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Abstract: In recent years, the impact of the energy crisis and environment pollution on quality of life
has forced industry to actively participate in the development of a sustainable society. Simultaneously,
customer satisfaction improvement has always been a goal of businesses. It is recognized that
efficient technologies and advanced methods can help transportation companies find a better balance
between progress in energy saving and customer satisfaction. This paper investigates a bi-objective
vehicle-routing problem with soft time windows and multiple depots, which aims to simultaneously
minimize total energy consumption and customer dissatisfaction. To address the problem, we first
develop mixed-integer programming. Then, an augmented ε-constraint method is adopted to obtain
the optimal Pareto front for small problems. It is very time consuming for the augmented ε-constraint
method to precisely solve even medium-sized problems. For medium- and large-sized problems,
two Non-dominated Sorting Genetic Algorithm-II (NSGA-II)-based heuristics with different rules for
generating initial solutions and offspring are designed. The performance of the proposed methods
is evaluated by 100 randomly generated instances. Computational results show that the second
NSGA-II-based heuristic is highly effective in finding approximate non-dominated solutions for
small-size and medium-size instances, and the first one is performs better for the large-size instances.

Keywords: bi-objective vehicle-routing problem; energy saving; customer satisfaction; augmented
ε-constraint method; NSGA-II-based heuristic

1. Introduction

The vehicle-routing problem (VRP) is a NP-hard combinatorial optimization problem
(c.f. Laporte [1]; Jozefowiez et al. [2]; Laporte [3]). It focuses on finding a set of routes to serve
customers. There has been significant research on VRP, which mainly includes capacitated VRP
(c.f. Toth and Vigo [4]; Ralphs et al. [5]; Fukasawa et al. [6]), periodic VRP (c.f. Francis and Smilowitz [7];
Gulczynski [8]; Campbell and Wilson [9]), pickup and delivery problems (c.f. Berbeglia et al. [10];
Parragh et al. [11]), VRP with time windows (c.f. Tan et al. [12]; Bräysy and Gendreau [13];
Tang et al. [14]), and multiple-depots VRP (c.f. Montoya-Torres et al. [15]).

The vehicle-routing problem with time windows (VRPTW) has been extensively studied in the
context where high-performance industries hope their commodities and materials are delivered and
picked up within an expected time window. Depending on the type of time window, VRPTW can be
further distinguished into VRP with hard time windows (VRPHTW) and VRP with soft time windows
(VRPSTW). For VRPHTW, a route is feasible only if every customer is served within the time window
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(c.f. Ho and Haugland [16], Alvarenga et al. [17], Dabia et al. [18], Desaulniers et al. [19]). VRPSTW can
be considered as a relaxation of VRPHTW, which has valuable practical applications (Figliozzi [20]).
For the VRPSTW, time window violation is permitted but with a penalty, i.e., early or/and late services
will generate an extra cost. Liberatore et al. [21] propose a branch-and-price algorithm for the VRPSTW.
Lu and Yu [22] study a pickup and delivery VRPSTW and combine data envelopment analysis with
a genetic algorithm (GA). Duygu et al. [23] deal with a VRPSTW with stochastic travel times and
develop a tabu search method for it. Iqbal et al. [24] propose a hybrid meta-heuristic combining
artificial bee colony (ABC) algorithm for a multi-objective VRPSTW, in which the objectives are to
minimize total traveling distance, number of time window violations and number of required vehicles.
Kumar and Panneerselvam [25] give a comprehensive survey about the various exact methods and
the heuristics and meta-heuristics used to solve the VRP and its variants, especially the VRPTW and
the capacitated vehicle-routing problem (CVRP). For a more recently survey, Dixit et al. [26] review
some of the recent advances in the VRPTW using meta-heuristic techniques, e.g., evolutionary and
swarm intelligence-based algorithms such as Particle Swarm Optimization (PSO). The authors also
highlighted the research gaps and prospects in this field.

In this work, we investigate a variant of the VRPTW with energy-saving consideration,
to minimize total energy consumption and customer dissatisfaction (i.e., total violation of time
windows). For small-size problems, the augmented ε-constraint method is adopted to obtain the
exact Pareto fronts. Two NSGA-II-based heuristics are carefully designed to tackle medium- and
large-size problems. Extensive computational experiments are conducted to evaluate and compare the
performance of these two algorithms.

The objective of this study is to address the bi-objective VRP with soft time windows and multiple
depots from the perspectives of the construction of mathematical formulation and the design of
heuristic algorithms. There are three tasks in this study, which are: (1) construct a mixed-integer linear
programming model to describe the investigated problem comprehensively; (2) design a detailed
procedure of the heuristic algorithms to obtain good Pareto fronts quickly; and (3) conduct the
computational experiments to evaluate and validate the performance of the proposed algorithms.
The main contribution of this paper is threefold:

(1) We first consider bi-objective optimization for the energy minimization VRP with soft time
windows and multiple depots.

(2) A novel mixed-integer programming model is formulated.
(3) An augmented ε-constraint method is adopted to obtain the optimal Pareto solutions for

small-size instances. In addition, two NSGA-II-based heuristics are designed to efficiently solve
medium- and large-size instances.

The remainder of the paper is organized as follows. Section 2 reviews the related literature.
Section 3 presents the description of the problem and proposes a mixed-integer programming
formulation. Section 4 gives details of the augmented ε-constraint method and two NSGA-II-based
heuristics. Computational results on numerous instances are reported in Section 5. Conclusions and
future research directions are suggested in Section 6.

2. Literature Review

Multiple depots and the energy-saving consideration are considered to be important
characteristics for the investigated problem. To be more focused, we will only review the most
relevant literature bellow.

In practice, there may be many depots for vehicles to depart from. Consequently, multiple-depots
VRP has been investigated by many researchers. Cordeau et al. [27] investigated multiple-depots
VRP with time windows (MDVRPTW) and develop a hybrid tabu search heuristic to minimize the
number of vehicles. Dondo and Cerdá [28] studied the MDVRPTW with a fleet of heterogeneous
vehicles. They provided a mixed-integer linear programming, and proposed a three-phase
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cluster-based algorithm. Goela and Gruhn [29] studied a MDVRPTW with heterogeneous vehicle
fleets and pickup and delivery orders. They proposed a large neighborhood search to maximize the
transportation profit. Flisberg et al. [30] considered a multi-period MDVRPTW with split pickup
and delivery, and a heterogeneous truck fleet. A linear programming and tabu search algorithm is
proposed. Bettinelli et al. [31] developed a branch-and-cut-and-price algorithm for MDVRPTW with
heterogeneous vehicles to minimize the total costs. Luo and Chen [32] proposed an improved shuffled
leapfrogging algorithm for MDVRPTW to minimize the total costs. There has been several pieces of
research focusing on multi-objective MDVRPTW. Tan et al. [33] provided an evolutionary algorithm
for a multi-objective MDVRPTW, which aims at minimizing total distances and number of vehicles.
Ghoseiri and Ghannadpour [34] developed a GA for MDVRPTW to minimize the number of vehicles
and total distances. Karakatič and Podgorelec [35] focused on the MDVRP. A detailed survey of GAs
designed for solving MDVRP was presented. The results of a thorough experiment are presented and
discussed, which evaluate the efficiency of different existing genetic methods on standard benchmark
problems. The insights into strengths and weaknesses of specific methods, operators and settings are
presented. The above multi-depot VRP (MDVRP) research mainly focused on the improvement of
transportation efficiency and effectiveness at minimizing travel costs or distances, but energy saving
and environment concern have not been considered.

The following researches take the energy consumption and/or customer satisfaction into
consideration. Hassanzadeh and Rasti-Barzoki [36] proposed a new bi-objective mathematical model
to reduce the consumption of energy and decrease the tardiness penalty in supply chain scheduling
and the VRP. A new Non-dominated Sorting Genetic Algorithm based on shaking and local search
strategies of the Variable Neighborhood Search algorithm was developed. The performance of the
proposed algorithm was demonstrated by computational experiments.

Zhang et al. [37] considered an Electric Vehicle-Routing Problem (EVRP) to minimize the energy
consumption of electric vehicles. The corresponding mathematical model is formulated. An ant colony
(AC) algorithm-based meta-heuristics is proposed as the solution method of the problem. The benefits
of using an energy consumption-minimizing objective function rather than a distance-related one is
also illustrated.

Ghannadpour and Zarrabi [38] presented a new model and solution for the multi-objective
heterogeneous vehicle-routing and scheduling problem. A new mathematical formulation for the
VRPTW is also presented using the proposed concept of heterogeneities. The customers’ priority for
servicing is considered.

Abad et al. [39] proposed a bi-objective model for the pickup and delivery pollution-routing
problem with integration and consolidation shipments in cross-docking system, to minimize total
system cost, and total fuel consumption by vehicles. Three multi-objective meta-heuristic algorithms
are proposed to solve this problem.

Androutsopoulos and Zografos [40] formulated and solved a bi-objective, time, load, and
path-dependent vehicle-routing problem with time windows (BTL-VRPTW). The need to address
simultaneous routing and path-finding decisions is considered to be a key feature. A generic solution
framework is proposed to address this problem.

Recently, the trend of sustainable development has gained increased attention as a near-future
business driver. Many researchers are focused on sustainable production, sustainable transportation,
etc. Demartini et al. [41] introduced a Manufacturing Value Modeling Methodology (MVMM),
and sustainability is investigated as a performance dimension when applying the MVMM. In their
follow-up study, Demartini et al. [42] used the MVMM as a value-mapping framework to help firms
in creating value propositions better suited for sustainability considering economic, environmental
and social perspectives. Concerning sustainability, the setting of a catalogue that presents an overview
of sustainable external and internal impact factors is constructed. A mapping between them that
translates business goals into manufacturing strategy is provided. The operational performance is
improved by adopting a set of sustainable industrial practices.
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On the other hand, energy and environment problems have been gaining increased attention
in the sustainable development context. Various variants of VRP that consider energy consumption
and greenhouse gas emissions are beginning to be studied, such as Energy Minimization
VRP (EMVRP) (c.f. Kara et al. [43]; Fukasawa et al. [44]), Pollution-Routing Problem (PRP)
(c.f. Bektaş and Laporte [45]; Demir et al. [46]) and Green VRP (GVRP) (c.f. Erdoǧan and
Miller-Hooks [47]; Lin et al. [48]). Single depot EMVRP is first introduced in Kara et al. [43]. They first
defined arc cost as the product of vehicle weight and arc length and assume that the vehicles types,
vehicle speed, air condition, and road condition are constant. Xiao et al. [49] proposed a simulated
annealing heuristic for the EMVRP. The problem was further studied by Fukasawa et al. [44], and two
formulations and a branch-and-cut algorithm are proposed. Liu et al. [50] investigated a VRP with
alternative paths. The objective is also related to energy consumption, i.e., finding a route with minimal
carbon footprint. The time-dependent heterogeneous-fleet vehicle is considered. A GA is designed to
solve this problem. The experimental results show that the alternative path has a significant impact in
terms of carbon footprint. However, in existing works, MDVRPTW with energy minimization has not
been investigated.

In real applications, energy-saving and customer satisfaction are often incompatible, but a better
balance between the two objectives should be achieved by efficient optimal models and methods.
Little research can be found in the literature. Demir et al. [46] investigated a bi-objective PRP with
single depot focusing on simultaneously minimizing the fuel consumption and total driving time.
An adaptive large-neighborhood search algorithm was proposed. To the best of our knowledge,
bi-objective EMVRP with soft time windows and multiple depots has not been studied.

3. Problem Description and Formulation

In this section, the problem is described in detail. Then, a mixed-integer linear programming is
proposed to represent the investigated problem comprehensively.

EMVRP is defined on a complete graph G = (V, A) with V = N0 ∪ N1, where A, N0 and N1

denote the set of arcs, the set of depots and the set of customer locations, respectively. Let dij denote the
distance between vertex i and j, and dij = dji. K = {1, 2, ..., |K|} represents the fleet of heterogeneous
vehicles located at N0, and vehicle k has the curb weight wk and the capacity Vk. A desired pickup
time window of customer i ∈ N1 is denoted by [ei, li]. The vehicle must wait until ei to start the service
if it arrives early. The customer will be dissatisfied if the service starts late, and the dissatisfaction
is measured by max{0, aik − li}, where aik denotes the arrival time of vehicle k at customer i. In this
paper, we assume that the traffic condition and the speed of the vehicles are constant. The problem
consists of determining a set of routes for vehicles such that (i) each customer is served exactly by a
single vehicle; (ii) each vehicle starts from its departure depot with its curb weight wk, and picks up qi
when it visits customer i. The total load carried by any vehicle does not exceed its capacity Vk; and (iii)
the departure depot of each vehicle is preset, and the arrival depots of vehicles should be optimized.

In this paper, energy consumption on an arc is computed by multiplying the length of arc and the
total weight of the vehicle, as in Kara et al. [43] and Fukasawa et al. [44]. The customer dissatisfaction
is defined as the total tardiness of vehicles (∑i∈N1 ∑k∈K max{0, aik − li}).

In the following, we give parameters and decision variables definitions. Then a novel bi-objective
mixed-integer linear programming for the EMVRP is formulated. Since the investigated problem can
be reduced to the VRP, which is NP-hard, then the investigated problem is also NP-hard.

3.1. Notation

Indices:

i, j: index of points, including depots and customers, i 6= j.
k: index of vehicles, {k = 1, ..., |K|}.
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Parameters:

|N0|: number of departure and arrival depots.
|N1|: number of customers.
|K|: number of vehicles.
αik: equal to 1 if depot i ∈ N0 is set to be the departure depot of vehicle k ∈ K, 0 otherwise.
dij: the distance between two vertexes i and j, i, j ∈ N0 ∪ N1, i 6= j.
ei: the earliest pickup time at customer i, i ∈ N1.
li: the latest pickup time at customer i, i ∈ N1.
qi: pickup quantity at customer i, i ∈ N1.
si: service time at customer i, i ∈ N1.

wk: curb weight of vehicle k, k ∈ K.
Vk: load capacity of vehicle k, k ∈ K.

v: the average speed of vehicles.
M: a large enough number.

Variables:

xk
ij: equal to 1 if vehicle k passes arc (i, j), 0 otherwise, i, j ∈ N0 ∪ N1 and k ∈ K.

zik: equal to 1 if vehicle k visits vertex i, 0 otherwise, i ∈ N0 ∪ N1 and k ∈ K.
aik: the arrival time of vehicle k at vertex i, i ∈ N1 and k ∈ K.
Lik: tardiness of vehicle k at vertex i, Lk

i = max{0, ak
i − li}, i ∈ N1 and k ∈ K.

Qik: total load of vehicle k before it loads at vertex i, i ∈ N0 ∪ N1 and k ∈ K.
Rik: the cumulative energy consumption of vehicle k at vertex i, i ∈ N0 ∪ N1 and k ∈ K.

3.2. The Formulation of the EMVRP

The formulation is as follows:

min f1 = ∑
k∈K

∑
i∈N0

Rik (1)

min f2 = ∑
k∈K

∑
i∈N1

Lik (2)

Objective function f1 is to minimize the total energy consumption, f2 aims to minimize the
customer dissatisfaction.

s.t. ∑
k∈K

zik = 1, i ∈ N1 (3)

∑
j∈N0∪N1,j 6=i

xk
ij = zik, i ∈ N1, k ∈ K (4)

∑
i∈N0∪N1,i 6=j

xk
ij = zjk, j ∈ N1, k ∈ K (5)

Constraint (3)–(5) ensures that each customer is served exactly once by a vehicle.

xk
ij = 0, i, j ∈ N0, k ∈ K, i 6= j (6)
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Constraint (6) ensures that vehicles do not travel between departure and arrival depots.

∑
i∈N1

xk
ij = zjk, j ∈ N0, k ∈ K (7)

Constraint (7) ensures that each vehicle returns back to a depot after serving customers.

∑
j∈N1

xk
ij ≤ αik, i ∈ N0, k ∈ K (8)

Constraint (8) ensures that vehicle k starts from its departure depot.

∑
i∈N1

qizik ≤ Vk, k ∈ K (9)

Constraint (9) ensures that the total load of vehicle k does not exceed its capacity Vk.

Qjk + (1− xk
ij)M ≥ wk, i ∈ N0, j ∈ N1, k ∈ K (10)

wk + (1− xk
ij)M ≥ Qjk, i ∈ N0, j ∈ N1, k ∈ K (11)

Constraints (10) and (11) ensure that the load of vehicle k equals its curb weight wk when it
departs from the depot.

Qjk + (1− xk
ij)M ≥ Qik + qi, i ∈ N1, j ∈ N0 ∪ N1, i 6= j, k ∈ K (12)

Qik + qi + (1− xk
ij)M ≥ Qjk, i ∈ N1, j ∈ N0 ∪ N1, i 6= j, k ∈ K (13)

Constraints (12) and (13) detail the way of calculating the load carried by vehicle k before it loads
at vertex i, which also can be used as subtour elimination.

Rjk + (1− xk
ij)M ≥ Qjkdij, i ∈ N0, j ∈ N1, k ∈ K (14)

Rjk + (1− xk
ij)M ≥ Qjkdij, i ∈ N0, j ∈ N1, k ∈ K (15)

Rjk + (1− xk
ij)M ≥ Rik + Qjkdij, i ∈ N1, j ∈ N0 ∪ N1, i 6= j, k ∈ K (16)

Rik + Qjkdij + (1− xk
ij)M ≥ Rjk, i ∈ N1, j ∈ N0 ∪ N1, i 6= j, k ∈ K (17)

Constraints (14)–(17) explain the calculation method of energy consumption of vehicle k before it
loads at vertex i.

ajk + (1− xk
ij)M ≥ dij/v, i ∈ N0, j ∈ N1, k ∈ K (18)

dij/v + (1− xk
ij)M ≥ ajk, i ∈ N0, j ∈ N1, k ∈ K (19)

ajk + (1− xk
ij)M ≥ aik + si + dij/v, i ∈ N1, j ∈ N0 ∪ N1, i 6= j, k ∈ K (20)
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ajk + (1− xk
ij)M ≥ ei + si + dij/v, i ∈ N1, j ∈ N0 ∪ N1, i 6= j, k ∈ K (21)

Constraints (18)–(21) calculates the arrival time of the vehicle k at each vertex.

Lik ≥ aik − li, i ∈ N1, k ∈ K (22)

Lik ≥ 0, i ∈ N1, k ∈ K (23)

Constraints (22) and (23) define the tardiness of vehicle k at vertex i.

xk
ij, zik ∈ {0, 1}, i, j ∈ N0 ∪ N1, i 6= j, k ∈ K (24)

aik, Qik, Rik ≥ 0, i ∈ N0 ∪ N1, k ∈ K (25)

Constraints (24) and (25) are the restrictions on decision variables.

4. Solution Domain

There are various methods for solving multi-objective optimization problems, such as weighting
method, ε-constraint method, evolutionary algorithms, etc. NSGA-II and ε-constraint method are
known to be the most popular methods for bi-objective problems. In this section, we first describe
bi-objective optimization and the principle of augmented ε-constraint method. Then, augmented
ε-constraint method is adopted and two NSGA-II-based heuristics are designed.

4.1. Bi-Objective Optimization Problem

We consider the bi-objective optimization problem in the form as bellow, see Equations (26) and (27):

min { f1(x), f2(x)} (26)

s.t. x ∈ X (27)

where f1(x) and f2(x) denote total energy consumption and customer dissatisfaction respectively.
Item x represents a decision variable vector, which belongs to the feasible solution region X defined by
(3)–(25). A solution x is non-dominated only if it cannot be replaced by another solution which reduces
one objective without increasing another (Tkindt and Ballaut [51]). A non-dominated solution is said
to be Pareto-optimal, and the image of corresponding objective values of non-dominated solutions is
called the Pareto front.

4.2. The Augmented ε-Constraint Method

The basic idea of ε-constraint method is to transform the bi-objective problem into a series
of single-objective problems, which optimizes one objective with restricting another by a bound ε.
The definition of the value of ε in each iteration is one of critical factors for ε-constraint method. For our
problem, the second objective is considered to be a constraint and restricted by ε. [ f I

2 , f N
2 ], the range of

ε, is obtained by following ideal point and nadir point (Bérubé et al. [52]).

- Ideal point: fI = ( f I
1 , f I

2 ), where f I
1 = min{ f1(x)} and f I

2 = min{ f2(x)}, x ∈ X ;
- Nadir point: fN = ( f N

1 , f N
2 ), where f N

1 = min{ f1(x) : f2(x) = f I
2} and f N

2 = min{ f2(x) : f1(x) = f I
1},

x ∈ X ;

Not all solutions obtained by the ε-constraint method are non-dominated (c.f. Ehrgott and
Ruzika [53]). To avoid iterations that generate dominated solutions and accelerate the whole process,
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augmented ε-constraint method is proposed by Mavrotas [54], and further improved by Mavrotas
and Florios [55]. It introduces a slack/surplus variable and a bypass coefficient. For our problem,
we transform the original bi-objective problem into several single-objective problems, as shown in
Equations (28)–(30):

P′(ε): min{ f1(x)− eps× S} (28)

s.t. f2(x) + S = ε (29)

x ∈ X (30)

where

- eps: a very small number, i.e., eps = 10−5.
- S: slack variable for f2.
- ε: ε = f N

2 − i× step, where i denotes the iteration counter, and step is the step size of epsilon and
set as the minimal unit value of f2.

- X : the feasible region.

The value of ε is also bounded by interval [ f I
2 , f N

2 ]. By varying the value of ε, a sequence of
single-objective problems can be generated and solved. For each single-objective problem, ε-constraint
is presented by an equality combining the slack variable S, ε and f2. To optimize the objective, f1 is
minimized and slack variable S is maximized with lower priority as its weight coefficient eps is very
small, forcing the program to obtain only non-dominated solutions (Mavrotas [54]).

As stated by Mavrotas and Florios [55], when slack variable S is larger than the step, then the same
solution will be obtained with the slack variable being S− step in the next iteration. Generation of no
new non-dominated solutions makes the iteration redundant and therefore it can be skipped. Then a
bypass coefficient b implying the number of consecutive iterations that can be skipped is introduced,
which is calculated as the integer part of (S/step). The framework of augmented ε-constraint method
is shown in Algorithm 1.

Algorithm 1: The augmented ε-constraint method.

1 i = 1. (Initialize iteration counter)
2 Compute the Ideal point and the Nadir point;
3 F = {( f N

1 , f I
2 ), ( f I

1 , f N
2 )};

4 while i ≤ ( f N
2 − f I

2 ) do
5 Solve problem P′(ε) exactly, obtain an optimal solution x∗ and ( f1(x∗), f2(x∗)), calculate

the bypass coefficient b;
6 F = F ∪ ( f ∗1 , f ∗2 );
7 i = i + b + 1;
8 end

To obtain exact Pareto front is time consuming for the augmented ε-constraint method, even
impossible for almost large-size NP-hard problems. In the next subsection, we focus on developing
heuristics to find approximate Pareto front.

4.3. NSGA-II Based Heuristics

Non-dominated Sorting Genetic Algorithm-II (NSGA-II), proposed by Deb et al. [56], is a fast
and elitist multi-objective evolutionary algorithm. NSGA-II starts with an initial set of solutions.
During each generation, offspring solutions are reproduced by parent solutions using genetic
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operators. Then the population combining current solutions and offspring solutions is renewed. To be
specific, the combined population is sorted by non-domination sort procedure into different ranks
{F1, F2, ..., Ft, ...}. Solutions of ranks in ascending order are sequentially added into the new population
P, if |P| + |Ft−1| ≤ pop and |P| + |Ft| > pop, the first pop − |P| solutions in level Ft are selected
according to their crowding distances in descending order, where pop denotes the predetermined
population size. After the predefined number of generations is completed, a set of approximate Pareto
solutions can be obtained.

In this section, two NSGA-II-based heuristics H1 and H2 with different rules of generating
initial solutions and reproducing offspring are designed for our problem. The proposed heuristics
are composed of (1) solution representation; (2) evaluation and feasibility check; (3) population
initialization; (4) selection; (5) genetic operators; and (6) recombination.

To differentiate the two algorithms, the following statements should be noticed. H1 focuses on
constructing routing for each vehicle based on the customer sequence, while H2 searches for available
vehicles for each customer. Besides, the initialization procedure of two algorithms are various, as shown
in Algorithms 2 and 3. Although these two algorithms share the same mutation operator 1, H1 adopted
a different crossover operator and a different mutation operator 2 compared to H2. The detailed steps
of H1 and H2 are given as follows.

4.3.1. Solution Representation

Solutions are represented by chromosomes. By analyzing the proposed problem, we find that
the factors which can affect the objective values are: (1) assignment of each customer to exactly one
vehicle; (2) the sequence of customers to be served by each vehicle; and (3) arrival depot of each vehicle.
Therefore, in two heuristics, a solution is composed of three decision parts: (i) the first part is composed
by the numbers of customers served by vehicles; (ii) the second part is the order of customers to be
served by each vehicle; and (iii) the third part is the arrival depot of each vehicle.

Figure 1 illustrates the chromosome representation. Assume that there are 10 customers and
3 vehicles, and all vehicles depart from depot 1. The chromosome in Figure 1 shows that vehicle 1
serves 2 customers (8, 4) in order and arrives at depot 1, vehicle 2 serves 4 customers (3, 9, 10, 5) in
order and then arrives at depot 2, and vehicle 3 serves 4 customers (2, 6, 7, 1) in order and arrives at
depot 1.

4.3.2. Evaluation and Feasibility Check

The evaluation step is to determine fitness values of an individual. For our problem, evaluation
procedure corresponds to the computation of total energy consumption and total tardiness of a solution.
A chromosome must be translated into the routes of vehicles before evaluation.

Consider a chromosome S mentioned above. The route of each vehicle can be obtained accordingly
as shown in Figure 1. If a vehicle serves no customer, the energy consumption and tardiness of this
vehicle are set to be zero. Otherwise, let vector pathk represents the route of vehicle k. For instance,
path2 = {1, 3, 9, 10, 5, 2} denotes the route of vehicle 2 in Figure 1, where the first and the last element
represent the departure depot and arrival depot of vehicle 2. The cumulative energy consumption Rik
of vehicle k before it loads at a vertex i ∈ N0 ∪ N1 is detailed in constraints (10)–(17), and the tardiness
Lik of vehicle k at a customer i ∈ N1, is defined by constraints (18)–(23). The calculation of two fitness
values, i.e., total energy consumption and total tardiness, are given by (1) and (2).

After a solution is generated, it is possible that this solution is infeasible, which violates some
constraints provided by the formulation in Section 3. Feasibility check procedure is to ensure the
feasibility of the problem. We can find that by using the solution representation in Section 4.3.1,
constraints (3)–(8) and (24)–(25) are immediately satisfied, and constraints (10)–(23) correspond to the
definition of cumulative energy consumption and tardiness. Therefore, the feasibility check procedure
mainly focuses on checking whether the capacity constraint (9) is violated. If the feasibility check is
not passed for a solution, that is, the load of at least one vehicle exceeds its capacity in the solution,
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then a very large penalty will be added to both of its fitness values in order to discard this solution
through the non-dominated sorting procedure.

4.3.3. Population Initialization

The initial population includes several feasible solutions. To generate an initial solution in H1,
firstly the indices of customers are sorted randomly, and based on that a vehicle is selected at random
to serve customers one after another until its capacity limit is reached. Then for remaining unserved
customers, another vehicle is chosen, and the same operation is repeated until each customer is served
by exactly one vehicle. The arrival depot of each vehicle is randomly selected, after which the routes of
all vehicles are determined and then coded by the solution representation method. The framework of
population initialization in H1 is illustrated in Algorithm 2.

Population initialization in H2 is shown in Algorithm 3. For each customer, there is an initial
set of available vehicles, which can serve this customer without violating the capacity constraint.
From every customer 1 to |N1|, after the vehicle that serves each customer is randomly selected from
the set of available vehicles, the load of this vehicle and the available vehicles for the next customer are
updated. Then the sequence of customers served by each vehicle is randomly arranged, arrival depot
of each vehicle is selected at random, and routes of all vehicles are determined and coded by solution
representation method.

Figure 1. Solution representation.
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Algorithm 2: Population initialization in H1.
Input: Problem parameters and population size pop

1 Initialize the set of solutions: Sini = ∅;
2 for i = 1 : pop do
3 Random permutation of customer indices: Seq = randperm(|N1|);
4 Initialize the sequence of vehicles to be selected: Veh = randperm(|K|);
5 k = 1;
6 while k ≤ |K| do
7 Initialize the path of vehicle k: pathVeh(k) = ∅;
8 Initialize the load of vehicle k: loadVeh(k) = 0;
9 while There exists unserved customers, i.e., length(Seq) ≥ 1 do

10 for j = 1 : length(Seq) do
11 if Veh(k) can load at Seqj without violating capacity constraint then
12 The jth customer is added into the path of the kth vehicle:

pathVeh(k) = pathVeh(k) ∪ Seq(j);
13 The load of the kth vehicle is updated: loadVeh(k) = loadVeh(k) + demand of

Seq(j);
14 The set of unserved customers is updated: Seq(j) = Seq(j)\{Seq};
15 end
16 end
17 end
18 k = k + 1;
19 end
20 Let the number of customers served by each vehicle be alpha = ∅;
21 Let the sequence of customers to be served by each vehicle be beta = ∅;
22 Let the arrival depot of each vehicle be gamma = ∅;
23 for k = 1 : |K| do
24 For every vehicle, integrate the information to form a complete chromosome.

alpha = [alpha, length(pathk)];
25 beta = [beta, pathk]

26 gamma = [gamma, randi(1, |N0|)];
27 end
28 Obtain a new individual Si = [alpha, beta, gamma];
29 Update Sini = Sini ∪ S;
30 end
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Algorithm 3: Population initialization in H2.
Input: Problem parameters and population size pop

1 Initialize the set of solutions: Sini = ∅;
2 for i = 1: pop do
3 for k = 1 : |K| do
4 Initialize the path of vehicle k: pathVeh(k) = ∅;
5 Initialize the load of vehicle k: loadVeh(k) = 0;
6 end
7 j = 1;
8 while j ≤ |N1| do
9 Initialize the set of available vehicles for customer j: Set = {1, 2, ..., |K|};

10 for k = 1 : |K| do
11 if Vehicle k cannot load at customer j then
12 Remove vehicle k from Set, i.e., Set = Set\{k};
13 end
14 end
15 Randomly select a vehicle from Set for customer j;
16 Update the load of each vehicle;
17 j = j + 1;
18 end
19 Customers served by each vehicle is determined;
20 for k = 1 : |K| do
21 Sort the sequence of customers to be served by vehicle k randomly, and obtain pathk;
22 end
23 Let the number of customers served by each vehicle be alpha = ∅;
24 Let the sequence of customers to be served by each vehicle be beta = ∅;
25 Let the arrival depot of each vehicle be gamma = ∅;
26 for k = 1 : |K| do
27 alpha = [alpha, length(pathk)];
28 beta = [beta, pathk]

29 gamma = [gamma, randi(1, |N0|)];
30 end
31 Obtain a new individual Si = [alpha, beta, gamma];
32 Update Sini = Sini ∪ Si.
33 end

4.3.4. Selection

After the non-dominated sorting procedure is completed, initial solutions are sorted into different
non-dominated ranks and their crowding distances are computed. It is implied that between two
individuals with different ranks, the one with lower rank is preferred, when they are of the same front,
the one with larger crowding distance is selected.

4.3.5. Genetic Operators

Genetic operators, including crossover and mutation procedure, are performed for reproducing
offspring in each generation. The crossover procedure of H1 is shown in Figure 2. We randomly
choose a vehicle and exchange its routes between two parent solutions and assign remaining vehicles
randomly for the unserved customers. For mutation procedure, there are two ways: (i) exchanging
the sequences of two customers in the route of one certain vehicle, which is shown in Figure 3;
and (ii) exchanging two customers served by different vehicles as shown in Figure 4.
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Figure 2. Crossover in H1.

Figure 3. Mutation 1 in H1 and H2.

Figure 4. Mutation 2 in H1.

In terms of crossover procedure in H2, we focus on preserving similarities between two parental
solutions. For each vehicle, if it serves the same customer in two parental solutions, then the customer
will be still served by this vehicle in the offspring solutions. In addition, we randomly assign the
remaining customers to vehicles, then arrange the sequence of customers to be served by each vehicle
at random. There are two methods for mutation: (i) exchanging the sequences of two customers in the
route of a certain vehicle as shown in Figure 3; and (ii) changing the terminal depots for vehicles by
selecting a new depot randomly.

4.3.6. Recombination

During each iteration, the population which combines current solutions and offspring solutions
will be updated. Population is sorted into various non-dominated ranks {F1, F2, ..., Ft, ...} by
non-dominated sorting procedure. Solutions in F1 are updated into the renewed population if the
population size does not exceed pop. Then solutions in F2 are added into the renewed population as
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long as the population size is no more than pop, and so on. The operation will not be stopped until
the population size exceeds pop by adding the solutions in front Ft. To maintain several pop solutions,
solutions in front Ft are selected by the selection procedure described in Section 4.3.4.

5. Computational Experiments

In this section, the performance of proposed methods is evaluated by 100 randomly generated
instances, which includes small-, medium-, and large-size ones. All algorithms were coded in MATLAB
R2014b. All computational experiments were conducted on a PC with 3.60 GHz processor and 8.00 GB
RAM under windows 10 operating system. For the augmented ε-constraint method, CPLEX 12.6 is
used to solve single-objective problems, computation time for each single-objective optimization and
total computational time are limited within 7200 s and 36,000 s respectively.

For two NSGA-II-based heuristics, a preliminary analysis was conducted to fine-tune the
parameters, which is presented in Table 1. Population size and generation number are set to be
500 and 20 respectively. In computational experiments, tournament size is set to be 0.5× pop as in line
with the classic NSGA-II in Deb et al. [56].

Table 1. Parameters for heuristics.

Parameter Value (H1) Value (H2)

Population size (pop) 500 500
Generation number (gen) 20 20

Crossover probability 0.6 0.7
Mutation_1 probability 0.3 0.2
Mutation_2 probability 0.1 0.1

5.1. Data Generation

For small-size and medium-size instances, the data set is derived from instances for VRPTW
proposed by Solomon [57]. Solomon’s benchmark problems have been grouped into three different
types: C, R, and RC. Each type of data includes 8 to 12 instances with a central depot, 100 customers,
homogeneous vehicles, and different time windows. Customers in type R are uniformly and randomly
distributed, and those in type C have been clustered. Problems of RC-type are mixtures of both random
and clustered locations. Time windows in sets of ’R1’, ’C1’ and ’RC1’ are narrow, while those in sets of
’R2’, ’C2’ and ’RC2’ are wider. Euclidean distances and traveling times are numerically identical.

We set the curb weight of each vehicle wk = ρVk with ρ = 0.15 as in Kara et al. [43]. For instance,
with |N| customers, |D| depots and |K| vehicles, data set of customers are derived from the original
benchmark problem R-101 (Solomon [57]) by considering the first |N| customers. Euclidean coordinates
of the depots are generated by considering the first |D| depots detailed in Table 2, where the coordinates
of the first 7 depots are in line with Dondo and Cerdá [28] and those of the last 3 depots are randomly
generated. The capacities of vehicles are generated by considering the first |K| vehicles in Table 2.
Without loss of generality, departure depot for each vehicle is randomly assigned.

For large-size instances, data set is derived from Homberger’s instances of type S-R1-800.
The generation of data is same as the method detailed above. Solomon’s instances and Homberger’s
instances are available online at http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-with-time-
windows-instances/.

http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-with-time-windows-instances/
http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-with-time-windows-instances/
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Table 2. Information of Depots and Vehicles in small- and medium- size problems.

Depote D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
X 27 35 29 40 20 22 30 40 38 42
Y 51 35 53 68 80 84 55 20 37 48

Vehicle T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Capacity 200 150 130 170 120 250 280 190 270 240
Vehicle T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

Capacity 320 450 430 470 500 450 480 490 470 340
Vehicle T21 T22 T23 T24 T25 T26 T27 T28 T29 T30

Capacity 420 450 430 570 500 450 380 410 370 340
Vehicle T31 T32 T33 T34 T35 T36 T37 T38 T39 T40

Capacity 420 330 430 370 400 350 480 410 370 440
Vehicle T41 T42 T43 T44 T45 T46 T47 T48 T49 T50

Capacity 420 430 530 470 400 450 480 510 570 540

5.2. Performance Metrics

Since the output of a bi-objective optimization is a set of non-dominated solutions, solution quality
is less straightforward. As stated in Liu et al. [58], an ideal bi-objective method has two features: (i) it
can find a set of solutions close to the optimal Pareto front; and (ii) solutions have a large diversity.
To evaluate the performance of the approaches, three widely used metrics, which are cardinality,
hyper-volume ratio and average e-dominance, are introduced (Cheng et al. [59]).

Cardinality (Q): this metric measures the number of non-dominated solutions obtained by each
method (Van Veldhuizen and Lamont [60]). A larger Q implies a better solution set.

The hyper-volume Ratio (H): This measure calculates the ratio of the hyper-volume (HV) of a
solution set A and a reference set R, which is denoted as HVA and HVR, separately. It is calculated as
Equation (31):

H = HVA/HVR. (31)

The reference solution set can either be the exact Pareto front or a set of high quality
non-dominated solutions. HV implies the size of dominated space for a set of solutions
(Zitzler et al. [61,62]). This indicator calculates the volume of a given region H. For bi-objective
problems, HV is equal to the union of the rectangle shaped by the nadir point and each point in the set
of non-dominated solutions, the volume of overlapped area is only calculated once. A larger value of
this metric implies a better set of solutions.

Average e-dominance (D): this measure implies the average distance between a solution set A
and the reference set R, which is shown in Equation (32). The closer the value of D to 1 implies a
better performance.

D =
1
|R| ∑

xR∈R
e(x, xR), (32)

where,

e(x, xR) = min
x∈A

max
{

f1(x)
f1(xR)

,
f2(x)

f2(xR)

}
.

5.3. Results and Discussion

Computational results obtained are reported in Tables 3–5. For each instance, we run each
algorithm 30 times independently and obtain the average value of these results (Cheng et al. [59]).

Table 3 represents the computational results of the small-size instances in which the number
of customers ranges from 5 to 11. Since augmented ε-constraint method direct uses CPLEX and
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it can obtain the optimal Pareto fronts, which is selected as the reference set. It is understandable
that both H and D value of the reference set itself are equal to 1, therefore the values of these two
indicators of augmented ε-constraint method are omitted in Table 3. By comparing the value of Q
of the methods, it can be seen that on average the performance of H1 is a bit worse in terms of the
number of non-dominated solutions. Meanwhile, it also can be seen that the average value ofH of H2

is larger and closer to 1 compared with that of H1, which implies that the solutions yielded by H2 have
similar quality to the exact Pareto font in terms of dominated space on average. Besides, according to
the computational results, we can find that the average D value of H2 is closer to 1, indicating that
the average distance from solutions of H2 to the reference set is smaller than that of H1. Moreover, H2

performs better in terms of computational time. For small-size instances, concluding, H2 is much more
efficient than H1.

Table 3. Computational results for small-size instances.

Set (|N|, |D|, |K|)
Augmented ε-Constraint Method H1 H2

Q CT Q H D CT Q H D CT

1 (5,1,1) 3 6.5 3 1.000 1.000 15.1 3 1.000 1.000 3.8
2 (5,1,2) 3 10.9 3 1.000 1.000 22.5 3 1.000 1.000 4.1
3 (5,1,3) 4 13.8 4 1.000 1.000 24.2 4 1.000 1.000 4.4
4 (5,1,4) 3 17.5 3 1.000 1.000 28.5 3 1.000 1.000 4.6
5 (5,2,2) 5 16.4 5 1.000 1.000 24.1 5 1.000 1.000 4.1
6 (5,2,3) 3 25.5 3 1.000 1.000 28.3 3 1.000 1.000 4.5
7 (5,2,4) 2 81.6 2 1.000 1.000 29.3 2 1.000 1.000 4.6
8 (6,1,1) 6 17.3 6 1.000 1.000 15.5 6 1.000 1.000 3.8
9 (6,1,2) 6 24.6 6 1.000 1.000 22.2 6 1.000 1.000 4.1

10 (6,1,3) 4 34.6 4 1.000 1.000 26.8 4 1.000 1.000 4.3
11 (6,1,4) 4 46.7 4 1.000 1.000 28.0 4 1.000 1.000 4.2
12 (6,2,2) 8 42.3 7 1.028 0.981 23.2 7 0.999 0.955 4.5
13 (6,2,3) 3 86.7 3 1.000 1.000 27.3 3 1.000 1.000 4.3
14 (6,2,4) 2 537.5 2 1.000 1.000 28.8 2 1.000 1.000 4.7
15 (7,1,1) 6 20.5 6 1.000 1.000 15.2 6 1.000 1.000 4.0
16 (7,1,2) 10 142.6 11 0.843 1.315 23.4 11 1.000 1.316 4.2
17 (7,1,3) 12 1336.1 7 0.903 1.110 26.6 8 0.954 1.109 4.5
18 (7,1,4) 8 491.9 7 0.734 1.546 26.7 7 0.774 1.001 4.7
19 (7,2,2) 15 162.4 11 0.821 1.107 27.8 15 0.999 1.158 4.3
20 (7,2,3) 6 420.6 5 0.728 1.028 23.6 5 0.729 1.039 4.5
21 (7,2,4) 5 6727.1 4 0.859 0.978 27.4 4 0.948 1.099 4.7
22 (8,1,1) 5 79.9 7 0.813 1.013 28.3 6 0.853 1.043 3.9
23 (8,1,2) 14 585.6 14 0.963 1.381 15.3 13 0.993 1.235 4.3
24 (8,1,3) 13 2095.6 12 0.929 1.135 23.4 14 0.920 1.130 4.6
25 (8,1,4) 13 15,447.1 11 0.929 1.212 26.9 8 0.757 1.052 4.8
26 (8,2,2) 18 11,497.6 8 0.612 1.318 27.8 17 0.980 1.291 4.3
27 (8,2,3) 8 12,326.1 9 0.353 2.997 24.1 13 1.014 1.240 4.6
28 (8,2,4) 10 16,209.9 3 0.714 1.006 27.0 5 0.731 1.006 4.8
29 (9,1,1) 6 804.3 8 0.998 1.212 15.7 4 1.000 1.011 3.9
30 (9,1,2) 12 8179.8 13 0.726 1.398 24.0 8 0.991 1.240 4.3
31 (9,1,3) 6 14,913.9 13 0.664 1.307 27.5 9 0.790 1.094 4.7
32 (9,1,4) 6 16,278.0 7 0.476 1.055 28.3 6 1.000 1.025 4.9
33 (9,2,2) 14 9962.1 9 1.244 1.388 24.5 16 0.824 1.175 4.4
34 (9,2,3) 4 31,429.1 8 0.606 1.263 27.4 3 0.616 1.067 4.7
35 (9,2,4) 6 36,000.0 2 0.737 1.003 28.4 7 0.778 1.069 4.9
36 (10,1,1) 12 7174.1 11 0.776 1.185 15.7 9 0.984 1.224 4.0
37 (10,1,2) 15 18,367.6 6 0.541 1.420 24.0 9 0.917 1.067 4.4
38 (10,1,3) 10 22,393.4 7 0.769 1.205 27.7 11 0.966 1.321 4.8
39 (10,1,4) 7 28,547.6 12 0.993 1.198 28.4 9 0.810 1.469 5.0
40 (10,2,2) 11 29,842.2 9 1.216 1.386 25.1 18 1.012 1.296 4.2
41 (10,2,3) 12 34,639.8 7 1.288 1.351 28.3 7 1.364 1.163 4.8
42 (10,2,4) 9 36,000.0 8 0.898 1.354 28.7 9 0.928 1.387 5.1
43 (11,1,1) 10 36,000.0 9 1.124 1.488 15.7 6 1.074 1.325 4.2
44 (11,1,2) 12 36,000.0 5 0.759 1.431 23.6 11 1.363 1.083 4.6
45 (11,2,2) 8 36,000.0 8 1.068 1.590 24.5 6 1.089 1.048 4.6

Average 7.978 10,467.7 6.956 0.891 1.208 24.551 7.444 0.959 1.103 4.438
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In the meantime, CPLEX loses its power to solve the problem exactly as it scales up, even failing
to obtain optimal solutions for instances with more than 12 customers. Then, for the medium-size and
large-size instances, the reference solution set is formed by selecting the non-dominated solutions from
the combination of the two fronts obtained by the heuristics. Both algorithms can obtain approximate
solutions for instances with 20 to 100 customers within 40 s.

Table 4 presents the computational results of the medium-size instances. The average
computational time of H1 is about 1.72 times that of H2, which shows that H2 performs better in terms
of the computational time. Furthermore, it can be seen that the average number of non-dominated
solutions yielded by H1 is slightly less than that obtained by H2. By comparing H values of two
heuristics, we can find that the solutions yielded by H2 have higher quality than H1 on average.
Besides, there is little difference between the average D values of two heuristics, which implies that
the distance between the solutions obtained by the heuristics is small. For medium-size instances,
to conclude, H2 performs better than H1 in terms of computation time, the number of non-dominated
solutions. and the solution quality.

Computational results of large-size instances with 200 to 800 customers are reported in Table 5.
It can be obtained that the computational time of H2 increases much faster than H1 as the problem
scales up, which implies that H1 is relatively stable and performs better for large-size instances in
terms of computational time. The quality of solutions obtained by H1 is higher than that of H2 in terms
of the average value ofH. However, the average number of solutions obtained by H1 is less than that
yielded by H2. Moreover, we can find that the average D value of solutions of H1 is slightly larger than
that of H2.

Table 4. Computational results for medium-size instances.

Set (|N|, |D|, |K|)
Reference H1 H2

Q Q H D CT Q H D CT

46 (20,2,3) 7 5 0.834 1.114 28.3 8 0.858 1.156 5.9
47 (20,3,4) 14 10 0.843 1.204 29.2 13 1.004 1.204 6.3
48 (25,2,3) 6 7 0.632 1.189 28.9 5 1.006 1.259 7.6
49 (25,3,4) 13 3 0.834 0.918 29.7 18 0.932 1.138 7.4
50 (30,2,3) 6 9 0.187 1.148 28.8 6 1.000 1.085 9.8
51 (30,3,4) 6 9 0.544 1.053 29.5 10 0.934 1.138 9.8
52 (35,2,5) 6 11 0.145 1.157 30.4 6 1.000 1.109 10.7
53 (35,3,6) 12 8 0.593 1.106 31.1 14 0.972 1.077 8.9
54 (40,2,5) 16 10 0.692 1.115 31.0 15 1.051 1.183 14.3
55 (40,3,6) 14 14 1.000 1.085 31.4 16 1.028 1.297 13.8
56 (45,2,5) 15 5 0.171 1.409 31.3 15 1.000 1.178 4.6
57 (45,3,6) 16 9 0.787 1.118 32.2 16 0.995 1.115 4.2
58 (50,2,7) 15 10 0.998 1.041 32.5 10 0.990 1.064 15.4
59 (50,3,8) 9 11 0.932 1.124 33.4 8 0.970 1.129 14.2
60 (55,2,7) 10 6 0.835 1.098 33.1 9 0.948 1.024 17.5
61 (55,3,8) 6 9 0.538 1.076 33.2 6 1.000 1.061 16.2
62 (60,2,7) 11 5 0.907 0.978 33.2 18 0.861 1.071 21.3
63 (60,3,8) 15 20 0.648 1.095 33.2 14 0.999 1.117 19.1
64 (65,3,9) 11 9 0.837 1.002 34.5 11 1.000 1.111 20.0
65 (65,4,10) 3 3 0.786 1.175 34.6 3 1.000 1.085 17.5
66 (70,3,9) 5 5 0.651 1.174 35.0 5 1.000 1.023 24.9
67 (70,4,10) 6 9 0.498 1.016 35.5 6 1.000 1.059 21.2
68 (75,3,9) 15 4 0.861 1.024 34.6 16 0.898 1.083 28.7
69 (75,4,10) 14 7 0.969 0.998 35.6 20 0.811 1.062 24.9
70 (80,3,11) 15 12 0.855 1.025 38.1 15 0.928 1.082 25.1
71 (80,4,12) 11 7 0.734 1.013 35.7 11 0.923 1.059 22.4
72 (85,3,11) 9 26 0.628 1.113 35.7 9 1.000 1.115 31.2
73 (85,4,12) 13 11 0.867 1.099 36.6 6 1.252 1.062 29.2
74 (90,4,11) 19 14 0.955 1.076 36.5 13 0.974 1.066 27.2
75 (90,5,12) 8 7 0.626 1.043 36.6 9 0.981 1.045 32.9
76 (95,5,13) 17 12 0.900 1.048 38.1 12 0.986 1.024 32.8
77 (95,6,14) 10 12 0.639 1.062 31.2 9 1.000 1.053 30.4
78 (100,5,13) 14 9 0.752 1.050 38.1 13 0.937 1.043 32.6
79 (100,6,14) 12 11 0.819 1.164 37.8 12 0.976 1.055 32.7

Average 11.147 9.382 0.721 1.092 33.421 11.088 0.977 1.101 19.412
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Table 5. Computational results for large-size instances

Set (|N|, |D|, |K|)
Reference H1 H2

Q Q H D CT Q H D CT

80 (200,5,20) 9 7 0.879 1.048 47.9 9 0.762 1.089 182.2
81 (200,6,22) 16 16 1.000 1.059 48.2 14 0.789 1.047 170.9
82 (250,5,22) 12 14 0.713 1.050 54.4 13 0.920 1.056 312.0
83 (250,6,25) 15 10 0.863 0.998 54.2 15 0.976 1.023 238.5
84 (300,6,25) 12 10 0.874 1.025 60.1 11 0.898 1.011 353.9
85 (300,7,27) 14 14 0.970 1.024 62.1 10 0.781 1.042 338.7
86 (350,7,27) 13 7 0.854 1.022 67.4 7 0.743 1.032 572.8
87 (350,8,30) 6 3 0.475 1.027 68.7 8 0.534 1.014 424.8
88 (400,8,30) 11 10 0.999 1.011 74.8 6 1.002 1.010 631.1
89 (400,9,32) 11 10 0.645 1.017 74.1 6 0.816 1.008 543.1
90 (450,9,34) 18 4 0.664 1.238 83.1 18 0.987 1.017 487.9
91 (450,10,35) 16 10 0.751 1.210 83.7 16 0.962 1.023 478.7
92 (500,10,36) 16 16 0.546 1.033 91.7 5 0.712 1.028 922.9
93 (500,8,37) 10 10 1.044 1.045 92.4 7 1.012 1.008 883.8
94 (550,9,39) 9 5 0.750 1.243 102.7 13 0.824 1.098 777.5
95 (550,10,40) 8 7 0.865 1.147 101.7 12 0.820 1.067 1012.0
96 (600,9,42) 10 10 1.000 1.013 111.2 9 0.516 1.039 1188.0
97 (650,9,43) 15 11 0.979 1.011 119.4 12 0.594 1.012 1337.9
98 (700,9,45) 11 11 0.986 1.013 131.0 13 0.592 1.034 1710.1
99 (750,9,47) 4 8 0.852 1.005 130.6 8 0.634 1.046 1953.4

100 (800,10,50) 8 8 1.000 1.004 153.2 15 0.463 1.045 2080.3

Average 11.619 9.571 0.843 1.059 86.314 10.809 0.778 1.045 790.500

By comparing the results of two methods under different sizes of problems, we can find that,
on average: (1) two heuristics are much more efficient than the augmented ε-constraint method
incorporating with CPLEX in terms of computational time; (2) for small-size and medium-size instances,
H2 performs better than H1 in terms of solution quality and computational time; (3) for large-size
instances, H1 outperforms H2 in terms of computational time and the solution quality; and (4) for
large-size instances, H2 can help obtain more non-dominated solutions than H1.

6. Conclusions

This paper investigated a bi-objective VRP with soft time windows and multiple depots, which
aims to minimize total energy consumption and customer dissatisfaction simultaneously. A bi-objective
mixed-integer linear programming model is presented for the problem. Then augmented ε-constraint
method are adopted to obtain the exact optimal Pareto front for small-size problems, and two
NSGA-II-based heuristics are designed to obtain approximate Pareto solutions for medium- and
large-size problems. Computational experiments are conducted. The results show that H2 performs
relatively better than H1 for small- and medium-size problems. For large-size problems, H2 could find
more Pareto solutions, while H1 is able to obtain approximate Pareto fronts with better convergence in
less computation time.

In addition, the property of the investigated problem is not fully explored, which may be the
main limitation of this study.

For future research, several interesting issues may be addressed. Firstly, some other factors that
may affect the objectives may be considered, such as the traffic conditions and the acceleration of
vehicles. Besides, we may extend the study to other variants of the investigated problem, e.g., periodic
VRP and pickup and delivery problems. Moreover, we also can combine the proposed method with
other heuristics to develop more efficient solutions.
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