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Abstract: The objective of this study is to map direct and indirect seasonal urban carbon emissions
using spatial micro Big Data, regarding building and transportation energy-use activities in Sumida,
Tokyo. Building emissions were estimated by considering the number of stories, composition of use
(e.g., residence and retail), and other factors associated with individual buildings. Transportation
emissions were estimated through dynamic transportation behaviour modelling, which was obtained
using person-trip surveys. Spatial seasonal emissions were evaluated and visualized using
three-dimensional (3D) mapping. The results suggest the usefulness of spatial micro Big Data
for seasonal urban carbon emission mapping; a process which combines both the building and
transportation sectors for the first time with 3D mapping, to detect emission hot spots and to support
community-level carbon management in the future.

Keywords: urban sustainability; carbon mapping; micro geodata; individual buildings; person-trip
survey; mobile GPS data

1. Introduction

Low carbon urban/regional management has attracted considerable attention from stakeholders
regarding urban sustainability, especially after the Paris Agreement was adopted in December 2015.
To date, 228 cities have pledged that by 2020 they will have reduced carbon dioxide emissions (carbon
emissions, hereafter) by a combined total of 454 giga-tons/year [1].

Carbon emissions management is an important issue not only in a top-down manner
(e.g., emissions regularization by government), but also as a bottom-up approach that each local
municipality can use to promote low carbonization on its own [2]. For this, carbon mapping is an
effective approach for encouraging/supporting effective carbon management by policy makers [3].
Carbon mapping allows us to compare the relative influences of each emission source (e.g., residences,
offices, vehicles), make effective policies, quantify the impact of these policies, and identify hot spots
and unexpected emissions—e.g., due to congestion—in a near real-time manner [1]. Further, carbon
mapping is useful in avoiding greenwashing, a term used to describe deceptive claims about the
environmental benefits of a product, service, or technology, which often inhibit cities from enacting
real, sustainable measures.

Because cities have thousands or millions of emission sources, including residences, shops,
restaurants, and vehicles, the acquisition of micro geodata is a fundamental component of accurate and
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high-resolution carbon mapping [4,5]. Fortunately, in recent years, data from individual buildings and
vehicle movements has become increasingly easier to obtain, owing to the development of the Internet
of Things and sensor technologies [6,7]. These data allow for monitoring building conditions, human
movements, market transactions, and many other activities in cities that will offer new and useful
insights [8–10]. However, the use of these data for carbon monitoring is still quite limited [1,11,12]. It is
increasingly important to clarify to what extent micro geodata helps in the visualizing and reduction
of carbon, concerning sustainable urban development [13–15].

2. Approach to Carbon Mapping

Our study attempts to estimate and visualize the carbon emissions of individual buildings and
road links, through a data-driven three-dimensional (3D) carbon mapping approach. According to the
existing literature, the main advantages of 3D visualization is to render the shape of complex objects
through the integration of dimensions [16,17], to provide public audiences with a more familiar form
of illustration [18–20], to show absolute or relative object heights [21,22], and to provide a fruitful
approach for examining human activity patterns in a dynamic and interactive space–time orientated
environment [23]. The target area was Sumida ward, Tokyo (see Figure 1). Sumida ward includes a
major commercial district called Kinshi-cho; a redevelopment area around SkyTree, which is a 634 m
high tower; and the rest of the area is mainly downtown residential. Note that our objective is not the
development of a new 3D mapping method. Rather, we aim to study to what extent spatial Big Data
are useful with regards to carbon mapping/monitoring/management. This understanding would be
an important first step towards smart carbon management.
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Figure 1. Study area: Sumida ward, Tokyo, Japan.

2.1. Model

We used a bottom-up approach, which multiplies the number of emission sources with emission
factors (i.e., emissions per unit) [24]. Specifically, we used the following model to estimate the building
emissions e(b)i,t,p from i-th building in t-th time period, measured in 30 min intervals, with the p-th
purpose of use:

e(b)i,t,p =
w(b)i,t,p

∑i ∑i w(b)i,t
E(b)p, w(b)i,t,p = u(b)t,pv(b)i,p (1)
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where E(b)p is the total building emissions in Sumida ward with p-th purpose, which is given by
[the total emissions with p-th purpose in Japan, E(b)p,Japan] × [the population share of Sumida ward in
Japan] (see Section 2.3). v(b)i,p is the total floor area (TFA) used for the p-th purpose in i-th building, and
u(b)t,p represents the per area emissions. Equation (1) proportionally distributes building emissions in
accordance with the weight, w(b)i,t,p, which quantifies the relative magnitude of emissions. For data
sources, see the next sub-section.

Likewise, the transportation/car emissions e(c)i,t at i-th road link in t-th time period were
estimated using the following model:

e(c)i,t =
w(c)i,t

∑i ∑i w(c)i,t
E(c) (2)

where E(c) is the total car emissions in Sumida ward, given by [the total emissions from cars in Japan,
E(c)p,Japan] × [the population share of Sumida ward]. Equation (2) proportionally distributes the car
emissions in proportion to the traffic volume at the i-th road link in t-th time period, w(c)i,t. Unlike
Equation (1) that assumes different emission intensities by building use, Equation (2) assumes the same
emission intensity across vehicles. This assumption was needed because it was difficult to classify
global positioning system (GPS) points, which were used to evaluate car volume, into passenger
vehicle, freight vehicle, and so on. The estimation of vehicle types from GPS points would be an
interesting topic of research in the future.

Emissions are split between direct and indirect emissions. Direct emissions refer to on-site
emissions from individuals, buildings, or vehicles, resulting from urban activities. Indirect emissions
occur not on-site but at power plants during energy production. For example, indirect emissions on
roads are attributable to gasoline production for gasoline vehicles, or electricity production for electric
or hybrid vehicles.

This study attempts to estimate these two emissions by disaggregating the total direct and indirect
emissions in the Sumida ward, (E(b)p and E(c)), which we will introduce in Section 2.2. Sections 2.3
and 2.4 respectively explain the unit emission u(b)t,p and the intensity v(b)i,p that are used to define
the weights w(b)i,t,p and w(c)i,t for the disaggregation. Finally, Section 2.5 explains how to visualize
the carbons estimated by substituting these variables into Equations (1) and (2).

2.2. The Total Emissions (E(b)p and E(c))

While the above discussed how unit intensities were used to describe the “relative” change of
building and transportation emissions, the absolute emission amounts were constrained to the 2016
estimates provided by the Greenhouse Gas Inventory Office (GIO) of Japan, National Institute for
Environmental Studies [25]. Specifically, the total direct emissions in Sumida ward were evaluated by
[the GIO direct estimate across Japan] × [0.00203 = (population in Sumida ward)/(population in Japan);
sources: Census 2015 (Statistics Bureau, Ministry of Internal Affairs and Communications, Japan [26])].
Indirect emissions were also estimated in the same way. Hence, direct emissions were defined as
emissions that accompany activities such as energy conversion, production, and transportation, the
values of which are allocated to emission sites. On the other hand, indirect emissions were defined
as values allocated to users (the end demand category) and manufactured goods according to their
respective energy consumption.

The estimated total emissions, which were used as E(b)p and E(c), are summarized in Table 1.
The building emissions were dominated by indirect emissions, whereas transportation emissions were
dominated by direct emissions. Based on this result, mapping both types of emissions was required to
understand the underlying emission patterns appropriately.
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Table 1. Estimated total carbon emissions in Sumida ward (kt).

Emission Type Residential Non-residential Transport

Direct 113 167 421
Indirect 250 277 17

2.3. The Unit Emissions (u(b)t,p)

To evaluate the intensity of emissions from individual buildings in Equation (1), we used a
report provided by the Japan Institute of Energy [27]. This report summarizes typical hourly energy
consumption per TFA in each month for residences, offices, retail, hotels, and hospitals. We used the
typical hourly consumption as the basic unit u(b)t,p. In other words, we assume that the amount of
emissions is proportional to the energy consumption.

Annual emissions per floor area of 1 m2 (i.e., ∑t u(b)t,p) are summarized in Table 2. This table
clearly shows the difference between residential and non-residential sectors.

Figure 2 plots the relative monthly changes in the energy consumption (i.e., normalized u(b)t,ps).
Residential energy consumption was lowest late at night and highest in the evening, probably because
of cooking, heating, cooling, and so on. Consumption patterns in the office, retail, and hospital sectors
were similar; emissions were the highest in August as a result of cooling demand, while they were
low in winter. It is also conceivable that the peak in summer is daytime, and at around 09:00 in winter.
By contrast, emissions from hotels tended to increase in the afternoon. Emissions from sports facilities
had relatively flat patterns in daytime across the summer months from June to September, due to air
conditioners being in continuous operation. To better estimate building carbon emissions accurately,
consideration must be given to these emission patterns.

Because these data are relatively old, from 2008, we used the data only to evaluate the relative
temporal change in emissions. For the absolute amount of emissions, we used statistical data from
2015, which will be explained in the next sub-section.

Table 2. Annual energy consumptions (kWh/m2) (Source: Japan Institute of Energy [27]).

Residence Office Retail Hospital Hotel Sport facility

21 156 226 170 200 210 

2 

 
Figure 2. Monthly energy consumptions (Source: Japan Institute of Energy [27]).
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2.4. The Micro Intensities (v(b)i,p and v(c)i,t)

To use the basic unit u(b)t,p for carbon mapping, we needed to know the TFA by purpose of use
(residential, office, retail, hospital, hotel, and sports) in each building. Fortunately, Zenrin Co. Ltd.
(Kitakyushu, Fukuoka, Japan)’s Building Point Data 2013 includes this information [28]. We applied
the TFAs in the dataset for v(b)i,p, which is in Equation (1).

Note that this data does not include information about building shape. For clear carbon mapping,
we used Z-Map TOWN II of Zenrin Co. Ltd., which was provided by the Center for Spatial Information
Science, University of Tokyo.

Regarding the intensity v(c)i,t,p of on-road emissions (see Equation (2)), we used the mobile GPS
data from 2016 provided by Agoop Coop. (Shibuya, Tokyo, Japan) [29]. This data tracks the location of
a specific smartphone application’s users on Android at 30 min intervals, or at 500m intervals on iOS.
As an example, Figure 3 plots the GPS points at 08:00, 14:00, and 20:00 for November 6 and 7. The figure
shows the ability of this data to capture micro-scale transportation behaviour that changes from day
to day. On November 7 (a weekday) the highest activity counts occurred at 08:00 and 20:00, whereas
activity peaked at 14:00 on November 6 (a holiday/weekend). Consideration of these differences is
important when measuring the daily fluctuation of transportation emissions.

1 
 

 
  

Figure 3. Examples of Global Positioning System (GPS) points at 6:00, 9:00, 12:00, and 18:00 on 6 and 7
November 2016.

Unfortunately, the GPS data have no information on mode of transportation (i.e., walk, train,
or car). To estimate the emissions from vehicles, we needed to identify which GPS points represented
vehicles. To achieve this, we assumed that the movement between two GPS points satisfying the
following requirements were vehicles: (i) the average speed between two points was more than 6 km/h;
and (ii) either or both of these points were more than 50 m away from the railway. Figure 4 plots
the GPS points classified as walk (C, green points), train (D, blue points), and vehicle (E, red points)
on November 7 using OpenStreetMap (A and B). The points associated with vehicles (Figure 4E)
are distributed along major roads. This result is intuitively reasonable. The points assigned to
walk (Figure 4D) are concentrated around railways and around Kinshi-cho, a central commercial
area containing many pedestrians. These results confirm that we accurately separated GPS points
representing cars from those representing train users or pedestrians.
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results around Tokyo SkyTree; (C) Walk; (D) Train; (E) Vehicle.

This study focused only on vehicle trips because their emissions are dominant. We defined v(c)i,t
by the number of vehicles that passed through i-th road link within each 30-min interval indexed by t.

2.5. Mapping Method

Direct and indirect emissions from individual buildings and road links for each month and hour
were estimated by substituting the variables explained in Sections 2.2–2.4 into the model presented in
Section 2.1. Estimation results were visualized using ArcScene 10.5, which is a plugin for ArcGIS 10.5
provided by Environmental Systems Research Institute, Inc. (Redlands, California, United States) [30],
used for mapping. For easier understanding of carbon emissions on each road and in each building,
we displayed temporal (seasonally and hourly) changes in a 3D manner. All tests were conducted for
an average weekday in a typical month for each of the four seasons in 2016.
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3. Results

Figure 5 displays the estimated total, direct, and indirect carbon emissions at 06:00, 09:00, 12:00,
and 18:00 in January, April, July, and October. Red represents emissions from individual buildings
while blue represents emissions at each road link. The number of buildings and road links in our target
area (Figure 1) were 46,352 and 7928, respectively. Supplementary material (CO2mapping.gif) displays
annual average estimated total carbon emissions in 3D movie.

Our discussion of the results focuses on four viewpoints. Firstly, in terms of time, road emissions
increased rapidly between 06:00 and 09:00, following which building emissions drastically increased
and accounted for the majority of emissions until 18:00. This trend was caused by intensive commuting
in the morning (06:00–09:00) and activities during working hours (09:00–18:00). Although road
emissions also increased during evening commuting hours (15:00–18:00), these were lower than those
in the morning. Secondly, regarding the seasons, building emissions in the summer (July) were
remarkably larger than those in the other months, probably due to the high demand for cooling. This
result suggests that low carbon management for cooling is the top priority. Furthermore, cooling
management will be increasingly important as global warming advances. A comparison of cooling
systems, such as greening and mist, will be an important first step to cost-effective cooling management.
Building emissions in the winter (January) were slightly larger than those in autumn (October);
suggesting effective heat management, e.g., using wasting heat is secondarily important based on the
seasonal patterns of building emissions. Thirdly, in terms of direct or indirect emissions, building
and road emissions showed totally different patterns. Regarding road emissions, direct emissions
were dominant; this implies the potential of greatly decreasing transportation emissions if gasoline
vehicles are replaced with electric vehicles (EVs), which do not emit direct emissions. This suggests
the huge impact EVs can have. However, EVs increase indirect emissions through their electricity
generation. Comparison of carbon maps before and after the installation of EVs will be an interesting
future research topic, to visualize the impact of EVs. Finally, regarding places, building emissions
were especially large in the Kinshi-cho area (see Figure 1), which is a principal commercial district.
By contrast, somewhat unexpectedly, emissions from the SkyTree area, which is another commercial
district, were estimated to be not very large; only one or two buildings indicated large emissions
around SkyTree. Visualization using 3D carbon mapping is useful to help people intuitively correct
their common sense-based misunderstandings, such as emissions in the SkyTree area being larger than
the Kinshi-cho area. SkyTree’s smaller emissions are due to new energy-efficient buildings arranged
in a well-planned zoning scheme. In contrast, Kinshi-cho’s large emissions are attributable to the
unplanned, densely packed nature of the restaurant district. Regarding road emissions, a single bridge
crossing the Ara river, a principal river, was estimated as significantly contributing to total emissions.
The large emissions might be due to traffic congestion caused by vehicles attempting to cross the river.
An interesting finding was that the bridge’s large emissions lasted throughout the day. The detection of
such a hot spot is also an unexpected outcome that would never been found without carbon mapping.

These results show that visualizing temporal (seasonally and hourly) changes in a 3D manner
would be useful to better understand current carbon emissions, thus facilitating the implementation of
context-specific carbon emission management strategies for the purpose of reducing carbon emissions.
Generally, citizens are often unaware of the carbon emissions from their activities because the emissions
effects are not immediately visible. Therefore, this approach using spatial big data would be an effective
tool to facilitate carbon management by local stakeholders such as municipality governments and
companies, and to urge them to de-carbonize their activities.
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Figure 5. Carbon mapping of total, direct, and indirect emissions at 06:00, 09:00, 12:00, and 18:00 in
(a) January; (b) April; (c) July; and (d) October.

4. Concluding Remarks

We showed that micro geodata are useful in estimating carbon emissions from individual
buildings and roads that change over time, by visualizing them in a 3D manner. A benefit of micro
geodata is its application in considering individual spatio-temporal activities on road networks and
in buildings. Furthermore, when coupled with visualizing the data in a 3D manner it becomes
easier to interpret the absolute and relative differences by height and colour. In value classification
systems only using colours, we do not know the difference in magnitudes within the same class.
Visualizing in a 3D manner could provide stakeholders, who want to implement certain strategies
and reduce carbon emission, an easy-to-understand explanatory material for citizens as 3D figures
are more easily interpretable and closer to human scale. However, our bottom-up approach did not
consider carbon monitoring data, which are provided by the Carbon Dioxide Information Analysis
Center [31], Greenhouse Gases Observing Satellite (GOSAT) project [32], and so on. In addition,
on an urban scale, carbon dioxide sensors have often been distributed to monitor district-level carbon
concentrations [33]. Integration of the bottom-up estimation with global and local monitoring, e.g.,
through data assimilation, would be an interesting research endeavour in the future.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/10/12/4472/
s1, CO2mapping.gif displays annual average estimated total carbon emissions in 3D movie.
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