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Abstract: This work proposes a hybrid scheme that combines a simulation model and a mathematical
programming model for designing logistic networks for co-firing biomass, specifically switchgrass,
in conventional coal-fired power plants. The advantages of co-firing biomass include: (1) the creation
of green jobs; (2) the efficient use of current power plant infrastructure; (3) fostering the penetration
of renewable energy into power networks; and, (4) the reduction of greenhouse gas (GHG) emissions.
The novelty of this work lies in the inclusion of (1) the inherent variability of biomass supply at
the parcel level, and (2) the effects of climate change on future biomass supply when designing a
feedstock logistic network. The design optimization is conducted at the farm/parcel level (most, if not
all, previous works have used county level average data) and integrates the crop growth predictions
employing United States Department of Agriculture’s (USDA’s) Agricultural Land Management with
Numerical Assessment Criteria (ALMANAC) simulation model; the output of the simulations is input
into the mixed integer linear programming (MILP) hub-and-spoke model to minimize the overall cost
of the logistic network. Specifically, the MILP-based model selects the parcels and depot locations as
well as biomass transportation flows by taking into consideration different types of soil, land cover
characteristics, and predicted yields, which account for both historical and forecasted weather data.
The hybrid methodology was tested by solving realistic situations, which considered varying weather
conditions. The gross results indicate that the optimized logistic network enabled meeting a 20%
biomass co-firing rate demand, which reduced 1,158,867 Mg per year in GHG emissions by co-firing
with biomass.

Keywords: supply chain network design; biomass; simulation; climate change; MILP; logistics

1. Introduction

Coal-fired power plants generate one-third of the electricity in the United States [1].
The greenhouse gas (GHG) emissions that were produced from these power plants can be reduced
by co-firing with biomass. Biomass co-firing entails replacing a portion of the coal used in the
power plant with biomass to reduce the net GHG emissions. Noteworthy, biomass provides
substantial environmental benefits, such as net zero emissions when burned for energy production [2].
Thus, co-firing biomass with coal can reduce GHG emissions without incurring major plant
infrastructure changes/investments, while benefiting the local economy by creating agricultural
and transportation jobs. The co-firing rate, defined as the ratio of the biomass to the coal mass used in
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the power plant operations, must be between 10% and 25% to avoid degrading the thermal efficiency
of the power plant and to keep plant infrastructure unaltered [3].

For biomass to be a viable solution for reducing GHG emissions, and for it to compete against
fossil fuels, its feedstock supply chain (SC) must be efficient and all of its relevant associated costs
should be minimized. To attain such objectives, this paper presents a hybrid computational method
that combines crop growth simulations to predict biomass yields at the parcel level and a Mixed-Integer
Linear Programming (MILP) hub-and-spoke network model to address the problem of designing
logistic biomass SCs for biomass co-firing in coal-fired power plants. The proposed hybrid method
combines simulation, to determine the biomass yield at a farm/parcel level, and a MILP model to
optimize the logistics network. Firstly, the biomass yield simulations are executed utilizing the United
States Department of Agriculture’s (USDA’s) Agricultural Land Management with Numerical Assessment
Criteria (ALMANAC) [4] software. ALMANAC is a comprehensive simulation model that predicts
plant yield in multiple locations when considering heterogeneous climatic conditions (refer to Section 4:
Case Study). Secondly, the biomass yield is fed to a tailored hub-and-spoke model to design an optimal
supply chain network.

The contributions of this research are multifaceted, including: modeling, methodology, and
application. Regarding modeling, a MILP hub-and-spoke model for biomass co-firing in coal fired-power
plants is proposed. This model considers the biomass yield variability under climate change scenarios
and refines the analysis of biomass yield/availability for future scenarios. A methodology is presented
to estimate the biomass yield in future instances under climate change conditions. With respect to
application, a realistic case study in a coal power plant in South Texas with a 20% co-firing rate demand
is presented.

This paper is structured as follows. Section 2 reviews previous works and highlights gaps in
the literature. Section 3 presents the proposed MILP hub-and-spoke model formulation. Section 4
presents the data used to construct the realistic case study and instances. The results of our case study
are presented in Section 5. Lastly, concluding remarks are provided along with recommendations for
future work in Section 6.

2. Literature Review

This section reviews previous analytical models for optimizing biomass supply chains for co-firing
in coal power plants. Ba et al. [5] provides an in-depth literature review, explaining common concepts
in supply chain networks, as well as their designs, strengths, and weaknesses. Ba et al. [5] highlighted
unaddressed challenges in biomass models, such as: (1) the large-scale nature of the problem; (2) the
use of different commercial solvers, which lead to difficult reproduction of results; (3) the fact that
most modeling approaches show limited temporal and spatial granularity; and, (4) the limitation that
comes from many fixed network supply chains, where the model is unable to choose the harvesting
location. Noteworthy, Ba et al. [5] pointed out that there is a lack of industrial and operations research
perspective in the bioenergy SC network design problem.

Roni et al. [6] proposed a hub-and-spoke model to optimize the SC of biomass for co-firing.
A Long-haul delivery of biomass in large volumes was considered, as the SC covered most of the United
States. Their model is an extension of the hub-and-spoke design problem, which included a step-wide
cost function that better represented transportation costs. They were able to determine that biomass
that was located within a 75-mile radius of the power plant had a transportation cost of $8.53/dry
ton. As explained by Roni et al. if the biomass was located outside the 75-mile radius, co-firing no
longer becomes a viable solution. Therefore, Roni et al. indicate that the closer the biomass supply is to
the power plant, the more economically competitive co-firing biomass becomes. Additionally, similar
findings can be seen in woody biomass procurement studies done by Kizha et al. [7], where results
from their case study in northern California point to how proximity to the feedstock supply to the
power plant create competitive advantages when compared to farther sources. Noteworthy, Kizha et al.
discuss how competition may be further intensified by the entry of an additional biomass consumer.
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Therefore, adding more detail to the biomass SC, such as parcel selection in a local agricultural setting,
allows for a more comprehensive analysis and it potentially lowers the costs of the biomass SC.

Poudel et al. [8] used a two-stage stochastic model to manage a biomass SC network. The model
considers the design and management of a biomass co-firing SC that is subject to feedstock supply
uncertainty. The output of their model provided season-wide utilization of multi-model facilities,
the optimal number of containers transported between the multi-model facilities, and the amount of
biomass processed, stored, and transported from multiple supply sites to coal power plants when
considering biomass supply uncertainty. A case study with data from Mississippi and Alabama
counties was analyzed. Results show that high feedstock variability increases the unit delivery cost by
$1.87/ton. Poudel et. al address the uncertainty of biomass supply in order to deliver the biomass to
the power plants, but the optimization of the SC is limited the depot-to-plant arcs, and farm locations
were not considered.

Regarding time-dependent variables that produce impacts on the energy generation cost,
Akgul et al. [9] formulated a mixed-integer nonlinear programming model of carbon negative energy
generation in the UK to examine the potential for existing power generation assets to act as a carbon
sink as opposed to a carbon source. Using a Pareto front-based approach, Akgul et al. [9] analyzed the
technical and economic compromises of transitioning from a dedicated fossil-fuel-only power network
to a carbon negative electricity generation network. The relative fuel cost was a key determinant of the
required carbon price in the model. They also found that increasing the biomass availability reduced
the cost of generating carbon negative electricity. The authors investigated three different scenarios
(low, central, and high prices for CO2 and coal) for three years: 2012, 2020, and 2050. Their results
indicate that CO2 prices must be within the range of £120–£175/ton to incentivize the generation
of carbon negative electricity. Thus, increasing the availability of biomass was found to be critical
for reducing this cost. This conclusion incentivizes the need to develop models to increase the cost
effectiveness of bioenergy SCs.

Roni et al. [10] focused on studying a long-haul rail transportation network, since, in practice,
many power plants receive coal through trains and tend to be close to railway stations. They considered
a supply of 100 million tons of biomass within 50 miles of the power plants. In their model, trucks were
considered for transporting biomass in shorter distances. Roni et al.’s network begins at depot’s (or
storage) locations and end in the co-firing power plant. Roni et al.’s model aims to optimize the SC by
reducing transportation costs, increasing production rates, and decreasing moisture in harvested
switchgrass. Their work evaluates the following strategies: blending feedstock and integrated
landscape management as means to further improve the SC performance of lignocellulosic crops. Roni
et al.’s analysis is shown as a high-level overview and it encourages for further investigation in the
design of biomass SCs.

De Laporte et al. [11] analyzed three different supply chain scenarios for growing, transporting,
and exporting switchgrass in Canada. In their study, two local power plant locations were considered
along with international exports, using pellets and bales. The model focused on the price increase
relative to the demand increase and did not account for storage costs during off-seasons. The authors
concluded that the local transportation model was the most efficient due to policy implementations,
demands, and lower costs.

A case study that was conducted by Hart [12], in the Texas area, unveiled that the average
switchgrass yield from the 45 soil locations studied is 8.05 metric tons per hectare, with a standard
deviation of 3.03; showing switchgrass as the highest yielding biomass when compared to other
common sources. Hart found that the optimal solution to the problem studied considers harvesting
locations with a biomass yield ranging from 9.74 to 10.70 metric tons per hectare and requires
investment in two depot locations (i.e., one in Atascosa and the other in Wilson County). The total cost
of the optimal SC network turned out to be $30,828,329, with an emissions reduction of 4.09 × 109 kg
of CO2 per year. Hart’s analysis fails to consider environmental challenges, such as land cover and
future climate, as well as a limited set of potential parcels. Taking Hart’s thesis [12] as a reference point
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for further improvement and analysis, our work attempts to further build upon his research in efforts
to create a more comprehensive study. Therefore, his analysis considering cost figures and biomass
selection were evaluated as substantial references for our SC network design.

On the basis of the identified gaps and the conclusions that are generated within the
aforementioned research works, this paper aims to provide a novel hybrid methodology that
integrates a MILP hub-and-spoke model, which considers more granularity in the biomass yield
estimation, utilizes mostly open-source software to facilitate the replication and dissemination of
results, and optimizes the topology design of the SC networks for biomass co-firing in coal-fired power
plants. This work differentiates from previous approaches by adding more granularity to the analysis
of biomass availability at the farm/parcel level. This allows for decision makers to determine the layout
of the supply chain in detail, determining which parcels will be used and which roads will be used
(obtained through the arcs selected and the fastest routes associated with these arcs). The proposed
methodology includes the feedstock availability in detail using the ALMANAC simulation, considers
climate inputs (historical and future scenarios), and the changing GHG emissions in the atmosphere.

3. Methodology

A hybrid methodology is proposed to address both tactical and strategic decisions in the feedstock
logistics network design problem for co-firing biomass. Hybrid models have been employed for
different application domains [13,14]. In this paper, the simulation component involves predicting the
switchgrass growth, while accounting for soil, location, and weather/climate inputs. The optimization
aims to find the optimal supply chain design (i.e., parcel selection, depot location, and biomass
transportation) that minimizes the net cost of the feedstock logistics network.

A schematic representation of the hybrid simulation-MILP methodology is shown in Figure 1.
The MILP requires two main types of inputs: (1) high-resolution biomass yield and (2) geospatial
parameters. The biomass yield is predicted using ALMANAC simulations that consider weather, soil,
and location data. The weather and soil inputs (Soil Survey Geographic Database, SSURGO [15]) are
outlined in Sections 4.1.1 and 4.3, respectively. Using the “BatchRun” capabilities of ALMANAC,
crop growth in 4908 potential parcels is simulated within the Texas case study presented in Section 4.
The geospatial parameters include the potential locations as well as the distances among nodes of the
network. The potential locations are obtained by means of Geographical Information System (GIS)
data (Section 4). The distances between parcels, depots, and power plant(s) are obtained through
shortest route algorithms from the Open Source Routing Machine (OSRM) platform [16]. With all these
inputs, the MILP hub-and-spoke model determines the optimal planting and depot locations that take
advantage of economies of scale and minimize the net cost of the logistics network while meeting a
20% co-firing rate demand.

In this paper, we analyze the impact of future weather instances (refer to Figure 2) by running
multiple ALMANAC simulations that generate biomass yield estimations and determine viable parcels
(planting locations) under future climate conditions. Once the parcels are updated, the coordinates and
feasible arcs are updated as well. Subsequently, the MILP model is executed to find the optimal logistics
network (Section 4 shows detailed information on inputs and the generation of weather scenarios).



Sustainability 2018, 10, 4299 5 of 18

Sustainability 2018, 10, x FOR PEER REVIEW  4 of 18 

On the basis of the identified gaps and the conclusions that are generated within the 
aforementioned research works, this paper aims to provide a novel hybrid methodology that integrates 
a MILP hub-and-spoke model, which considers more granularity in the biomass yield estimation, 
utilizes mostly open-source software to facilitate the replication and dissemination of results, and 
optimizes the topology design of the SC networks for biomass co-firing in coal-fired power plants. 
This work differentiates from previous approaches by adding more granularity to the analysis of 
biomass availability at the farm/parcel level. This allows for decision makers to determine the layout 
of the supply chain in detail, determining which parcels will be used and which roads will be used 
(obtained through the arcs selected and the fastest routes associated with these arcs). The proposed 
methodology includes the feedstock availability in detail using the ALMANAC simulation, considers 
climate inputs (historical and future scenarios), and the changing GHG emissions in the atmosphere. 

3. Methodology 

A hybrid methodology is proposed to address both tactical and strategic decisions in the feedstock 
logistics network design problem for co-firing biomass. Hybrid models have been employed for 
different application domains [13,14]. In this paper, the simulation component involves predicting the 
switchgrass growth, while accounting for soil, location, and weather/climate inputs. The optimization 
aims to find the optimal supply chain design (i.e., parcel selection, depot location, and biomass 
transportation) that minimizes the net cost of the feedstock logistics network. 

A schematic representation of the hybrid simulation-MILP methodology is shown in Figure 1. 
The MILP requires two main types of inputs: (1) high-resolution biomass yield and (2) geospatial 
parameters. The biomass yield is predicted using ALMANAC simulations that consider weather, soil, 
and location data. The weather and soil inputs (Soil Survey Geographic Database, SSURGO [15]) are 
outlined in Sections 4.3 and 4.1.1, respectively. Using the “BatchRun” capabilities of ALMANAC, crop 
growth in 4908 potential parcels is simulated within the Texas case study presented in Section 4. The 
geospatial parameters include the potential locations as well as the distances among nodes of the 
network. The potential locations are obtained by means of Geographical Information System (GIS) 
data (Section 4). The distances between parcels, depots, and power plant(s) are obtained through 
shortest route algorithms from the Open Source Routing Machine (OSRM) platform [16]. With all 
these inputs, the MILP hub-and-spoke model determines the optimal planting and depot locations 
that take advantage of economies of scale and minimize the net cost of the logistics network while 
meeting a 20% co-firing rate demand. 

 
Figure 1. Hybrid Simulation-Mixed-Integer Linear Programming (MILP) Methodology.1 CMIP 5: 
Coupled Model Intercomparison Project Phase 5 [17], 2 SSURGO: Soil Survey Geographic Database 
[15], 3 GIS: Geographical Information System (ArcMap [18]), 4 ALMANAC: United States Department 
of Agriculture’s (USDA’s) Agricultural Land Management with Numerical Assessment Criteria [4], 5 
OSRM: Open Source Routing Machine [16], 6 MILP: Mixed Integer Linear Program. 

Figure 1. Hybrid Simulation-Mixed-Integer Linear Programming (MILP) Methodology.1 CMIP 5:
Coupled Model Intercomparison Project Phase 5 [17], 2 SSURGO: Soil Survey Geographic Database [15],
3 GIS: Geographical Information System (ArcMap [18]), 4 ALMANAC: United States Department of
Agriculture’s (USDA’s) Agricultural Land Management with Numerical Assessment Criteria [4],
5 OSRM: Open Source Routing Machine [16], 6 MILP: Mixed Integer Linear Program.

Sustainability 2018, 10, x FOR PEER REVIEW  5 of 18 

In this paper, we analyze the impact of future weather instances (refer to Figure 2) by running 
multiple ALMANAC simulations that generate biomass yield estimations and determine viable 
parcels (planting locations) under future climate conditions. Once the parcels are updated, the 
coordinates and feasible arcs are updated as well. Subsequently, the MILP model is executed to find 
the optimal logistics network (Section 4 shows detailed information on inputs and the generation of 
weather scenarios). 

 
Figure 2. Loop of Changing Parameters. 7 SC: Supply Chain. 

In the next paragraphs, we elaborate on the MILP model and its mathematical formulation. A 
hub-and-spoke model [19] is proposed for the design and optimization of this biomass cofiring 
logistics network. Hub-and-spoke networks are present in various industries and they have been a 
fertile area for interdisciplinary research with applications in terrestrial transportation, airlines, 
network design, telecommunications, among others [19]. The proposed biomass network consists of 
three sets of nodes. The first set of nodes represents the parcels. The second set corresponds to the 
depots (i.e., a facility to wrap, storage, and consolidate biomass bales). The third is the power plant(s). 
Figure 3 shows a visual representation of a simplified hub-and-spoke model with four parcels, three 
depot facilities, and one power plant. Figure 3 exemplifies the possible connections between parcels 
and depots (arcs T1), depots and the power plant (arcs T2), and directly from parcels and the power plant 
(arcs T3). This optimization model aims to find the parcels to be utilized to grow switchgrass, the necessary 
depots to serve as storage, and the distribution network that minimizes the overall SC cost. 

 
Figure 3. Hub-and-Spoke Model. 

Figure 2. Loop of Changing Parameters. 7 SC: Supply Chain.

In the next paragraphs, we elaborate on the MILP model and its mathematical formulation.
A hub-and-spoke model [19] is proposed for the design and optimization of this biomass cofiring
logistics network. Hub-and-spoke networks are present in various industries and they have been
a fertile area for interdisciplinary research with applications in terrestrial transportation, airlines,
network design, telecommunications, among others [19]. The proposed biomass network consists of
three sets of nodes. The first set of nodes represents the parcels. The second set corresponds to the
depots (i.e., a facility to wrap, storage, and consolidate biomass bales). The third is the power plant(s).
Figure 3 shows a visual representation of a simplified hub-and-spoke model with four parcels, three
depot facilities, and one power plant. Figure 3 exemplifies the possible connections between parcels
and depots (arcs T1), depots and the power plant (arcs T2), and directly from parcels and the power
plant (arcs T3). This optimization model aims to find the parcels to be utilized to grow switchgrass,
the necessary depots to serve as storage, and the distribution network that minimizes the overall
SC cost.
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The definitions of all the parameters used in the MILP formulation follow:

Set Definitions:

N Set of nodes in supply chain network G(N, A).
A Set of arcs in G(N, A).
P Set of parcels.
D Set of potential locations for depots.
C Set of coal plants.
T1 Set of arcs that connect parcels to potential depot location.
T2 Set of arcs that connect potential depot to coal plants location.
T3 Set of arcs that connect parcels to coal plants location.

Design Variables:

Xij flow along arc (i, j) ∈ T1 from a parcel location to a depot facility.
Yjk flow along arc (j, k) ∈ T2 from a depot facility to a coal plant.
Zik flow along arc (i, k) ∈ T3 from a parcel location to a coal plant.
Wj a binary variable which takes the value 1 if j ∈ D is used as depot, and 0 otherwise.

Problem Parameters:

cT1
ij unit cost charged per metric ton shipped along (i, j) ∈ T1.

cT2
jk unit cost charged per metric ton shipped along (j, k) ∈ T2.

cT3
ik unit cost charged per metric ton shipped along (i, k) ∈ T3.

ξ j fixed investment cost to install a depot at node j ∈ D.
uj represents the storage capacity of depot facility j ∈ D.
si represents the supply of biomass at parcel location i ∈ P.
dk total demand of biomass for electricity production at each coal plant location k ∈ C.

Min ∑
i∈P

∑
j∈D

cT1
ij Xij + ∑

j∈D
∑
k∈C

cT2
jk Yjk + ∑

i∈P
∑
k∈C

cT3
ik Zij + ∑

j∈D
ξ jWj (1)

s.t. ∑
j∈D

Xij + ∑
k∈C

Zik ≤ si ∀i ∈ (2)

∑
i∈P

Xij − ∑
k∈C

Yjk = 0 ∀j ∈ D (3)

∑
j∈D

Yjk + ∑
i∈P

Zik = dk ∀k ∈ C (4)
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∑
j∈P

Xij − ujWj ≤ 0 ∀j ∈ D (5)

Xij ∈ R+, ∀(i, j) ∈ T1 (6)

Yjk ∈ R+, ∀(j, k) ∈ T2 (7)

Zik ∈ R+, ∀(i, k) ∈ T3 (8)

Wj ∈ {0, 1} ∀j ∈ D (9)

The design variables correspond to flows from parcels to depots, depots to power plants and
from parcels to power plants (in metric tons). Moreover, binary variables (Wj) are related to depot
location selection.

The objective function (1) consists of four terms, which encompass the costs for harvesting,
processing, and transporting switchgrass, as well as the cost for opening depots. A breakdown of the
costs used in the case study are outlined in Section 4.6. Constraints (2) restrict the supply of biomass for
every parcel to the maximum yield. Constraints (3) assure a mass balance in every depot. Constraints
(4) assure the biomass demand satisfaction. Constraints (5) set up ensures that the biomass stored
is less than the capacity at depots. Constraints (6)–(8) assure a non-negative flow, and (9) are binary
constraints for depot location. In the next section, a case of study for the state of Texas is presented.

4. Case Study

To evaluate the applicability of the proposed methodology, a realistic case study is used. This case
study corresponds to a local power company located in South-Central Texas, which operates several
power plants, including a 1350 MW coal power plant. The power plant consumed approximately
4,563,501 short tons of coal in 2016 [20]. By taking into consideration the energy content of switchgrass
and coal, which is 15 and 17.35 MMBtu per short ton, respectively [20,21], it is determined that the
energy produced by the coal is 79,176,742 MMBtu. The required switchgrass to produce this same
amount of energy is 4,788,535 Mg (metric tons). Finally, taking 20% of the total switchgrass required to
match the coal output, the total switchgrass demand (dk) results in 957,707 Mg for a 20% co-firing rate.
The next subsections describe the data generation/collection process.

4.1. Biomass Yield

In this section, we describe the procedure that was used to determine the predicted switchgrass
yield at the potential parcels through comprehensive simulations. Software and databases used are
outlined in detail, including the use of SSURGO [15], ALMANAC [4], and ArcMap [18].

4.1.1. Soil Analysis

Initially, the counties were divided into parcels. The main challenge faced while defining these
parcels was determining if their yield would be comparable to the expected yield for the area. In order
to visualize the similarity of the parcel simplification to the original soil data, the USDA’s Soil Survey
Geographic Database (SSURGO) [15] maps were used. SSURGO ranks soil types due to its production
potential. Due to the large varieties of soil types in the counties, SSURGO’s ranking allows for simpler
representation of the soil behavior. The ranking shown in the legend of Figure 4 is for range production
potential during a normal precipitation year, which is comparable to switchgrass, for a normal year for
the two counties in question.
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The soil rank maps were obtained using information from SSURGO and ArcMap mapping
capabilities along with the Soil Data Viewer ArcMap extension. The Soil Data Viewer helped to
visualize the variety of soil productivity throughout the counties. The soil rank maps were used to
create a raster with parcels of 100 hectares each (the size of the parcel was determined to emulate the
average size of a farm in the United States, which is approximately 170 hectares and to enhance
visualization). The selected size will aid in determining biomass feedstock quantities since the
ALMANAC [4] produces an output in metric tons per hectare. The locations used in the crop yield
simulation and optimization procedure of the SC are the coordinates from the centroid of each of the
100 hectare parcels.

4.1.2. ALMANAC Analysis

The coordinates determined from the parcel simplification were used to calculate the potential
yield of the parcels using ALMANAC (si). The coordinates from each county were used in separate
batch files for various states, such as historical (baseline) and future climate scenarios. The crop
used in this ALMANAC-based analysis is Alamo Switchgrass and its corresponding management
details. The selection of Alamo Switchgrass was due to its high yield in this area of Texas [12].
The management for Alamo Switchgrass entails initial planting along with fertilizing, and annual
collection of the biomass, without hurting the root, allowing for the plant to re-grow the following
year without the need to re-plant or fertilize. Additionally, the management did not include irrigation.
USDA’s ALMANAC has extensive data for agricultural simulation in the United States. If similar
studies were to be done in other areas in the U.S., the yield of the chosen type of biomass can be
estimated following this procedure. Moreover, the crops can be ranked to identify the one that provides
higher yield in a designated area and this analysis can be done in marginal lands as well. Noteworthy,
the proposed approach can be straightforwardly transferable to biofuel and biochemical supply chains.

4.2. Land Cover

Next, the determination of suitable parcels is described. A feasible parcel allows for the use
of land without negatively affecting the environment. In order to account for these environmental
obstacles, land cover information was obtained through the National Land Cover Database [22]. The land
cover information map is presented in Figure 5.
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ALMANAC does not provide yield predictions in uninhabitable parcels (e.g., water bodies or
sandy loams) and these areas are not chosen by the model as feasible parcels. The parcels that were
discarded are developed areas (21, 22, 23, and 24) and forest areas (41, 42, and 43). The reason to
discard forest areas is due to the negative impact that deforestation has in the environment and the
communities around it.

4.3. Scenarios

The baseline scenario considers data from 1950 to 2000. The 50 years range allows for a
more realistic baseline yield, since it accounts for extreme weather events, such as droughts and
floods, among others. Data was collected from the NCDC NOAA database [23] for both counties
and encompassed precipitation, minimum daily temperature, and maximum daily temperature.
The stations that were used for the baseline scenario are shown in Figure 6. The compiled data did not
have enough information to cover the entire period of time. To amend this issue, the ALMANAC’s
weather generator was used to fill in any weather data gaps during this period.
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Four scenarios of climate change were created. Rainfall and temperature projections from the
World Climate Research Programme’s Coupled Model Intercomparison Project Phase 5 (CMIP5) [17]
were analyzed. These time series are bias-corrected and statistically downscaled from outputs of
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general circulation models. A total of 132 daily model outputs of four Representative Concentration
Pathways (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) [24] were obtained. Each RCP characterizes a
greenhouse gas concentration trajectory adopted in the 5th Assessment Report of the Intergovernmental
Panel on Climate Change [25]. The RCP describes a potential future climate with different
anthropogenic greenhouse gas emissions, air pollutants, and land use, and it results in radiative
forcing values in the year 2100 (2.6 to 8.5 W/m2 ~490 to 1370 ppm CO2 equivalent). RCP 8.5 is a
baseline scenario and it assumes that emissions will continue to rise throughout the 21st century.
RCP6.0 and RCP4.5 assume the greenhouse gas emissions peak around 2080 and 2040, respectively,
followed by the reduction of atmospheric discharges. RCP2.6 is the more optimistic scenario, and it
assumes very low greenhouse gas emissions, reduced though a series of mitigation strategies.

Since rainfall amounts are one of the most important inputs for crop growth, the annual average
rainfall depth (mm/year) for each of the four RCPs and model outputs were calculated for the year
2050 to 2100 for a boarder location between Wilson and Atascosa counties (Figure 7). For this location
(latitude 29.0625◦ longitude −98.3125◦), the results show that, on average, precipitation regimes tend
to decline from the Baseline scenario (RCP8.5) to high mitigation scenarios (RCP2.6), suggesting that
climatic change can severely impact crops. For each RCP, the models at 25th, 50th, and 75th percentiles
were selected to represent projected dry, median, and wet scenarios (Table 1).
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Figure 7. Average annual rainfall (mm/year).

Table 1. Representative Concentration Pathways, models, institution, and modeling center.

RCP Percentile Model Institution Modeling Center

2.6

25 ipsl-cm5a-lr.1 Institut Pierre-Simon Laplace IPSL

50 canesm2.5 Canadian Centre for Climate Modelling and
Analysis CCCMA

75 csiro-mk3-6-0.3
Commonwealth Scientific and Industrial Research
Organization in collaboration with Queensland
Climate Change Centre of Excellence

CSIRO-QCCCE

4.5

25 mpi-esm-lr.1 Max-Planck-Institut für Meteorologie (Max Planck
Institute for Meteorology) MPI-M

50 gfdl-esm2m.1 NOAA Geophysical Fluid Dynamics Laboratory NOAA-GFDL

75 mri-cgcm3.1 Meteorological Research Institute MRI

6.0

25 gfdl-esm2m.1 NOAA Geophysical Fluid Dynamics Laboratory NOAA-GFDL

50 ccsm4.1 National Center for Atmospheric Research NCAR

75 noresm1-m.1 Norwegian Climate Centre NCC
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Table 1. Cont.

RCP Percentile Model Institution Modeling Center

8.5

25 miroc5.1

Atmosphere and Ocean Research Institute (The
University of Tokyo), National Institute for
Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology

MIROC

50 miroc5.2

Atmosphere and Ocean Research Institute (The
University of Tokyo), National Institute for
Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology

MIROC

75 ccsm4.1 National Center for Atmospheric Research NCAR

4.4. ALMANAC Yield Maps

The climate data obtained from the scenarios presented in Table 1 were converted into ALMANAC
compatible weather files and were used as precipitation and temperature (minimum and maximum
daily temperature) inputs to obtain yield maps (Figures 8 and 9 illustrate these maps for selected
scenarios). Batch files were used in ALMANAC where each coordinate within the spatial domain of
interest was executed, all while ensuring that each weather station was feeding data to its respective
coordinate. This was accomplished with the help of ArcMap GIS, so that each coordinate would draw
data from the closest weather station. In order to better determine the effect of percentile on the yield,
the three percentiles of scenario 2.6 were mapped, as shown in Figure 9.
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Figure 9. Yield Map and average biomass supply for (a) Representative Concentration Pathway (RCP)
2.6 25th; (b) RCP 2.6 50th; (c) RCP 2.6 75th.

The RCP 2.6 maps with the three different percentiles show an expected trend: the 25th percentile
considers less rainfall, the 75th percentile considers more rainfall, and with the 50th falling directly in
the middle of the two. Higher biomass yield is observed with more rainfall. In order to ensure that the
yield obtained from each future weather scenario is significantly different from the historical, a paired
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t-test is executed with a confidence level of 90% percent. The results of the paired t-test conclude that,
except for RCP 2.6 25th, all future weather scenarios significantly differ from the historical scenario
(1950–2000).

4.5. Depot Selection

In order to create a realistic supply chain design, a heuristic is introduced to define the set of
potential depot locations. The proposed heuristic rounds the number of depots that are required by
dividing the total demand between the depot capacities. Furthermore, the ratio of 1:10 is utilized to
calculate the number of potential locations for the counties. The locations are distributed evenly to
define a uniform arrangement that covers the whole county area. Thirty potential depot locations are
considered over each county (Figure 10), with each depot having a total capacity of 300,000 Mg of
switchgrass (uj).
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The cost of one depot is $333,000 (ξ j) [26]; this cost is annualized for the historical scenario using
expression (10).

EAC =
r(NPV)

1− 1
(1+r)t

(10)

where, NPV [$] stand for net present value (depot investment cost), r [–] is the interest rate, and t [year]
is the expected lifetime of the project, and EAC is the equivalent annual cost [$]. A 15-year investment
at a 5% interest rate is assumed.

4.6. Costs

Calculating the cost of switchgrass for co-firing biomass may be broken into two parts: harvesting
and transportation costs.

Harvesting costs are inclusive of rent, baling, fertilizing, and swathing [27]. The cost of rent per
hectare varies by county. It is assumed that the land will not be irrigated when selecting rent prices.
The cost figures shown in Tables 2 and 3 are based on the Integrated Biomass Supply Analysis and
Logistics (IBSAL) models [26,27].

The values from Table 2 are then used in Equation (11). The harvesting cost (ϕi) changes by
county as the cost of rent differs depending on the parcel selected (i); the other farming parameters
(i.e., swathing, bailing, and fertilizing) remain constant.

ϕi =

[
β +

γ + α + Ri
si

]
(11)
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Transportation costs are calculated using distances (xij, xjk, or xik depending on the arc selected).
Two transportation modes were used, one using a small truck to transport biomass from the parcel to
the depot and a larger truck to move the biomass from depot to the power plant.

τ
T1
ij = (L + U + µ) +

xij
v (θ)(ω)

ρT1
(12)

τ
T2
jk = (L + U + µ) +

xjk
v (θ)(ω)

ρT2
(13)

τ
T3
ik = (L + U + µ) +

xik
v (θ)(ω)

ρT3
(14)

where, τT1
ij refers to the transportation cost of the arc in question. The total costs of purchasing one ton

from a parcel and delivering it to the depot/coal power plant are:

cT1
ij = ϕi + τT1

ij (15)

cT2
ik = ϕi + τT2

ik (16)

cT3
jk = τT3

jk (17)

Table 2. Switchgrass Production Costs.

Item Unit Cost

Rent Atascosa County (R1) hectare $38.30
Rent Wilson County (R2) hectare $53.13
Swathing (α) hectare $32.49
Baling (β) ton $12.42
Fertilizing (γ) hectare $10.23

Table 3. Transportation Costs.

Item Unit Value Used

Average Truck Speed (v) Km/hr. 60
Round Trip Factor (θ) 2
Truck Operational Cost (ω) Per hour $48.40
Small Truck Load Capacity (ρT1 ,ρT3 ) Metric ton 3.63
Large Truck Load Capacity (ρT2 ) Metric ton 21.76
Loading Cost (L) Per metric ton $3.59
Unloading Cost (U) Per metric ton $3.58
Stacking Cost (µ) Per metric ton $0.44

5. Numerical Analysis

This section presents the results of our numerical analysis. The algorithms that were used in
this study were written in Julia [28] JuMP and GUROBI 7.5.1 was used to solve the mathematical
model. ArcMap GIS is used to visualize the solutions. The experiments were executed using a personal
computer with an Intel (R) Core (TH) i5-6300U central processor unit operating at a frequency of
2.40 GHz and 8 GB of random-access memory.

5.1. Numerical Results

As part of the numerical experimentation, thirteen scenarios were analyzed. Specifically,
the historical (baseline) scenario (from 1950–1999) and twelve climate change scenarios (from
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2050–2099) were solved and analyzed. The solution maps and statistics of the climate change scenarios
are outlined in Section 5.2.

The optimal solution of the baseline scenario is depicted in Table 4 and in Figure 11. The total costs
were divided into variable and fixed costs. The annual variable cost is determined by the production
cost of the switchgrass (i.e., land management, bailing, transportations, and loading costs). The fixed
cost involves the annualized depot investment cost.

Table 4. Baseline Optimal Solution.

RCP Parcels Used Depots Avg. Supply Variable Cost ($) Fixed Cost ($) Total Cost ($)

Baseline 913 4 1049 Mg 35.67 M 0.12 M 35.80 M
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According to the U.S. Energy Information Administration, the average cost for purchasing and
shipping coal from Wisconsin to Texas is 30.55 dollars per short ton [1]. The cost of purchasing 20% of
coal that was replaced is $35.41 M [20]. Thus, the total cost of co-firing is competitive, with a percentage
difference of a little over 1%. For instance, 1,214,483 Mg of CO2 are reduced solely by replacing 20%
of coal with switchgrass. It is estimated that the emissions from harvesting and transporting the
switchgrass are 55,626 Mg of CO2, thus, the effective decrease in emissions results in 1,158,867 Mg of
CO2. The emissions from the biomass cofiring supply chain are calculated using the arcs in the optimal
solution and while considering the number of trips and distance traveled for each trip. The emission
values that are assumed in this analysis are presented in Table 5. The competitiveness of the biomass
SC is stressed even more if the environmental and social cost of carbon (SCC) from the lowered
GHG emissions is considered. For the baseline scenario, considering a SCC of $36/Mg per emissions
reduced, resulting in savings of $41.72 M [17].
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Table 5. Emission Values from Historical Supply Chain Design.

Activity Emissions Produced Unit Reference

Bailing 2.6450 kg

IBSAL [29]
Loading 12.05 kg
Unloading 15.585 kg
Stacking 0.5850 kg

Total Harvest (Xij, Zik) 30.865 kg
Transport from Depot (Yjk) 28.22 kg

Small Truck Transport 0.3014 kg/km EPA Climate Dealership [30]
Large Truck Transport 0.8886 kg/km

5.2. Sensitivity Analysis using Climate Change Scenarios

Climate change scenarios were created to determine climate effects on the supply chain design,
as well as the average biomass supply. The analysis is focused on the network topology and the
availability of biomass supply to assess the robustness of the baseline solution under climate change
conditions. The parameters that were determined for each scenario are summarized in Table 6, along
with the mapping of the illustrative solutions in Figures 12 and 13.
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Table 6. Climate Change Sensitivity Output.

RCP % Parcels Used Depots Avg. Supply

2.6
25 904 4 1059 Mg
50 847 4 1130 Mg
75 800 4 1197 Mg

4.5
25 801 3 1196 Mg
50 855 4 1120 Mg
75 758 4 1264 Mg

6.0
25 719 4 1124 Mg
50 777 3 1233 Mg
75 772 4 1241 Mg

8.5
25 824 5 1162 Mg
50 830 3 1154 Mg
75 725 4 1320 Mg

Based on the results, the yield will be sufficient to meet the demand with a co-firing rate of
20% when considering climate variability in the region. Noteworthy, with higher average supply,
less parcels are required to meet the demand, which leads to lower investment cost. Depot location
changes based on the selected parcels; therefore, depending on climate variations depot might need to
be relocated.

Over all the scenarios, the highest parcel count reached is 904. Regardless of the changing weather
conditions in these scenarios, the demand for the 20% co-firing rate is always met. Moreover, there are
still approximately 3200 parcels available in every scenario. Hence, if the demand (e.g., cofiring rate)
increases, then there is still available area to meet the biomass demand.

6. Conclusions and Future Work

In this paper, we presented a hybrid simulation-MILP optimization methodology for the design
of a supply chain network for biomass cofiring in coal-fired power plants. Our model accounts for
biomass supply (switchgrass yield) uncertainty through detailed ALMANAC simulations at the parcel
level. Our model involves design and planning decisions of the supply chain to minimize the net cost,
including investment in depots, harvesting, and transportation costs. This research fills a gap in the
literature by developing a methodology that incorporated the analysis of the biomass supply at the
parcel level and the impact of changing weather in the biomass availability. The proposed hybrid
simulation-MILP optimization methodology is easily transferable to biofuel and biochemical supply
chains. Moreover, the model can be adapted to incorporate various types of lignocellulosic biomass
depending on the geographical region and the decision maker’s needs.

The resulting biomass logistics network for the baseline scenario (from 1950–2000) shows that the
demand for a 20% co-firing rate target can be met by using 22% of the available parcels in the region.
The overall annual investment cost of the supply chain shows to be competitive to coal. Even though,
the overall cost resulted in being approximately 1% higher when compared to a coal supply scenario,
when accounting for the decrease of the GHG emissions and the benefits to the communities in
surrounding areas by the creation of new jobs, the slight difference in investment becomes justified.
Future lines of research include: extending the model to a multi-criteria optimization model that
minimizes costs, as well as land usage and emissions. Moreover, the model can be extended to a
stochastic model that considers biomass supply variability and demand as random variables.
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