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Abstract: Skeleton and Infill (SI) housing system is considered as a significant path of sustainably
prolonging building life by improving structural durability and infill variability for its nature that the
skeleton system is fixed, while the infill system could be rebuilt to satisfy users’ changing demands
in different stage without damaging the skeleton system. The application of a SI housing system
involves two new characteristics compared to traditional cast-in-place housing system: components
production in factories and site construction are carried out simultaneously; the skeleton system
and the infill system are constructed in parallel phases, which increase enormous parallel work.
Iterations and rework would increase with the improper handling of parallel works, which lead to
higher construction cost and lower participant willingness of stakeholders in SI housing construction
delivery process. It is essential to establish a model to clarify the dependencies among major parallel
work items and recognize parallel work sets to optimize the construction sequence for stakeholders
to strengthen communication and coordination on key work items in a more efficiency way. By
conducting investigations into the construction delivery process of typical SI housing projects in
China, this paper developed a parallel collaborative mode based on the design structure matrix (DSM)
to identify the complex dependencies among major cooperative work items. Furthermore, to provide
an optimized parallel collaborative process, graph theory was introduced to find parallel work sets
and eliminate repetition and iteration caused by improper work execution sequences. The results
provide a guide for stakeholders to make appropriate cooperation strategies in implementing major
work items and promoting cooperating efficiency by reducing iteration and rework.
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1. Introduction

Countries around the world were faced with varying degrees of housing shortage problems after
World War II [1]. At the moment of rapid housing re-building, short delivery time, control of building
process, narrow and clear specialized job, as well as avoiding complexity were considered as the main
issues of building strategy [2], thus a large number of standardized and unified buildings were set up
to meet the quantity requirement. In the mid-70s, when the number of houses surpassed the number of
households, a shift occurred from focusing on quantity to quality [3]. A large number of standardized
and unified housing are facing the predicament of fixed internal layouts greatly limiting users’ abilities
to reflect their own style and reconstruct their homes during different stages of housing life. Therefore,
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the fixed buildings face the eventuality of being demolished or destructive modification, despite the
fact that their service life is far less than the design life [4], resulting in an enormous waste of resources
and a series of environmental problems [5].

1.1. Definition of SI Housing

According to the need for flexibility and adaptability, housings have been segmented according
to main building parts: load-bearing system, facade, interior walls and supply systems. That was
the first transition from “closed” concrete “cast-in-site structure” where components rely on each
other by mixed functions and fixed connections to “open” prefabrication through detachment and
independence of different systems and components [6]. In 1961, N. John Habraken originated SI
housing system that consists of mutual independent Skeleton (S) system and Infill (I) system derivate
from open building theory [7]. In an SI housing system, housing structure is divided into the skeleton
(S) part and infill (I) part based on the different functions and service life of the components, and
connections are established between the two parts during the construction delivery process. The S
part mainly contains the primary structure: beams, slabs, columns and bearing walls, and reparable
parts in public sector, such as a public pipelines system, the exterior coating, and elevator equipment.
The I part comprises removable parts according to housing quality: nonbearing walls and indoor
pipelines, and parts used according to user demand, such as interior decorations and integrated
kitchen/bathrooms [4]. The diagrammatic sketch of SI housing system is shown in Figure 1. The S
part is fixed, while the I part could be rebuilt to satisfy updated functional demands during the service
life of a SI housing, which greatly improves the variability and flexibility of building layouts. It was
considered a new path for sustainably prolonging building life by improving structural durability and
infill variability [8].
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The SI housing system has been extensively used in many countries to provide a building fit to
current and future users in a way that allows them to carry out the diverse activities required [9,10]. In
the Netherlands, architecture research called SAR (Stichiting Architecture Research) was funded to
specialize in skeleton and infill theory, led by Habraken, which has greatly facilitated the development
of the SI housing system [11]. In 1975, Habraken worked for the department of architecture at MIT
(Massachusetts Institute of Technology) and promoted the skeleton and infill theory in public housing
maintenance and renovation. Hereafter, the Open House International (OHI) was founded to diffuse
the skeleton and infill theory, to promote sustainable housing development in more countries [12].
In the last decade, the SI system has been successfully disseminating into industry and become
recognizable by almost all in the Japanese industry [3] and has demonstrated advantages in both
extending the housing service life through the necessary regular maintenance on skeleton parts,
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and meeting users’ rising demands for diversification in housing layouts through flexible functional
changes in the infill parts [13].

1.2. Dilemmas of SI Housing

With the rising demand to achieve a resource-conscious and environmentally friendly society
in China, there has been an increasing interest in the sustainability of buildings [14]. In 2006, the SI
housing system was introduced in China’s building industry to help improve housing sustainability,
due to its potential for promoting residential adaptability and flexibility. By learning from Japan and
other countries where the SI housing system has already been widely used for years, the Chinese
government developed a CSI (Chinese skeleton and infill) housing system to adapt Chinese housing
needs. In support of the development of the CSI housing system, the Ministry of Housing and
Urban-Rural Development of China (MOHURD) issued the CSI residential construction technical
guidance document in October 2010 as a guideline to the CSI housing system at a national level [15].
Although the advantages of the SI housing system have been proven by its successful application
in some countries, its uptake in China’s building industry remains sluggish. Only a few research
institutes and housing developers in China are interested in the research on the SI housing system,
and most research works are confined to theoretical studies on a technology research [16–18] and
development level [19–21]. Those studies largely demonstrate the practical technology methods and
the effectiveness of SI housing in meeting users’ changeable demands within China’s housing industry.
However, studies on management methods and stakeholder cooperation in the SI housing system
are insufficient.

In the traditional cast-in-site construction mode in China, only developers, designers and
contractors are the major players in the building construction process. Designers complete engineering
drawings and blueprints according to developers’ requirements and deliver them to contractors to
implement the building and realize its complex functional requirements. In this process, developers,
designers and contractors perform their duties in strict accordance with their respective mandates.
The collaborative process among the three major players is relatively simple. Compared to traditional
housing delivery process, the application of a SI housing system involves two new characteristics:
components production in factories and site construction are carried out simultaneously; the S part
and the I part are constructed in parallel phases, which increase enormous parallel works. Iterations
and rework would increase with the improper handling of parallel works, which lead to higher
construction cost and lower participant willingness of stakeholders in SI housing construction delivery
process. SI housing formation heavily relies on integration of more complicated technologies and
involves more interactive procedures, including extensive planning, components customization and
manufacturing, and S part and I part connections. Moreover, researchers, manufacturers and suppliers
are considered as important as developers, designers and contractors for implementing an SI housing
project. As the stakeholders increase, the demand for communication and coordination among
different stakeholders is consequently augmented. The SI housing system encourages cooperation
among different stakeholders, not only in design phase, but also in the components production and
supply phase and construction and assembly phase. The SI housing system is witnessing an increasing
demand for cooperation and coordination among different professions, leading to a synergy of design
integration, construction processes, and supply chain management in order to fully achieve optimal
results. Therefore, the traditional cooperation mode cannot be directly transferred to the SI housing
construction delivery process. It is necessary to establish a new collaborative process and optimize
the coupling works and iterations among the stakeholders to increase project delivery efficiency and
further to take full advantage of the SI housing system.

In this research, two key points are explored: (1) defining the major cooperative work items
of different stakeholders and recognizing the complex dependencies and inner logical relationships
among them; (2) identifying parallel work sets to optimize the execution sequences by reducing
repetition and iteration and to promote collaborative efficiency.
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2. Methodology

The design structure matrix (DSM), which is also called the dependency structure matrix (DSM),
has been proven to be an effective method in visualizing information transfer among works and
optimizing work scheduling [22]. In the DSM, the dependencies—including serial relationships,
parallel relationships and iteration among work items in a complex project—are described using a
mathematical matrix [23]. It can play a role in improving information transfer, decreasing rework
and re-engineering [24,25]. DSM is proven to be an effective method in illustrating dependency
relationships among buildings’ product architecture. Schmidt, Deamer and Austin [26,27] proposed
a DSM model with the capacity to compactly model a new buildings’ product architecture, hence
illustrating how well a proposed design can respond to change, through the clustering of modules
and observing of dependency relationships in and outside a module. Schmidt, Deamer and
Austin [28] applied DSM to identify all variant components to create a work breakdown structure
and classify the components relationships. Schmidt, Vibaek and Austin [29] verified DSM could
visualize the relationships between elements within a system and reveal about the capacity for an
industrialized building to accommodate change, through clustering and impact analyses. In this
paper, DSM is introduced to describe and optimize the dependencies of the main cooperative work
items from different stakeholders, in order to reduce iteration and rework, so as to improve the
collaborative efficiency and realize optimized resource configuration during the SI housing construction
delivery process.

A DSM is a square matrix with identical row and column labels in which the diagonal represents
the elements in row or column and the off-diagonal mark signifies the dependency of one element on
another. The mark positioned in the lower left portion of the diagonal is the relationship or information
provided by the element in the corresponding row to other elements in the column; the mark positioned
in the upper right portion of the diagonal is the relationship or information that the element in the
corresponding column depends on from other elements in the row. As illustrated in Figure 2, Element
A provides something to Element D, and depends on something from Element B. Initially, the DSM is
a binary DSM, also called a Boolean DSM [30,31], in which the relationship or information between
elements can only be represented by two values, “0” and “1”, or “×”and blank, as shown in Figure 2.
In a Boolean DSM, the values can only indicate whether there is dependency between elements but
cannot reflect the strength of the dependency. In order to overcome such a defect in the Boolean DSM,
Smith and Eppinger [32] proposed the NDSM (numeric design structure matrix) based on the Boolean
DSM and used specific digital quantification to describe the relationship or information strength of
elements between rows and columns in the matrix. The schematic of the NDSM is shown in Figure 3.
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In the SI housing construction delivery process, a certain number of building components in both
the S part and I part are manufactured in a factory using prefabrication technology [33]. This changes
the working sequence from that in traditional housing construction, and brings many successor
activities forward after foundation construction, resulting in increased parallel works and cross works
for the SI housing construction delivery process. The increased parallel works and cross works are
prone to increased rework at the risk of wasting of resources and additional cost, which brings a
notable challenge to the working team of different stakeholders with different skills to for work
together deliver a persuasive SI project. The DSM is introduced to find out the relationships among
different works, breakdown the SI housing construction delivery process according to work categories,
optimize parallel works and cross works, and finally recombine the work procedure in a more efficient
way using matrix operations in order for the stakeholders to reduce conflict and improve productivity
in the cooperation process, and thereby improve implementation efficiency. Browning [22] reviewed
the application of DSMs in two main categories: static DSMs and dynamic DSMs including four
distinct areas: component-based DSM, team-Based DSM, task-Based DSM and parameter-Based DSM.
The taxonomy of DSMs is shown in Figure 4.
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In a component-based DSM, the constituents of a system are expressed as the elements of rows and
columns in the matrix, and the system is optimized by defining and studying the relationship between
the sub-system and the constituents. In a team-based DSM, stakeholders of a system are considered the
elements of rows and columns in the matrix, and the system is optimized by studying the relationship
of information interactions among different stakeholders. In a task-based DSM, tasks of a system are
regarded as the elements of rows and columns in the matrix, and the system is optimized by analyzing
the relationship and information among tasks. In a parameter-based DSM, systematic parameters
are considered as the elements of rows and columns in the matrix, and the system is optimized by
analyzing the mutual relationship between systematic parameters.

This paper aimed to reduce the complexity and uncertainty of tasks in the SI housing construction
delivery process and establish a more efficient work procedure for the stakeholders. Therefore,
the task-based DSM was selected to identify the execution sequence and correlative dependence
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relationship between the main cooperative works, in order to decrease rework and unnecessary
iterations, and thus optimize the SI housing construction delivery process.

3. Work Items and Dependency Identification in the SI Housing Construction Delivery Process

3.1. Decomposition of the SI Housing Construction Delivery Process

The total work of the SI housing system is divided into five sub-systems: the investment and
development system, research and design system, production and supply system, construction and
assembly system, and operation and management system, according to the normal process of housing
and the specific features of SI housing. The five sub-systems and the relationships among them are
shown in Figure 5.

Sustainability 2018, 10, 4570 6 of 18 

3. Work Items and Dependency Identification in the SI Housing Construction Delivery Process 

3.1. Decomposition of the SI Housing Construction Delivery Process 

The total work of the SI housing system is divided into five sub-systems: the investment and 
development system, research and design system, production and supply system, construction and 
assembly system, and operation and management system, according to the normal process of 
housing and the specific features of SI housing. The five sub-systems and the relationships among 
them are shown in Figure 5. 

 
Figure 5. Sub-systems of SI housing. 

Considering that the work in the investment and development system is more partial to the 
enterprise of strategic decision-making, it is generally implemented only by the participant-investor, 
rather than specific construction works cooperated on by several stakeholders from different fields. 
Similarly, the works in SI housing operations and the management stage are implemented by the 
property management company, and other stakeholders, such as designers, contractors, and 
material/equipment manufacturers and suppliers rarely participate in this stage. The main purpose 
of this paper is to explore an optimized implementation procedure for different stakeholders to 
promote collaborative efficiency during the SI housing delivery process; therefore, the research 
scope is confined to the research and design system, production and supply system, and 
construction and assembly system (hereinafter referred to as the three major sub-systems). 

Twenty-eight semi-structured interviews with researchers, designers, housing developers, 
contractors, material/equipment manufacturers, and suppliers that participate in the SI housing 
construction delivery process (eight with researchers, five with designers, five with developers, four 
with contractors, and six with manufacturers/suppliers) were conducted to develop an in-depth 
understanding of the three major sub-systems. Most of interviewees participated in the SI 
demonstration projects in Beijing and Shanghai, which are the most representative SI projects so far 
in China. Overall, the average work experience length related to the SI housing system of the 
interviewees was 2.3 years. Details are listed in Table 1. 

Table 1. Profiles of interviewees. 

Job Category Amount of 
Interviewees 

Average Working Experience in 
Construction Industry Average Working 

Experience in SI Housing 
System (Years) <5 Years 5–10 

Years 
>10 

Years 
Researchers 8 2 4 2 2.7 
Designers 5 2 2 1 2.2 

Developers 5 2 2 1 2.0 
Contractors 4 0 2 2 1.5 

Manufacturers/suppliers 6 2 3 1 2.5 
Total 28 8 13 7 2.3 

Finally, 11 main work items that cover the three major sub-systems were elicited by scrutinizing 
the processes through which the SI housing system was adopted and utilized in residential projects 
by the interviewees. The 11 main work items are shown in Figure 6. 

Figure 5. Sub-systems of SI housing.

Considering that the work in the investment and development system is more partial to the
enterprise of strategic decision-making, it is generally implemented only by the participant-investor,
rather than specific construction works cooperated on by several stakeholders from different fields.
Similarly, the works in SI housing operations and the management stage are implemented by
the property management company, and other stakeholders, such as designers, contractors, and
material/equipment manufacturers and suppliers rarely participate in this stage. The main purpose of
this paper is to explore an optimized implementation procedure for different stakeholders to promote
collaborative efficiency during the SI housing delivery process; therefore, the research scope is confined
to the research and design system, production and supply system, and construction and assembly
system (hereinafter referred to as the three major sub-systems).

Twenty-eight semi-structured interviews with researchers, designers, housing developers,
contractors, material/equipment manufacturers, and suppliers that participate in the SI housing
construction delivery process (eight with researchers, five with designers, five with developers,
four with contractors, and six with manufacturers/suppliers) were conducted to develop an
in-depth understanding of the three major sub-systems. Most of interviewees participated in the
SI demonstration projects in Beijing and Shanghai, which are the most representative SI projects so
far in China. Overall, the average work experience length related to the SI housing system of the
interviewees was 2.3 years. Details are listed in Table 1.

Table 1. Profiles of interviewees.

Job Category Amount of
Interviewees

Average Working Experience in
Construction Industry

Average Working
Experience in SI Housing

System (Years)<5 Years 5–10 Years >10 Years

Researchers 8 2 4 2 2.7
Designers 5 2 2 1 2.2

Developers 5 2 2 1 2.0
Contractors 4 0 2 2 1.5

Manufacturers/suppliers 6 2 3 1 2.5
Total 28 8 13 7 2.3
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Finally, 11 main work items that cover the three major sub-systems were elicited by scrutinizing
the processes through which the SI housing system was adopted and utilized in residential projects by
the interviewees. The 11 main work items are shown in Figure 6.Sustainability 2018, 10, 4570 7 of 18 
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3.2. Identification of the Relationships Among the Main Work Items

Sharman and Yassine [34] divided the relationships of the elements between ranks and lines in the
NDSM into four categories: spatial linkage, energy linkage, information linkage and material linkage.

Four quadrants were used to refer to the four linkages between elements: The first quadrant is
the spatial linkage; the second quadrant is the energy linkage; the third quadrant is the information
linkage, and the fourth quadrant is the material linkage, as shown in Figure 7.
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Tang, Qian and Liu [35] used a four-point scale to express the relationship strength of
corresponding linkages between elements on a scale from 0 to 3, where “3” represents “high degree of
contact”, “2” represents “middle degree of contact”, “1” represents “low degree of contact”, and “0” or
blankness represents “no contact”. Furthermore, a comprehensive weight method is introduced for
dimensionality reduction of the four-vector matrix, as shown in Equation (1). The linkage strength in
different quadrants is expressed by the product of the figure and its weight, and the sum of the products
in the four quadrants represents the comprehensive relationship strength between the elements in
corresponding rows and columns.

Wij = αSij + βEij + γIij + κMij (1)

Wij—the comprehensive relationship strength between the elements in row i and column j;
Sij—the spatial linkage strength between the elements in row i and column j;
Eij—the energy linkage strength between the elements in row i and column j;
Iij—the information linkage strength between the elements in row i and column j;
Mij—the material linkage strength between the elements in row i and column j;
α—the weight of spatial linkage strength in the comprehensive relationship strength;
β—the weight of energy linkage strength in the comprehensive relationship strength;
γ—the weight of information linkage strength in the comprehensive relationship strength;
κ—the weight of material linkage strength in the comprehensive relationship strength.

Twenty-eight semi-structured interviews with the stakeholders in Table 1 were conducted in an
attempt to understand the weight of the four linkages and the relationship strength among the main
work items. The results of interviews included the following:

(1) The weights of the four linkages are made equally important in the initial stage of SI housing
development in China: α = β = γ = κ = 1.

(2) The work item a1 provides guidance and reference information for all subsequent work items, but
subsequent work items exert no influence on a1, thus the row of a1 is full of different values that
represent varying degrees of linkage strength with other elements, and all the column values of
a1 are 0. The work investments, marketing positioning, and product modeling that contribute to
a1 exert a direct influence on the work items a2, a3 and a4 in the research and design system, the
linkage strength values for a2, a3 and a4 are higher than the values for a5, a6, a7 in the production
and supply system, and a8, a9, a10 in the construction and assembly system, respectively.

(3) The work item a11 refers to evaluation of the implementation and performance of the whole SI
housing construction delivery process, to verify whether it realizes the initial target. All previous
work items exert an influence on a11, but a11 exerted no influence on previous work items, thus
the column of a11 is full of different values that represent varying degrees of linkage strength with
other elements, and all the row values of a11 are 0. Considering that the work items a8, a9, a10 in
the construction and assembly system are the core steps of the whole SI housing construction
delivery process and determine the final realization of SI housing, the linkage strength values
with the three work items are higher than that with other items. The work items a5, a6, a7 in the
production and supply system define material and component production and manufacturing
techniques, and have a superior influence on a11. The work items a2, a3 and a4 in the research and
design system provide design guidance for SI housing construction, and exert no direct influence
on a11, thus the linkage strength values for a2, a3 and a4 are smaller than that for other items.

(4) The information communication and feedback among a2, a3 and a4 realize the design of the SI
housing together. However, a2 is superior to a3 in space from the perspective of housing functions
in the S part and I part, as well as the implemented subsequence. A suitable adjustment for a2

could be conducted in accordance with feedback from a3. The work items a2 and a3 determine
the implementation of a4 together. Simultaneously, subtle adjustments will be conducted in line
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with the technical level and suitable conditions of a4. The relationships among a8, a9, and a10 are
similar to the relationships among a2, a3 and a4.

(5) From the longitudinal angle of the cooperation process, a2 determines the implementation of
a5 and a8, and a5 and a8 interact with each other. The production and supply scheme of a5 is
adjusted in accordance with planning, schedule and site construction conditions, and construction
and assembly planning of a8 is adjusted in accordance with production schedules and supply
situations of a5 simultaneously. Moreover, conflicts and low feasibility in the implementation of a5

and a8 feed back to a2, and a2 is modified in line with the feedback information. The relationship
among a3, a6 and a9, as well as a4, a7 and a10, respectively, is equal to the relationships among a2,
a5 and a8.

A comprehensive DSM of the main work items and the dependencies among them in the SI
housing construction delivery process is established according to the results of interviews, as shown in
Figure 8.
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4. SI Housing Construction Delivery Process Optimization

4.1. Optimization Methods of the DSM

Liu, Hu and Li [36] divided the optimization methods of the DSM into three categories:
optimization based on graph theory [37,38], optimization based on fuzzy relations [39,40], and
optimization based on intelligent methods [41,42], as shown in Table 2. There are only 11 main
work items in the DSM and identification and reconstitution of parallel contact in this research is
low complexity, therefore optimization based on graph theory can acquire an exact solution within
a reasonable time. For this reason, optimization based on graph theory is employed for the DSM
operation in this research.
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Table 2. Solution algorithm of the coupling contact set based on the DSM.

Optimization Methods Feature

Optimization based on graph theory
Matrix operates using mature mathematical tools.
This optimization method is generally applied to

small or medium-sized projects.

Optimization based on fuzzy relations This optimization method is generally applied to the
optimization of a DSM based on fuzzy relations

Optimization based on intelligent methods

Matrix is optimized using a genetic algorithm or
simulated annealing algorithm. This optimization
method is generally applied to the optimization of

complex, multi-objective and multi-constraint DSMs.

The essence of parallel contact identification is the process of searching for information circuits
using graph theory. The graph is the set of knots and directed arcs linking the knots. A graph in this
case is an ordered couple, marked as Graph G = 〈V, E〉, in which:

(1) V = {v1, v2 · · · , vn} is a finite and nonempty set of knots, called the knots set. vi is a knot.
(2) E =

{
e12, e13, · · · , eij

}
is a set of finite edges, called the edge set. eij is an edge.

(3) Element eij in E corresponds to the knot
(
vi, vj

)
in V.

(4) If there is an access from knot vi to knot vj, it is considered reachable between vi and vj. Graph G
is considered a strongly connected graph when any knot is reachable by other knots in it [43].

Assuming that there is a certain order for knot vi to knot vn in V, the n-order matrix A =
(
aij
)

n×n
is the adjacent matrix of G. The n-order matrix P =

(
pij
)

n×n is the reachable matrix of G, in which:

(1) i =1, 2, . . . , n; j =1, 2, . . . , n;
(2) If

(
vi, vj

)
∈ E, aij = 1; otherwise aij = 0.

(3) If there is at least one non-zero access from vi to vj, pij = 1; otherwise pij = 0.

The relationship between matrix A and matrix P is shown in Equation (2).

P = A(1) ∨ A(2) ∨ · · · ∨ A(n) =
n
∨

j=1
A(i) (2)

where A(n) is the n-degree power matrix of A; ∨ is the “Boolean sum”; and ∧ is the “Boolean product”.
The algorithms of the “Boolean sum” and “Boolean product” are shown in Table 3.

Table 3. Algorithms of ∨ and ∧.

Algorithm of ∨
∨ 0 1

Algorithm of ∧
∧ 0 0

0 0 1 0 0 0
1 1 1 1 0 1

PT is the transposed matrix of the reachable matrix P. The algorithm of P ∩ PT is defined in
Equation (3).

P ∩ PT =

 p11 . . . p1n
...

. . .
...

pn1 · · · pnn

 ∩
 p11 · · · pn1

...
. . .

...
p1n · · · pnn

 =

 p2
11 · · · p1n·pn1
...

. . .
...

pn1·p1n · · · p2
nn

 (3)

If knot vi is reachable from knot vj in a graph, pij = 1; if it is reachable from vj to vi, pji = 1.
Therefore, if and only if pij · pji = 1, can vi and vj be mutually reachable. According to the rule above,
if a non-zero element in row i is in column j1, j2, · · · , jk simultaneously, knots vi, vj1, vj2, · · · , vjk are
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on the same strongly connected branch, that is the sub-graph derived from { vi, vj1, vj2, · · · , vjk} is a
strongly connected component in Graph G [44].

4.2. Optimization Result of the DSM

The major operation of process optimization is conducting concurrent engineering structure
identified coupling work sets and eliminating repetition and iterations caused by an improper work
execution sequence, so as to promote executive efficiency. The rules of process optimization based on
the DSM are described as follows:

• In the DSM, if all elements in one row are zero, it indicates that the work in this row will not
output information to other works, thus it will be executed last.

• In the DSM, if all elements in one column are zero, it indicates that the work in this column has
no need for inputting information from other activities, thus it will be executed at the beginning.

• The work items in a coupling work set mean that relationships among these works are close.
Therefore, the work items in a coupling work set should operate as a single holistic work.

Work items should be divided by priority ranking first and reconstructed according to the priority
ranking. The method for dividing priority ranking is described as follows:

• Coupling work sets in the reachable matrix P are normalized as single holistic works respectively.
Matrix P′ is the reduced matrix of matrix P after reducing the dimension of matrix P.

• P′Em−1 = (p1, p2, · · · , pn)
T(m ≥ 1); n-dimensional column vector E0 = (1, 1, · · · , 1)T ,

Em = (e1, e2, · · · , en)
T ; When pi ∈ {0, 1}, ei = 0; When pi /∈ {0,1}, ei = 1. Therefore, the necessary

and sufficient condition for work ai to be an m-level element is pi = 1.

In this research, the SI housing construction delivery process is considered as Graph G. The work
items in the SI housing construction delivery process are knots V in G, and the relationships among
work items are limited edge E in G, thus the Boolean DSM of the SI housing construction delivery
process is the adjacent matrix A of G. According to this rule, coupling work identification in the SI
housing construction delivery process is transferred into solving strongly connected components of
the graph.

The DSM of the SI housing construction delivery process established in Section 3 is transferred
into a Boolean DSM, as shown in Figure 9. Thus, its corresponding reachable matrix P can be obtained
by the algorithm of Formula 2, as shown in Figure 10. The operation result of P ∩ PT based on the
algorithm of Formula 3 is show in Figure 11.
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According to the results of P ∩ PT in Figure 11 and the algorithm of coupling work identification
in Section 4.1, five parallel work sets of the SI housing construction delivery process are obtained,
including {a2, a3, a4}, {a2, a5, a8}, {a3, a6, a9}, {a4, a7, a10} and {a8, a9 a10}. Every coupling work set
is marked with a bold wireframe in Figure 11. The method confirmed in Section 4.1 is applied to
optimize the SI housing construction delivery process. The work items a2, a3, a4 in the research and
design system and a8, a9, a10 in the construction and assembly system belong to two coupling work
sets, respectively. In the SI housing construction delivery process, the research and design system is
prior to the construction and assembly system in the implementation sequence. Therefore, a2, a3, a4

and a8, a9, a10 are normalized as a whole entirety during the parallel work sets normalizing operation.
Finally, the reduced matrix P′ of P is calculated and shown in Equation (4).

P′ =



1 1 1 1 1 1 1
0 1 1 1 1 1 1
0 0 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1


(4)

The method confirmed in Section 4.1 is applied to identify the work execution sequence. The
operation process is shown in follows:

P′E0 = (7, 6, 5, 4, 3, 2, 1)T , L1 = {a11}
P′E1 = (6, 5, 4, 3, 2, 1, 0)T , L2 = {a8, a9, a10}
P′E2 = (5, 4, 3, 2, 1, 0, 0)T , L3 = {a7}
P′E3 = (4, 3, 2, 1, 0, 0, 0)T , L4 = {a6}
P′E4 = (3, 2, 1, 0, 0, 0, 0)T , L5 = {a5}
P′E5 = (2, 1, 0, 0, 0, 0, 0)T , L6 = {a2, a3, a4}
P′E6 = (1, 0, 0, 0, 0, 0, 0)T , L7 = {a1}
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According to the work execution sequence above, as well as the dependencies among work items
in practical projects, {a2, a5, a8}, {a3, a6, a9} and {a4, a7, a10} are also considered new coupling work sets,
which provides a guide for stakeholders to make intensive management program and appropriate
cooperation strategies to reduce repetition and iteration in the implement of these parallel work sets.

5. Discussion

An optimized SI housing construction delivery process is established in Figure 12 according to
the optimization result. From the optimization model in Figure 12, three significant changes in the
SI housing construction delivery process compared to the cast-in-site housing construction delivery
process can be seen. The changes are analyzed as follows:

• The housing design work of cast-in-site housing construction is divided according to specialties,
such as building design, structural design, water and electricity supply design, and equipment
design. However, that of the SI housing construction delivery process is divided according to
different parts, including design of the S part, design of the I part, and design of the connections
between the S part and I part. Designers with different specialties participate in each part of the
design, which increases the communication and cooperation between designers. Meanwhile, the
traditional serial design mode of building design→ structural design→ water and electricity
supply design→ equipment design is changed into the concurrent design mode in SI housing,
in which the S part and I part can be designed simultaneously by the collaboration of designers
with different specialties, significantly promoting design efficiency. In addition, the S part, I part
and connections between them could be produced independently without disturbing each other,
which reduces the waiting time between different works and improves production efficiency and
supply efficiency.

• In the traditional serial construction mode, works in different specialties are implemented in a
rigorous precedence order of main structure construction→ secondary structure construction→
refined decoration construction, with water and electricity supply construction and equipment
construction inserted within this chain. Contractors with different specialties seldom collaborate
together. Contractors in pre-works generally ignore their influence on follow-up works. When the
follow-up workers encounter problems inhibiting their works arising from the pre-works, they
have to do some repair or even rework on the pre-works, which is hugely wasteful because the
pre-workers have possibly already left the construction site when their work finished and could
not communicate with the follow-up workers in the parallel construction mode. In the SI housing
construction delivery process, different parts of the housing are constructed and assembled in
a parallel mode. Constructors for the S part, I part and connections between them create an
integrated construction and assembly by planning together in a way that adequately considers
the works in every part before starting. During the construction and assembly process, workers
for different parts communicate with each other and solve the problems together whenever
necessary. The parallel mode could reduce waste caused by conflicts and rework, and improve
constructive efficiency.
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In the traditional housing construction delivery process, when constructors encounter
unreasonable or inconvenient works caused by design problems, they feed back the information
to the designers in the corresponding specialty. However, design work that is divided into different
specialties increases difficulties for communication. When the unreasonable or inconvenient works
are in the cross-specialty, it is especially possible for different designers to pass the buck, which could
increase communication costs and cause delays in the construction schedule. In SI housing, design
work, production work and construction work are divided into the S part, I part, and connections
between them, and workers with different specialties participate in each part, which increases the
communication and cooperation between designers, producers and contractors. Therefore, problems
caused by design in the production and supply process or in the construction and assembly process
could be fed back to designers in a timely manner to acquire accurate corrections and adjustments,
which not only ensures the smoothness of the current project, but also provides reference and guidance
for the design of new SI housing projects.

6. Conclusions

SI housing has brought about a great deal of cooperative works among different stakeholders
during the whole construction delivery process. Therefore, the traditional serial cooperation mode
cannot be directly transferred to the SI housing construction. It is necessary to establish a new
collaborative process to optimize the coupling works and iterations among the stakeholders in order
to take full advantage of the SI housing system compared to the traditional housing construction.

A comprehensive DSM was established to measure the strength of the logical relationships among
the main cooperation works, which provides a basis for the optimization of the SI housing construction
delivery process. Furthermore, graph theory was applied to identify coupling work sets and eliminate
repetition and iterations, so as to provide an optimized parallel construction delivery process for
SI housing.

According to the results obtained from the optimized SI housing construction delivery process,
the optimized parallel construction delivery process plays a significant role in promoting design
efficiency. The design work of SI housing is divided into three functional parts: the S part, I part and
connections between them. The S part and I part can be designed simultaneously by the collaboration
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of designers with different specialties, which increases the communication and cooperation between
stakeholders. In addition, the S part, I part and connections between them could be produced
independently without disturbing each other, which reduces the waiting time between different works
and improves production efficiency and supply efficiency. Moreover, the parallel cooperation mode
provides immediate feedback of design defects from the product process or assembly process to
designers in order to acquire accurate correction and adjustment, which could promote efficiency in
the whole construction delivery process, reduce time, and save construction costs.

There are some limitations in this paper: (1) SI housing construction delivery process was
divided into three major sub-systems and only eleven main cooperative work items affiliated to
the three major sub-systems, which could not cover all the cooperative works and their complex
inner logic relationships in different delivery levels among all the stakeholders. (2) Graph theory
which is generally applied to small or medium-sized project was employed for the DSM, therefore
the significant characteristic of SI housing- adaptability analysis was not fully demonstrated in this
research. As a consequence, the parallel cooperation model in this study only provides a reference for
stakeholders in the macroscopic aspects. Therefore, additional research must be conducted to identify
the cooperative works at a more specific level, and provide a more effective cooperative construction
sequence. Future research will continue to focus on:

(1) Constructing a comprehensive DSM that covers the components and their complex inner logic
relationships in different layers considering for system design, service life, adaptability and
stakeholders in line with the characteristics of SI housing.

(2) Upgrading the DSM optimization based on intelligent methods to provide greater clarity
of components organization and to optimize the parallel works and cross works in a more
efficient way.

(3) Exploring the underlying cause as well as the transmission mechanism of iterations to predict
rework risk and minimize building delivery duration and construction cost.
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