese government shows that the trend of ASC will be maintained,
implying that ASC will further facilitate the improvement of EIAP and IEIAP. As the non-point
pollution is getting worse, it is important to control the extensive application of chemical fertilizers
and pesticides on vegetable production. To be specific, the policy tools include enhancing utilization
efficiency of chemical inputs, encouraging the utilization of organic manure such as agricultural straw
and animal wastes, and improving the environmental awareness of the agricultural labor forces.

Secondly, the level of vegetable mechanization in China should be further improved. As the
second largest crop in China, its mechanization level is much lower than that of grain crops.
The empirical result has proved the insignificantly negative impact of ASC on DEIAP, and the impact
ASC of varies in different regions, which is attributed to the scale economy effect and the incremental
effect induced by different levels of mechanization for vegetable production. In order to change
the incremental effect into the scale economy effect, it is necessary to further improve vegetable
mechanization and the specific countermeasures include agricultural subsidies for purchasing
vegetable machinery, improving the proportion of large vegetable producers and increasing the
mechanization of different vegetable production procedures.

Thirdly, the impact and significance of ASC on EIAP, DEIAP, and IEIAP varies among three
administrative regions and six vegetable production regions, which is disadvantageous for balancing
regional EIAP and decreasing national EIAP. While regional agricultural structure is difficult to be
changed since it is a result of socioeconomic, political, and natural factors, government policies should
pay more attention to balance regional agricultural structure, such as promoting agricultural product
circulation and transferring planting farming among regions.

Fourthly, from the perspective of the impact of control variables on EIAP, there are several
implications. From the perspective of rural labor, the aging and decreasing rural labor force is
disadvantageous for the decline of EIAP. Hence, more policy attention should be paid to improving
the quality and quantity of agricultural labor force. In addition, more fiscal expenditure should be
allocated to agriculture to promote the level of agricultural mechanization.
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