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Abstract: The trans-boundary area between the Europe Union and other countries is highly
susceptible to changes in water quality and variations in the potential pollution load that could
influence its eco-systems significantly. The Neris (Viliya) River is one of the biggest surface water
bodies in Lithuania and Belarus with an ecologically important area protected by international
legislation. The study was aimed at evaluating the impacts of integrated pollution on water quality
of the Neris River taking into account different storm-water flows and ecological scenarios. For this
purpose, qualitative and quantitative statistical evaluation was set up and calculation was done;
different integrated pollution loads of the catchment area were estimated. The evaluation considered
a decrease in river discharge due to changes in the regional storm-water flow and technological
development that should lead to the growing covered surface and a reduction in the untreated
storm-water flows. The obtained results indicated that, in the case of storm-water treatment, the total
nitrate and phosphate concentrations will decrease, while in the cases of changes in combined
suspended solid, the concentration of nutrients will decrease. Thus, a trans-boundary storm-water
treatment plant of the Viliya River is required as it should eliminate pollution accumulation and
restore its acceptable environmental status. A coordinated international project for the entire
catchment of the Neris (Viliya) River based on the specifications and requirements of the EU Water
Framework Directive (EU 2000) should be developed and implemented. Subsequently, ecological
river-use policies should be established at the international level, which should offer considerable
perspectives for the sustainable development of the area.
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1. Introduction

From economic, ecological, and social points of view, all trans-boundary rivers are extremely
significant. Since Lithuania has joined the European Union in 2004, all water quality standards used
EN (European Norms) and ISO (International Standards) to detect some of the pollutants in different
water bodies. A few of them covered measurements on international scales during different periods
adopting various laboratory techniques, solutions, and methods. The previous measurements also
used local (only Belarus) and EN (European Union Member States) methods for analysing pollutants
detected on the different trans-boundary scales of the rivers. Still, the measurements of EN and ISO at
the trans-boundary level have not covered the river in Belarus. Quite a few attempts have been made to
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assess the impact of pollution on the trans-boundary river in some parts. However, such measurements
are very limited in the trans-boundary region across the Viliya (Neris). In this context, the present
research is aimed at finding the qualitative and quantitative analysis of pollutants and at assessing
measurements made applying different laboratory methods in the area of trans-boundary River Viliya
(Neris) in Belarus and Lithuania for the period from 2012 to 2017.

The main goals of this research include exploring qualitative variations in water within the
trans-boundary region and correlation driving these changes considering the combined effects of
pollutant variability and precipitation flows on water quality dynamics in the rainy seasons for
the period from 2012 to 2017. Changes in pollution within the rainy season (January, April, July,
and October) were evaluated according to the data from winter, spring, summer, and autumn seasons
to broaden a deeper understanding of water quality dynamics.

Thus, the specific objectives of this research were to:
(1) Quantify the correlation between pollutants during both the rainy season and the rest of the

year on the trans-boundary region scale using measurement data encompassing the period from 2012
to 2017;

(2) investigate the relationship between qualitative changes, concentration, and water flow
pollutants; and

(3) apply the natural filtration method for differentiating water flow and pollutant removal taking
into consideration improvement in water quality within the trans-boundary river. The River Neris
(named Viliya in Belarus) covers an area of 276 km throughout the country with the other 234 km
belonging to Lithuania [1]. The catchment area within Belarus occupies 10,920 km2. Vileyka is a town
in Belarus and is located on the River Viliya, operating the largest artificial water reservoir with a total
area of 63.3 km2 and a volume of 238 mln m3. In recent years, the volume of storm-water collected in
the town of Vileyka has increased to 130,000 m3, whereas at the maximum (storm-water accumulated
and estimated by month), it has made 135,000 m3. This is evident from the data provided annually and
monthly by the town-responsible institution, according to which, 73% of storm-water are affected by the
individual pollution level that is higher than European Requirements for storm-water pollution. From a
geopolitical point of view, Vileyka County is an important transition region, and thus European support
can be used for storm-water collection and accumulation as well as for developing treatment facilities.
Some methods for decreasing runoff are suggested in the article by John R. Freeborn, David J. Sample,
and Laurie J. Fox [2]. The authors of this paper pointed out conventional practices used in decreasing
storm-water runoff and controlling maximum runoff by employing storage facilities, such as detention
and retention ponds, the estimated volumes of which depend on the reliable and statistically evaluated
data on collected storm-water [3]. Investigated storm-water detention practices are commonly used for
accumulating and treating storm-water runoff prior to discharging it from the collection site. Artificial
storm-water wetlands have become useful storm water control measures in rural-related environments,
thus offering a hybrid between larger detention practices (wet ponds) and newer green infrastructure
technologies [4]. Regional water accumulation, according to the co-authors from Virginia, USA,
changes management focus from a large, regional scale to the site one [2]; however, a critical approach
from both Lithuanian and Belarusian experts to large-scale storm-water management facilities is
still under consideration. The researchers from Auburn University [3] decided that ‘sediment basins
were storm-water detention practices commonly used for capturing and treating sediment-laden
runoff prior to discharging’. The last statement cannot be implemented because a large territory
needs to be occupied using sediment basins from storm-water detention, and local municipalities
both from Belarus and Lithuania disagree with such an engineering decision. Following the authors
from North Carolina State University, the constructed storm-water wetlands have become popular
storm-water control measures [4] when only few constructed wetlands were operated in Lithuania
and some started operating in Belarus. Lithuanian scientists published the results of some research
about water quality of different water bodies in Lithuania according to storm-water management
facilities [1,5–7] analysing in-country rivers. A positive impact of ponds on water quality in a small
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stream was investigated by the scientists from the Czech Republic [8], which is opposite to the findings
provided by the United States geological survey of the high capture rate of river-borne sediments
from two reservoirs [9]. Some other authors referred to the shrinking reservoir and increased river
discharge related to higher sediment loads from seasonal rainfall that released the copious volumes of
sediments to the river [10]. Along the course of the river, seasonally varying concentrations of the total
suspended matter, particulate organic carbon, dissolved oxygen, and inorganic nitrogen (nitrate, nitrite,
ammonium) were investigated by the co-authors from Germany and Indonesia [11], concluding that
the observed carbon and ammonium input and resultant oxygen depletion would probably become a
quasi-permanent feature, having long-term deleterious effects on water quality. The findings presented
in the last article [11] inspired the evaluation of similar pollutants in the trans-boundary river on both
Lithuanian and Belarusian riversides. An advanced point of view in the journal, showed that ‘decisions
regarding these dams would require balancing risks, a continued economic function and the potential
for ecologic restoration’ [12], with some forecast about reservoir removal in the USA. Environmental
data (hydrologic and climatic) on variables displayed considerable inter-annual variations in the
research results provided by Australian scientists [13], and lead the evaluation of statistical data
to the interdisciplinary approach. Investigation into the influence of sediment properties on the
evolution of reservoir deposits provides some useful information about accumulation facilities [3].
A stepwise-cluster inference model is able to tackle the nonlinear relationships among different
contaminant removal process in multi-soil-layering systems [14]. Water quality indexes that had a
relationship with contaminants’ removal were used as state variables in the developed stepwise-cluster
inference model. Estimated phosphorus flows into the hydrosphere should be considered when
considering suitable water sources in the future [15]. Following this statements, all phosphorus related
indicators were evaluated statistically and attentively in this investigation.

The evaluation of statistical data provided in this article allowed environmental engineers to
select the best strategy used in storm-water treatment facilities following the findings of the maximum
and minimum runoff quantities obtained annually and monthly for the period of five years from 2012
to 2017.

2. Materials and Methods

The total watershed of the drains of the Neris river is 25,100 km2 (Figure 1). An excavating
segment of the river is preserved in the biggest artificial water reservoir between the hydropower
station in Vileyka town and the auto-railway bridge.
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Figure 1. The catchment of the Neris (Viliya) river and water sampling locations: Incoming flows
from Belarus (1), before the release (2), and below the release (3). Outgoing flows from Belarus (4),
Buivydziai (LTR43) (5), and above Kaunas (LTR50) (6).
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The investigated segment of the river is around 5 km in length and lies within the central part of
the town. The discharge average rate approximately makes 116 m3/s. The middle part of this area
was the subject of a detailed research project initiated by the authors. Until recent days, the river
has not been excavated for another distance downstream; hence, this area has not been taken under
consideration. The section of the river situated within the investigated part is referred to as the
storm-water intake system [5]. Storm water outlets have been developed within a coastal area where
original river sediments are mostly gravel and coarse sands.

Water quantity and distribution aspects of storm-water outlets and their environmental impacts
have been the subject of many studies. Storm-water quantity was studied by the ‘Laboratory Wilejskij
Wodokanal’ of Vileyka, and the intake was measured by a responsible institution (water-related
laboratory). Measurement work was carried out in January, April, July, and October within the period
from 2012 to 2017.

Water was regularly monthly sampled from four sites in this area: Incoming flows to storm-water
collectors, outgoing flows from storm-water outlets, the River Viliya before the release of storm-water
through outlets, and the River Viliya after the release of storm-water through outlets. A sampling
profile is located below the Vileyka reservoir, and incoming flows to storm-water collectors and
outgoing flows from storm-water outlets are situated below the reservoir. The River Viliya before the
release of storm-water through outlets and the River Viliya after the release of storm-water through
outlets were sampled in Vilejka town and in the end municipality, Vileyka. At each sampling place,
pH and temperature in the field were determined using a portable pH-meter instrument. Each sample
was repeatedly taken four times, put directly into a polyethylene container, and rinsed five times with
a sample of water.

The samples were refrigerated at a temperature of 4 ◦C and processed within 24 h.
Several monthly measured indicators are as follows:

• Nitrate nitrogen, NO3-N (N. Nitrogen); the spectrometric method was applied using sulfosalicylic
acid (LST ISO 7890-3:1998). The spectrometric measurement of a yellow compound formed by
nitrate ions reacting with sulphosalicylic acid (the latter was formed by adding sodium salicylate
and sulfuric acid) in the alkaline medium. Disodium (ethylenedenitrilo) tetraacetate dihydrate
(EDTANa2) is added to alkali to prevent the deposition of calcium and magnesium salts. Sodium
azide is added to remove the interference of nitrite ions;

• nitrite nitrogen, NO2-N (Nitrite); the molecular absorption spectrometric method was applied.
When nitrites in the analyte react with the 4-aminobenzene sulfonamide reagent and with
orthophosphoric acid, the pH of the solution reaches 1.9 and produces diazonium salt, which,
along with N-(1-naphthyl)-1,2-diaminomethane dihydrochloride (enters the 4-aminobenzene
sulfonamide reagent), forms a colorant, thus making a solution pink. Absorption is measured at
540 nm;

• ammonium nitrogen, NH4-N (A. Nitrogen) and total nitrogen Nb (T. Nitrogen); the manual
spectrometry method (LST ISO 7150-1:1998) was applied. The colorimetric measurement of
the blue colour at a wavelength of 655 nm was made. The compound is formed by reacting
ammonium with salicylate and hypochlorite ions and acting as a catalyst for sodium nitroprusside.
Hypochlorite ions are formed by the alkaline hydrolysis of N,N-dichloro-1,3,5-triazine 2, 4, 6 (1H,
3H, 5H) trionic Na salt (sodium dichloroisocyanurate). The chloramine reaction with Na salicylate
takes place at a pH of 12.6 and acts as a catalyst for sodium nitroprusside. This determines the
total amount of chloramine present in the sample. Sodium citrate, which is a part of the reagent,
eliminates the negative effects of cations, especially those of calcium and magnesium;

• phosphorus, PO4-P (Phosphorus), total phosphorus; the spectrometric method using ammonium
molybdate (LST EN 1189:2000) was applied. Orthophosphate ions react with molybdate and
antimony ions to form a complex of antimony phosphomolybdate in the acidic medium.
Reducing this complex with ascorbic acid produces an intense blue-blue molybdenum complex.
The concentration of orthophosphate is calculated by measuring the absorption of the complex.
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Polyphosphates and some organic phosphorus compounds are determined by hydrolysis with
sulfuric acid, which results in orthophosphates reacting with molybdate. A large proportion of
organic phosphorus compounds are converted into orthophosphates by the re-mineralization of
persulfate. If stronger treatment is required, then, sulfur and nitric acid are used for mineralization;

• biochemical oxygen demand in 7 days (BOD). The treated water sample is diluted with different
amounts of water saturated with dissolved oxygen, aerobic microorganisms, and a nitrification
inhibitor. The sample is incubated at 20 ◦C in a dark, full-filled, and sealed vial for a period
of 7 days. The dissolved oxygen concentration was measured before and after incubation.
The amount of oxygen consumed per litre per sample was calculated (ISO 5815-1:2003); and

• dissolved oxygen (Dc) was measured using the portable device, Oximeter, on the sites.

For determining the chosen indicators, the samples were filtered and subsequently treated
according to the manual. The precise uptake (the sample and the blank sample) and subsequent
addition of reagents were properly mixed, keeping the given time intervals, and inserting both samples
into the spectrophotometer according to the calibrated instrument.

Handling water samples used for determining microelements in water followed ISO and
EN standard procedures for refrigerated storage under laboratory conditions according to Water
Quality–Sampling—Part 1: Guidance on the design of sampling programmes and sampling
techniques (ISO 5667-1:2006). All plastic sampling bottles were properly washed prior to determining
microelements by immersion in the warmed 5% (V/V) aqueous nitric acid solution for a minimum
of 6 h by rinsing with deionized water before use. All sampling bottles and caps were rinsed three
times using water taken from sampling sites. All samples were obtained directly from the river after
allowing storm water to run for 500 m. The samples were then acidified by employing 1% nitric
acid, and stored in 1 L hermetically closed plastic bottles at 4 ◦C for as short a time as possible before
analysis. These samples were analysed applying the ICP emission instrument on Perkin Elmer ICP-400
(The Perkin–Elmer Plasma 400 ICP Emission Spectrometer). All microelements evaluated in this
research were within the method-specified acceptance criterion of ±10% of the known value. A typical
deviation for most elements made less than 3%.

The data were analysed using MathCad statistical software with a type I error (a) of 0.05. Also,
appropriate normal and nonparametric statistics were applied. The statistical values, such as maximum,
minimum, median, standard deviation, and the coefficient of determination, were calculated.

The statistical evaluation of related storm-water quantities included the main data on collected
runoff water calculated using proper software and the main hypothesis about the maximum obtained
water flows.

The study presents descriptive statistics that describes the characteristics of the main features
of the surveyed data [16]. The carried-out research deals with uncertainty about the analysis of
the measured water quality scores stemming from the application of statistical estimation methods.
We have analyzed the performance of two possible combination approaches that have recently curried
favour with various water quality related research, such as statistically evaluated averages (AVG) and
the maximum (MAX) scores of water quality parameters across a variety of methods. Descriptive
statistics provides simple summaries of the sample and measures. Together with a simple analysis
of graphics, it forms the basis of a virtually quantitative analysis of data. Statistical evaluations are
made using free software, R, that is an integrated suite of software facilities for data manipulation,
calculation, and graphical display.

Statistical analysis was performed using the statistical software package, R. Pearson correlation
coefficient (r) was calculated by analysing the chemical indicators.

r =
1

n−1 ∑n
i=1(xi − x)(yi − y)

sxsy
(1)
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where x and y are the averages of observations, x and y, respectively; sx and sy are standard deviations;
and n is the number of observations.

As for the formulation of the correlation matrix of different chemical indicators, the correlation
coefficients of the different pairs of chemical elements were calculated using the estimated value of p
to determine significant correlations. The correlation between the indicators is considered significant if
p < 0.05 and p < 0.01 and is determined as insignificant if p > 0.05.

Correlation analysis involves the assessment of correlation strength (r) and its statistical
significance. To make sure that the obtained is not random coincidence, the following hypothesis
is tested: {

H0 : r = 0;
H1 : r 6= 0,

(2)

i.e., the confirmation of the initial hypothesis should mean that the linear dependence between the
variables under consideration is not significant; accordingly, the alternative hypothesis should confirm
statistically significant dependence. Up-to-date statistical software packages calculate the value of p to
verify a hypothesis about the significance of the correlation coefficient compared with a significance
level of α = 0.05. If the calculated value of p is less than 0.05, the initial hypothesis is rejected and a
statistically significant correlation is selected; otherwise, a statistically insignificant correlation remains
valid. The below figures show the values of significant correlation coefficients among the observed
variables checking a hypothesis about the value of the correlation coefficient equal to 0 that was rejected.
Empty boxes at intersections denote that correlation coefficients are not statistically significant.

3. Results and Discussion

The River Neris is the longest tributary (510 km) and the largest nourishing basin (24,942 km2) of
the River Nemunas. The headwaters of the stream are found in Belarus and reach the peripheries of
Lithuania as a mature river, the length of which is 275 km with a catchment area covering 10,961 km2.
The Neris flows along the Lithuanian-Belarusian border for around 6.5 km. Belarus takes the complete
upriver of the Neris. It is fed by a huge river basin (44% of the total catchment area) widely spread on
the plain between the uplands of Minsk, Asmena, and Svencionys-Narutis. Lithuanian middle reaches
cross uplands in Belarus, and the downriver descends to the middle of Lithuania. Soils permeable to
water prevail in the basin, with the density of forests making up 28%: That of wetlands—approximately
10%, and that of lakes—2.5%. The basin of the River Neris is clearly asymmetrical: The right side takes
70% of the total basin area (basin symmetry coefficient Ks = −0.40). The length of the watershed is
around 980 km and includes three anthropogenic catchment basins carrying water to the neighbouring
basins: Water from the Viliya pond set up in the upriver reaches the River Svislach (the Black Sea
basin), flows from Kavarskas pond (Sventoji River basin) to the River Nevezis, and, through Zagarine
waterway and Voke streamline, from the River Merkys runs in the opposite direction to the River
Neris. Ten tributaries more than 50 km in length (Asmena and Sventoji are longer than 100 km) enter
the Neris, however, only four of those are found in Lithuania [1].

In 1976, the Vileyka-Minsk water system started functioning in the upriver of the Neris in the
territory of Belarus with the aim of improving water supply to Minsk. For that purpose, a pond on
the River Neris next to Vileyka was installed. A part of water from this area is pumped and directed
to the River Svislach that belongs to the River Dnieper basin and passes Minsk. The Vileyka-Minsk
system includes a hydro-unit and a 15-m ground pile. At a height of 12 m, the Vileyka pond covers
an area of 67 km2 with a volume of 260 million m3. The average depth of the pond reaches 3.7 m.
For erecting the structure, nine settlements were removed and 13 more were protected by specific piles,
thus losing 2000 hectares of arable land and 3600 hectares of forest. The height of the working pond is
6 m with a useful volume of 235 million m3. The 62 km long channel uses five pumping stations to
connect the Vileyka pond with the one built in Zaslavsky on the River Svislach that covers an area
of 31 km2 and a useful volume of 50 million m3. The relative height between the two ponds is 77 m.,
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the maximum discharge of pumps is 22 m3/s, and the discharge of water redirected from the Vileyka
pond is 12 m3/s.

The precipitation rate was the lowest in February during the research period and made an average
of 30 mm. Most precipitation falls in June in this location, thus averaging at 82 mm. Considering
the driest and wettest months, the difference in precipitation makes 52 mm. Local hydrodynamic
conditions [7–9] that generate storm-water quantities influence the size and degree of sorting runoff
effluents within and on the surface of the related streets and roads. Strom-water collection or the
development of the segregated levels of runoff water in the river stream can occur over the long
stretches of riverbed development.

Only a small number of variables have a certain significant linear relationship. The examination
of incoming and outgoing flows involved monitoring direct linear dependence, and, in the majority of
cases, correlation coefficients, were found to be significant (blue). For instance, the analysis of data
blocks of incoming flows to Vileyka (Tables 1–4) disclosed that, under certain circumstances, the nature
of linear dependence changed from direct to inverse as the negative values of correlation coefficients
(red) already appeared (Figures 2–5). However, this should be under the effect of appropriate
environmental factors.

Table 1. Incoming flows from Belarus (BLR) for the period, 2012–2017 (maximum values).

Indicator Mean St.Dev. Min Max

pH 7.41 0.08 7.25 7.56
Oxygen concentrations, mg/L 19.86 2.353 16.00 25.90

BOD, mg/L 244.82 56.07 178.00 395.00
Dry solids, mg/L 645.26 95.65 515.00 886.00
Chlorine, mg/L 106.12 36.04 71.30 208.70
Sulfide, mg/L 48.39 17.01 32.90 4.400

Ammonium nitrogen, mg/L 54.65 14.71 27.38 93.90
Nitrite nitrogen, mg/L 0.16 0.23 0.02 1.12
Nitrate nitrogen, mg/L 0.51 0.45 0.00 1.58

Phosphorus, mg/L 19.23 4.24 12.03 30.83
Iron, mg/L 2.40 0.83 1.50 4.57

Chromium, mg/L 0.02 0.02 0.01 0.12

Table 2. Outgoing flows from Belarus (BLR) for the period, 2012–2017 (maximum values).

Indicator Mean St.Dev. Min Max

pH 7.68 0.08 7.54 7.84
Oxygen concentrations, mg/L 11.57 3.18 8.30 18.90

BOD, mg/L 9.59 4.47 5.46 20.00
Dry solids, mg/L 569.95 54.87 492.00 700.00
Chlorine, mg/L 81.50 11.38 63.00 109.20
Sulfide, mg/L 42.02 9.45 29.90 69.10

Ammonium nitrogen, mg/L 10.61 4.07 3.09 15.73
Nitrite nitrogen, mg/L 2.16 1.04 0.72 4.89
Nitrate nitrogen, mg/L 24.89 9.10 6.60 37.60

Phosphorus, mg/L 9.68 3.09 3.72 14.95
Iron, mg/L 0.32 0.05 0.19 0.39

Chromium, mg/L 0.00 0.00 0.00 0.01

Only a few elements significantly correlate with the examined minimum values of incoming flows.
There are more comet elements in the average values, and the maximum number of correlating elements
on examining the maximum values. The number of significant correlation is mostly influenced by
indicators, Dc and BOD, i.e., no matter what values (Min, Avg, or Max) are taken, the correlation
between water quality indicators, such as pH and phosphorus, Dry (dry solids) and chlorine, dry and
iron, or ammonium nitrogen and phosphorus, is the same. Oxygen concentration Dc and BOD
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correlated with other indicators, using Avg and Max. There are more significant correlations that have
not been addressed in Min or Avg values (Figure 2).

Table 3. The River Viliya before the release (maximum values).

Indicator Mean St.Dev. Min Max

pH 7.57 1.36 3.05 8.14
Oxygen concentrations, mg/L 7.34 2.83 4.30 15.10

BOD, mg/L 1.76 0.35 1.25 2.33
Dry solids, mg/L 230.71 25.17 189.00 307.00
Chlorine, mg/L 14.29 3.27 0.00 15.00
Sulfide, mg/L 17.16 2.67 12.20 21.00

Ammonium nitrogen, mg/L 0.28 0.08 0.15 0.50
Nitrite nitrogen, mg/L 0.03 0.01 0.01 0.05
Nitrate nitrogen, mg/L 2.53 1.28 0.73 5.01

Phosphorus, mg/L 0.11 0.06 0.03 0.21
Iron, mg/L 0.33 0.08 0.18 0.52

Chromium, mg/L 0.00 0.00 0.00 0.00

Table 4. The River Viliya below the release (maximum values).

Statistic Mean St.Dev. Min Max

pH 7.82 0.88 4.03 8.16
Oxygen concentrations, mg/L 7.90 3.16 4.00 16.00

BOD, mg/L 1.87 0.36 1.38 2.40
Dry solids, mg/L 235.52 24.49 199.00 309.00
Chlorine, mg/L 14.29 3.27 0.00 15.00
Sulfide, mg/L 18.11 2.53 12.80 22.30

Ammonium nitrogen, mg/L 0.28 0.08 0.14 0.44
Nitrite nitrogen, mg/L 0.04 0.01 0.02 0.06
Nitrate nitrogen, mg/L 2.69 1.32 0.75 5.09

Phosphorus, mg/L 0.12 0.06 0.03 0.23
Iron, mg/L 0.35 0.33 0.18 0.53

Chromium, mg/L 0.00 0.00 0.00 0.00

In the case of the River Viliya before the release, the dependencies of the indicators also do not
completely affect the values (Min, Avg, or Max choice). In all cases, the same indicators are significantly
correlated. Compared to the other cases investigated previously, Figures 2 and 3 show a significant
dependence of other indicators: Sulfide and phosphorus, sulfide and iron, sulfide and chromium,
and nitrate nitrogen and phosphorus (in all these cases, negative dependence is observed, which means
the increase in the values of one indicator means the other indicator decreases), and it has a significant
positive correlation of ammonium nitrogen and nitrate nitrogen, and of phosphorus and chromium
(Figure 4).

The dependencies of the investigated indicators in the case of outgoing flows demonstrate it
does not matter which values (Min, Avg, or Max) change the number of significant correlations or
remain the same. However, in comparison with incoming flows, their number is higher, and there is a
significant relationship between pH and Dc, BOD and nitrate nitrogen; between oxygen concentration
Dc and ammonium nitrogen and phosphorus; between dry residual and ammonium nitrogen; between
chlorine and ammonium nitrogen; between ammonium nitrogen and iron; and between chromium
and iron (Figure 3).
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In the case of the River Viliya before the release, the dependencies of the indicators also do not
completely affect the values (Min, Avg, or Max). In all cases, the same indicators significantly correlate.
Compared to the other previously investigated cases, Figure 3 show a significant dependence of
other indicators, such as sulfide and phosphorus, sulfide and iron, sulfide and chromium, and nitrate
nitrogen and phosphorus (in all these cases, negative dependence is observed, which means an increase
in the values of one indicator and a decrease in the other), which has a significant positive correlation
between ammonium nitrogen and nitrate nitrogen as well as between phosphorus and chromium
(Figure 4).

The case of the River Viliya below the release, as in the preceding two cases shown in
Figures 3 and 4, discloses that dependencies do not affect Min, Avg, or Max values. Comparing
the correlation values given, only a new significant relationship between two indicators, pH and
ammonium nitrogen, was observed, and the relationship between sulfide and phosphorus has become
insignificant (Figure 5).

A range of surface water quality data were examined in the present work for a comprehensive
water quality evaluation. An analysis of the data, based on multiple regression, was attempted.
This was done to examine whether seasonal variation in different parameters can be explained and
predicted based upon their interrelationship in terms of source. From an analysis point of view,
all parameters that do we have were selected to set up the regression model. Models were made for all
four cases: Incoming flows from Belarus (Table 5), outgoing flows from Belarus (Table 6), the River
Viliya before the release (Table 7), and the River Viliya below the release (Table 8), taking the maximum
values of the variables.

Table 5. Regression values for the estimated water quality parameters (Incoming flows from Belarus).

Model Summary

R Square Adjusted R Square Residual Standard Error F-Value Significance F

0.880 0.837 0.9738 20.550 0.000

Coefficients

Estimate Standard Error t Value p-Value

Intercept 6.536 1.766 3.700 0.002
Dry 0.007 0.003 2.319 0.036

Sulfide 0.151 0.026 5.848 0.000
A. Nitrogen 0.033 0.016 2.128 0.052

Nitrite −2.074 1.069 −1.941 0.073
N. Nitrogen 1.223 0.557 2.194 0.046

The regression equation of Incoming flows from Belarus is: DC = 6.536 + 0.007 (Dry) + 0.151 (Sulfide) + 0.033
(A. Nitrogen) − 2.074 (Nitrite) + 1.223 (N. Nitrogen).

Table 6. Regression values for the estimated water quality parameters (Outgoing flows from Belarus).

Model Summary

R Square Adjusted R Square Residual Standard Error F-Value Significance F

0.852 0.812 1.198 21.580 0.000

Coefficients

Estimate Stdandard Error t Value p-Value

Intercept −48.199 33.731 −1.429 0.174
pH 6.869 4.445 1.545 0.143

BOD 0.378 0.078 4.830 0.000
Nitrite 0.458 0.278 1.647 0.120

Phosphorus 0.219 0.104 2.115 0.052

The regression equation of outgoing flows from Belarus is: DC =−48.199 + 6.869 (pH) + 0.378 (BOD) + 0.458 (Nitrite)
+ 0.219 (Phosphorus).
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Table 7. Regression values for the estimated water quality parameters (The River Viliya before the
release).

Model Summary

R Square Adjusted R Square Residual Standard Error F-Value Significance F

0.920 0.899 2.367 43.200 0.000

Coefficients

Estimate Stdandard Error t Value p-Value

BOD 3.652 1.800 2.028 0.061
Dry 0.043 0.028 1.547 0.143

Chlorine −0.765 0.562 −1.361 0.194
Phosphorus 19.267 11.511 1.674 0.115

The regression equation of the River Viliya before the release is: DC = 3.652 (BOD) + 0.043 (Dry) − 0.765 (Chlorine)
+ 19.267 (Phosphorus).

Table 8. Regression values for the estimated water quality parameters (The River Viliya below
the release).

Model Summary

R Square Adjusted R Square Residual Standard Error F-Value Significance F

0.958 0.940 2.020 53.550 0.000

Coefficients

Estimate Stdandard Error t Value p-Value

BOD 6.242 1.949 3.203 0.006
Dry 0.043 0.015 2.797 0.014

Chlorine −0.331 0.170 −1.946 0.072
Sulfide −0.534 0.265 −2.015 0.063

Phosphorus 19.125 11.959 1.599 0.132
Chromium −741.934 309.213 −2.399 0.031

The regression equation the River Viliya below the release is: DC = 3.242 (BOD) + 0.043 (Dry) − 0.331 (Chlorine) −
0.534 (Sulfide) + 19.125 (Phosphorus) − 741.934 (Chromium).

The dependent variable was dissolved oxygen (DC) and the independent variables were
pH, biochemical oxygen demand (BOD), dry solids (Dry), chlorine, sulfide, amonium nitrogen
(A. Nitrogen), nitrite, nitrate nitrogen (N. Nitrogen), phosphorus, iron, and chromium. From these
data, multiple regression analysis was done using the data analysis program, R, and the regression
equations relating DC with its dependent water quality parameters was obtained. For the analysis
of the data sample using regression analysis, an 80% confidence level was fixed. Therefore, the p
value should be within a 20% confidence level, i.e., p value should be less than 0.20 for the analysis
to be accurate within the assumed confidence level. All necessary assumptions for obtaining a good
model were checked: Homoscedasticy, independent errors, outliers/influential cases, multicollinearity,
and normally distributed residuals. A summary of the regression analysis results is presented in
Tables 5–8 and Figure 6.

The redirection of water from the Vileyka pond to the Dnieper basin greatly suppresses the natural
hydrological regime of the Neris, particularly in the dry year. This has an impact on all water users
located below the Vileyka-Minsk water system. The amount of water accumulated during the flood in
the Vileyka pond does not enter the Neris, Nemunas, and Curonian Lagoon, which adversely affects
the development of aquatic ecosystems.
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An evaluation of the natural attenuation process was developed specifically for each site to
determine that natural attenuation is occurring to expectations. This research was designed to detect
changes in water quality that may reduce the efficiency of the process and identify some potential
toxic or more mobile transformation compounds (chromium and nitrite). The operation of the Vileyka
pond reduces the runoff of the Neris, and therefore the project on the Vileyka-Minsk water system
revealed it was necessary to ensure there was a 95% probability of monthly discharge in the Neris
close to Vilnius (51.5 m3/s in summer and 45 m3/s in winter). However, it is necessary to observe the
year when the discharge of the River Neris was lower than the predicted one making 51.5 m3/s.

The scientists of the Hydrology Laboratory of the Lithuanian Energy Institute analyzed the
effect of the Vileyka system on the hydrological regime of the River Neris [1]. The simulation of the
modified hydrological regime of the Neris showed that the values of extracting water from the Vileykay
backwater were accepted according to the project (12 m3/s). The calculated statistical parameters for
the runoff of the Neris indicate that the effect of the Vileyka pond can be felt along the whole River
Neris and even in the Nemunas (Table 9).

The characteristics of the runoff mostly change in the hydrometric stations located close to the
Vileyka pond. For example, under the operating system, Q decreased by 2.5 times, Cv increased by
2.5 times and d increased by almost 2 times at the Vileyka station. The effect of the pond varies moving
further from the Vileyka. The runoff of the Neris to the confluence increases, and therefore the volume
of water taken from the Vileyka pond forms a relatively smaller part of the discharge of the river.
Discharge Q of the regime changed in the River Zalesje decreased by 37% compared to the unchanged
regime of the river, by 24% at the Michailishkis station, by 15% nearby Vilnius, by 10% nearby Jonava,
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by 4% nearby Lampedziai, and by 3% nearby Smalininkai. The results of statistical simulation show
that the runoff close to Vilnius decreases by 8–9 m3/s in the wet year, by 6–7 m3/s in the medium wet
year, and by 5–6 m3/s in the dry year under the operation of the Vileyka-Minsk system. The number
of dry years increases from 46 to 60% [1].

Table 9. Statistical parameters for the simulated annual runoff of the Neris and Nemunas [1].

River–Hydrometric Station
Q Cv d

Vileyka 1 Simulated Vileyka 1 Simulated Vileyka 1 Simulated

Viliya (Neris)–Vileyka 27.8 11.2 0.21 0.53 0.26 0.47
Viliya (Neris)–Zalesje 44.6 28.2 0.20 0.30 0.25 0.30

Viliya (Neris)–Michailishkis 68.6 52.2 0.19 0.24 0.23 0.25
Neris–Vilnius 108 91.8 0.17 0.19 0.21 0.22
Neris–Jonava 170 154 0.20 0.22 0.22 0.23

Nemunas–Lampėdziai 445 429 0.20 0.21 0.22 0.22
Nemunas–Smalininkai 508 492 0.21 0.22 0.24 0.24

1 Before the installation of the Vileyka pond.

All this may have an effect on the quality of river water due to insufficient water dilution [7,10,11].
To conduct statistical analysis, data on discharge, water temperature, precipitation, and the general
amounts of ammonium nitrogen, nitrite nitrogen, nitrate nitrogen, and phosphorus at different seasonal
periods in the two monitored areas of the Neris at Buivydziai (LTR43) and above Kaunas (LTR50) have
been used. The main numerical characteristics of the observed variables have been calculated and are
presented in Table 10.

Table 10. The full dataset.

Statistic N Mean St.Dev. Min Max

Discharge, m3/s 144 123.507 84.526 33.000 669.000
Water temperature, ◦C 144 9.713 8.048 0.100 25.300

Amount of precipitation, mm 144 58.526 34.575 13.100 206.500
Ammonium nitrogen, mg/L 144 0.072 0.082 0.000 0.603

Nitrite nitrogen, mg/L 144 0.152 0.392 0.004 2.200
Nitrate nitrogen, mg/L 144 0.769 0.684 0.002 4.400

Phosphorus, total, mg/L 144 0.090 0.044 0.043 0.380

Accordingly, Tables 11 and 12 show the calculated main numerical characteristics of the variables
subject to the location of data collection. A comparison of the values presented in Tables 11 and 12
demonstrates a surprisingly large difference in the mean values of discharge considering the fact
that the data were collected from two locations. The average discharge in the Vilnius area is 69.086
compared to 177.928 in the Kaunas region, which indicates a difference of more than three times.
Figure 7 shows a graphical comparison of discharge rates with the help of rectangular diagrams.

Table 11. The River Neris at Buivydziai (LTR43).

Statistic N Mean St.Dev. Min Max

Discharge, m3/s 72 69.086 32.543 33.000 290.000
Water temperature, ◦C 72 9.675 8.129 0.100 25.300

Amount of precipitation, mm 72 58.826 34.696 13.100 206.500
Ammonium nitrogen, mg/L 72 0.063 0.085 0.000 0.603

Nitrite nitrogen, mg/L 72 0.139 0.345 0.004 1.520
Nitrate nitrogen, mg/L 72 0.707 0.505 0.003 1.800

Phosphorus, total, mg/L 72 0.087 0.039 0.049 0.325
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Table 12. The Neris above Kaunas (LTR50).

Statistic N Mean St.Dev. Min Max

Discharge, m3/s 72 177.928 85.582 76.300 669.000
Water temperature, ◦C 72 9.750 8.024 0.100 25.200

Amount of precipitation, mm 72 58.826 34.696 13.100 206.500
Ammonium nitrogen, mg/L 72 0.080 0.080 0.010 0.450

Nitrite nitrogen, mg/L 72 0.165 0.436 0.004 2.200
Nitrate nitrogen, mg/L 72 0.830 0.823 0.002 4.400

Phosphorus, total, mg/L 72 0.093 0.049 0.043 0.380
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LTR50—Neris above Kaunas.

Rectangles cover 50% of the values of variables on both sides of the median. The beginning of
the rectangles show the first quartiles of the values of variables, and the end of the rectangles point to
third quartiles. Horizontal lines dividing rectangles into two parts are the medians of the values of
variables (second quartile). The black dot indicates the averages of the values of variables, and the
circles point to exceptions. The heights of rectangles show spreadsheets. The depicted diagrams
display there are several distinct observable values of discharge in both Vilnius and Kaunas regions,
and, as a result, the average values of discharge are higher than the median ones. The spread of
discharge values is wider in the Kaunas area compared to that of Vilnius. The charts of a similar type
are presented in Figure 8 and assist in comparing discharge values in each of the locations according to
the distinguished four seasonal periods: Period I (March, April, and May), period II (June, July, August,
and September), period III (October and November), and period IV (December, January, and February).
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Similar trends in collecting data on discharge were observed in both locations. In all cases,
the mean values of discharge were higher than the median values. A larger difference between these
two characteristics can be noticed in the periods that had very distinct values of discharge, for example,
in the Vilnius and Kaunas areas during the first period.

The permitted rate of contacted catalytic iron filtration was estimated according to the empirical
formula adapted from Germany [17]:

v =

[
(3pH − 18.6)× T0.8

z × x0

Z0.1
z × (lnCz − lnC1)× dv

]
, (m/h) (3)

where Tz—the temperature of raw water, ◦C; x0—the thickness of the filtering filler, m; Cz—the overall
content of iron in raw water, mg/L; C1—the overall content of iron in the filtrate, mg/L; and dv—the
effective diameter of the grains of the filtering filler, mm. With reference to data on the town of
Vileyka for the period of 2012–2016, the rates of filtering iron, oil products, and chrome were calculated
according to the formula adapted from Germany, where Tz—temperature from the accumulated data
under the thickness of the filtering filler equal to x0 = 0.5 m, Cz—the amounts of iron, oil products,
and chrome incoming (entering) from the collected data (mg/dm3), and C1—the amounts of iron,
oil products, and chrome. The effective diameter of the grains of the filtering filler was accepted to
be equal to dv = (1 + 2)/2 = 1.5 mm, pH—from collected data. The graphical visualization of
the filtration rates of iron, chromium, and oil products calculated according to the available data and
applied formula is given in Figure 9.
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Filtration has been the conventional way of separating oil products, Cr, and Fe compounds from
storm-water in Lithuanian storm-water treatment plants. This technique was adopted at the Vileyka
storm-water treatment plant in Belarus. Both investigated metals, Fe and Cr, are believed to function in
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their simple cationic forms. Our working hypothesis is based on the suggestion that the accumulation
of oil compounds and metals in filtration media in storm-water treatment plants depends on the
filtration rate in the thickness of the filtering filler equal to 0.5 m. Therefore, the study was aimed at
investigating the effect of the filtration rate, such as fast and slow filtration, on oil products and the
concentration of both metals in the storm-water accumulation system by analysing (1) the content of
oil products in storm-water filtered at different rates and (2) the quantities of iron and chromium in
these filtration rates.

This estimation confirms the suggestion that the filtering filler equal to 0.5 m accumulates both
investigated metals, but was found to be mostly effective in a filtration rate approximately equal to
10 m/h (Figure 9a,b). The highest concentration of Cr was observed in the case of a lower than 10 m/h
filtration rate (Figure 9b), i.e., approximately two times higher than in the highest filtration rates when
the filtering filler was able to accumulate related chromium concentrations. The highest concentrations
of Fe (3.0–4.5 mg/L) were obtained calculating a filtration rate up to 6 m/h (Figure 9a). This value
was approximately twice higher than the lowest concentration from a filtration rate between 10 and
12 m/h. The highest concentrations of oil products were found in association with the lowest filtration
rate (Figure 9c).

This can be explained by the formation of organic complexes in storm-water accumulation
facilities. Iron and chromium can be accumulated in the filtering filler (0.5 m) from storm-water
pipes. Under appropriate hydraulic conditions, such as high storm-water flow velocity following
stagnation, it will appear in storm-water from outgoing flows. Iron and chromium compounds are
found in linear statistical correlations because of the simplifying assumptions of the presented models
(Figures 2–5). The formation of concentrations below 1 mg/L of the investigated oil products with
filtration rates between 6 and 10 m/h reflects the nature of reactions controlling their sorption and is
actually dominated by different functions, such as adsorption and desorption. The frequency of the
failure to fully utilize the system (approximately 57% of the designed output) indicates that parameters
for the water system have not been accurately determined. Although ponds are an integral part of our
landscape, there is no doubt they have an effect on the quality of river water [3,8,14–16].

4. Conclusions

1. The obtained results of the performed investigations demonstrate that the time necessary for the
start-up of the flow that removes storm-water from direct discharge to the river can be reduced
by treating runoff water from high-loading streets.

2. A positive correlation between the obtained storm-water flows at the highest load of runoff
water qualities was taken from both annual and monthly data that can be useful for evaluating
hydraulic loads from storm-water outlets to the river.

3. All types of correlation between pH and dissolved oxygen, pH and BOD, pH and nitrate nitrogen,
dissolved oxygen and ammonium, dissolved oxygen and phosphorus, dry solids and ammonium,
chlorine and ammonium nitrogen, ammonium nitrogen and iron, and chromium and iron
concentrations measured in outgoing flows from storm-water facilities indicated a significant
dependence on their presence in storm-water. The assessment of the quality of storm-water from
incoming and outgoing flows can serve as an efficient instrument for generating information
necessary for the evaluation and development of a proper strategy for improving the quality of
storm-water released to the river and creating a system for reliable storm-water accumulation
and treatment.

4. The excessive concentrations of total iron, chromium, and oil products can be regulated using
simple sand filters following estimation according to the empirical formula adapted from
Germany when the recommended filtration rate is approximately 10 m/h. Consequently,
to reduce a negative effect of both metals on storm-water quality, measures for water quality
improvement should be undertaken. These could assist in achieving the balanced use of different
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filtration materials. The employment of alternative materials (sorbent-based materials) should
eliminate the consequences of the excessive amounts of iron and chromium.

5. The conducted research showed that the in-line accumulation process (storm-water from high
loading flows was used) enhanced the biological process when the largest quantity of collected
water could be treated in artificial wetlands.

6. When accumulation was carried out under conditions of natural precipitation, the susceptibility
of the artificial wetland to fouling by the water layer was lower than that under conditions of
storm-water runoff.

7. The findings of tested storm-water quantity and runoff removal were strongly affected by
relatively large water flows collected applying rainwater compounds and rain or melted snow
products of runoff water.

8. It can be concluded that the investigated process can be beneficial to and effective in solving
the problems encountered in highly loaded storm-water streets. Such processes still need to be
substantiated in more extensive research; however, the results of this study can be applied as
a basic scenario to shorten the start-up time when removing massive amounts of runoff water
in storm-water.
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