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Abstract: As one of main challenge for carriers, empty container repositioning is subject to various
uncertain factors in practice, which causes more operation costs. At the same time, the movements
of empty containers can result in air pollution because of the CO2 emission, which has a negative
impact on sustainable development. To incorporate environmental and stochastic characteristics of
container shipping, in this paper, an empty container repositioning problem, taking into account
CO2 emission, stochastic demand, and supply, is introduced in a sea–rail intermodal transportation
system. This problem is formulated as a chance-constrained nonlinear integer programming model
minimising the expected value of total weighted cost. A sample average approximation method is
applied to convert this model into its deterministic equivalents, which is then solved by the proposed
two-phase tabu search algorithm. A numerical example is studied to conclude that the stochastic
demand and supply lead to more repositioning and CO2 emission-related cost. Total cost, inventory
cost, and leasing cost increase with the variabilities of uncertain parameters. We also found that the
total cost and other component costs are strongly dependent on the weights of repositioning cost and
CO2 emission-related cost. Additionally, the sensitivity analysis is conducted on unit leasing cost.

Keywords: empty container repositioning; CO2 emission; stochastic demand; stochastic supply

1. Introduction

Due to the overwhelming growth of international trade in recent years, international freight
transportation develops rapidly. Compared to unimodal freight transportation (e.g., railway, road,
and maritime transportation), intermodal freight transportation is more competitive and advantageous
with respect to security, flexibility, and productivity [1]. A significant amount of containers being
transshipped are empty. As a result, intermodal freight transportation has been playing a more and
more important role in global freight transportation [2]. Owing to different economic needs in different
regions, the volumes of import and export trade in many regions are also quite different, which leads
to the imbalance of global trade. For instance, the container flow from Eastern Asia to North America
reaches a volume of 17.9 million TEUs, while the volume of the opposite direction (i.e., from North to
Eastern Asia) was only 8.2 million TEUs, in 2017 [3]. Consequently, intermodal freight industries have
to reposition empty containers, from the regions with empty container accumulation to the regions
with empty container shortage. However, in practice, the surplus empty containers sometimes are
not sufficient to fulfil the customer’s demand. Thus, additional empty containers need to be leased
from leasing companies, which is a more responsive way compared with repositioning. As a result,
intermodal freight industries should make a highly efficient operation plan with minimal expenditure,
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which allocates surplus empty containers from supply regions to demand regions, and determines the
number of leased empty containers in demand regions.

In addition to minimising the operational cost, traffic pollution should be considered [4]. Recently,
transportation growth has become one of main factors contributing to the increase of CO2 emissions [5].
Take maritime transportation for example, in 2012, total shipping CO2 emissions were estimated at
938 million tons accounting for 2.6% of global CO2 emissions. Among this, international shipping
emission was approximately 796 million tons CO2 [6]. Therefore, both operation cost and CO2

emissions should be considered simultaneously in the process of repositioning empty containers.
This paper focuses on the empty container repositioning problem (ECRP), with the consideration

of leasing decisions and CO2 emissions in an intermodal sea–rail network. The ECRP is defined as
to determine how many empty containers should be repositioned, which route should be used to
transport empty containers, as well as where and how many empty containers should be leased in
order to satisfy the demands.

As an intrinsic issue of container management and intermodal transportation, ECRP has received
more attention in recent years (e.g., [7–9]). As a consequence, there is substantial literature on ECRP.
Some of the studies provide concise and precise updates on the latest progress made in the area of
ECRP research from different perspectives (e.g., [10,11]). Specifically, Braekers et al. [10] conducted
a comprehensive overview of ECRP at a regional level from three different planning levels, i.e.,
strategic level, tactical level, and operational level. Song and Dong [11] provided a detailed literature
review focusing on the ECRP models for different transportation networks, and sorted them into two
categories: network flow models and inventory control-based models. Table 1 lists the key references
on ECRP, in terms of transportation model, stochasticity, and CO2 emissions.

Table 1. The literature review of empty container repositioning.

Transportation
Mode

Stochastic
Demand

and/or Supply

CO2
Emissions Key References

Unimodal No No

Huang et al. [7]; Jula et al. [8]; Feng and Chang [9];
Florez [12]; Crainic and Delorme [13];
Shintani et al. [14]; Song and Carter [15];
Moon et al. [16]; Brouer et al. [17]; Meng and
Wang [18]; Song and Dong [19,20]; An et al. [21]

Unimodal Yes No

Long et al. [2]; Cheung and Chen [22];
Crainic et al. [23]; Li et al. [24]; Li et al. [25];
Song [26]; Lam et al. [27]; Song and Dong [28];
Francesco et al. [29]; Song and Zhang [30]; Song and
Dong [31]; Lee et al. [32]; Dong et al. [33]

Unimodal Yes Yes Bernat et al. [34]

Intermodal No No Choong et al. [35]; Meng et al. [36];
Braekers et al. [37]; Kolar et al. [38]

Intermodal Yes No Dong and Song [39]; Xie et al. [40]

Intermodal Yes Yes This paper

Generally, the literature could be classified into two categories: deterministic ECRP and
stochastic ECRP. For deterministic ECRP, in the pioneer study of Florez [12], a model based on a
dynamic transshipment network was established for optimising ECRP, which considered repositioning
and leasing empty containers simultaneously. Crainic and Delorme [13] described ECRP as a
multicommodity location–allocation problem with balance requirements, and employed a dual-ascent
solution approach to solve it. Song and Carter [15] considered ECRP from the perspective of ocean
carriers, identified critical factors affecting ECRP, and investigated the influence of route coordination
and container sharing. Moon et al. [16] developed a mixed integer programming model for ECRP,
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incorporating the policies of leasing and purchasing containers to minimise total cost. A hybrid genetic
algorithm was employed to solve the proposed model.

Different from the literature above, some papers allow for ECRP with other decision-making
problems, e.g., cargo routing problem, service network design problem, and ship deployment problem.
For instance, Brouer et al. [17] addressed the cargo routing problem and ECRP simultaneously,
and formulated it as a multi-commodity flow problem with interbalancing constraints, which was solved
by the delayed column generation algorithm. The problem was further studied by Song and Dong [19]
on a maritime transportation network with multiple service routes, deployed vessels, and regular
voyages. Regarding service network design problem, Shintani et al. [14] studied the ECRP combined
with a container liner service network design, which was formulated as a two-stage problem solved by
a heuristic based on genetic algorithm. This problem was later investigated by Meng and Wang [18],
who proposed a mixed integer linear programming model to formulate this problem. In their study,
the concept of segment was firstly introduced to facilitate the problem formulation. A realistic case of
Asia–Europe–Oceania shipping was carried out to demonstrate the proposed model, and concluded that
the total operation cost could be reduced significantly by considering empty container repositioning.
The ECRP raised by these two papers is limited to global ocean shipping. By contrast, An et al. [21]
presented the service network design for inland water liner transportation with ECRP. By incorporating
the specific features of inland water transportation, a nonlinear mixed integer programming model was
constructed, and subsequently solved by a hybrid algorithm integrating genetic algorithm and integer
programming method. Furthermore, Song and Dong [20] proposed a three-stage solution methodology,
where the first, second, and third stage were used to deal with the service network design problem,
ECRP, and ship deployment problem, respectively.

Compared with the literature about unimodal ECRP, some studies are concerned with the ECRP
in an intermodal transportation system. Specifically, Choong et al. [35] analysed the effect of planning
horizon length on mode selection of ECRP for intermodal transportation network, and indicated
that the slower and cheaper transportation modes are more encouraged under the condition that the
planning horizon is long enough. Meng et al. [36] developed a linear mixed integer programming
model for intermodal liner service network design, which accounted for laden container routing,
ECRP, and ship route selection. A combination of intermodal service network design problem and
ECRP was studied by Braekers et al. [37] in a barge hinterland system, and discussed from different
perspectives, i.e., the perspective of barge operators and the perspective of shipping lines. In addition
to quantitative analysis on ECRP, Kolar et al. [38] described a research agenda of ECRP based on a
qualitative analysis by conducting interviews with representatives of ocean carriers, and indicated
some insightful findings.

All the literature mentioned above is studied under deterministic circumstances. However,
generally, empty container repositioning is subjected to various stochastic factors in practice.
For instance, the number of empty containers available cannot be forecasted precisely, because of
stochastic demand and supply. For empty container demand, it is difficult to obtain exact future volume,
due to a high dynamic environment and low precision forecast [2]. Similarly, the accurate future volume
of empty container supply is also hard to estimate, due to the uncertain returning time of containers
from customers [22]. Hence, both demand and supply should be described as uncertain parameters
when addressing ECRP. To incorporate the stochastic nature of empty container repositioning, many
efforts have been made to explore stochastic ECRP models (e.g., [17–19,28,31–34]). Crainic et al. [23]
focused on the ECRP that involved stochastic demand and supply modelled as random variables in the
context of the land transportation of international maritime shipping. Moreover, Li et al. [24] addressed
the ECRP in one port, where the amounts of import and export containers were treated as independent
and identically distributed variables. They extended the results to the long-run average case and the
infinite-horizon problem with a discounted factor. This problem was further generalized by Li et al. [25]
to take multi-ports into consideration. The allocation plan of empty containers was derived by using a
heuristic algorithm with ε-optimal policies. Lam et al. [27] presented a dynamic programming model
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for stochastic ECRP, and introduced an approximate approach based on temporal difference learning.
Song and Zhang [30] constructed a fluid flow model for ECRP concerning stochastic demand, which is
simulated as a two-state Markov chain. In order to examine the impact of different stochastic demand
patterns on ECRP, Song and Dong [31] analysed the performances under three types of different
demand distributions (i.e., normal distribution, uniform distribution, and exponential distribution).
Lee et al. [32] focused on the joint container fleet sizing problem, and ECRP with the consideration of
stochastic demand based on the feedback mechanism of inventory information, while Dong et al. [33]
compared the results of different empty container repositioning policies under uncertain demand.

In addition to stochastic demand and supply, there are some papers concentrating on stochastic
capacity. For example, Long et al. [2] set up a two-stage stochastic programming model involving
uncertain demand, supply, ship weight capacity, and ship space capacity. Stage one determined the
operation plan for repositioning empty containers with deterministic parameters, while stage two
adjusted the decisions derived from stage one based on the probability distribution of random variables.
Sample average approximation and progressive hedging strategy were applied to solve this model.
A two-stage stochastic network model for dynamic ECRP was established by Cheung and Chen [22] in
an ocean transportation network, to minimise the expected total cost by taking into account stochastic
demand, supply, and capacity. Francesco et al. [29] addressed the ECRP in a maritime transportation
system concerning stochastic demand, supply, residual transportation capacity of vessels, and loading
and unloading capacity.

Additionally, for unimodal ECRP, Song [26] examined the ECRP from the perspective of the
optimal stationary policy in two-terminal shuttle service system with uncertain demand. By exploring
the structural characteristics of objective function, a Markov decision process method was used to
obtain the results. Song and Dong [28] extended this model to the ECRP in a cyclic route under
stochastic and dynamic conditions, which analysed the impact of demand patterns, fleet sizes and,
in particular, degrees of uncertainty. For stochastic intermodal ECRP, Dong and Song [39] dealt
with the container fleet sizing problem, combined with ECRP involving stochastic demand and
inland transportation time, and revealed the relationship between the optimal container fleet size
and the inland transportation time. Xie et al. [40] emphasised the coordination and sharing issue of
empty container management with uncertain demand and supply between a liner company and
a rail company. The optimal delivery policy, and its change with initial inventory state, were
investigated under the centralised model, whereas a bilateral buy-back contract was designed in
the decentralised model.

Although the literature on ECRP is substantial and extensive, most literature mainly focuses on
the operation cost of repositioning empty containers, rather than environmental performance, e.g.,
CO2 emissions. So far, the research on ECRP with CO2 emissions is still scarce, both practically and
theoretically. To the best of our knowledge, only Song and Xu [41], and Bernat et al. [34] studied
CO2 emissions whilst repositioning empty containers. Song and Xu [41] provided an operational
activity-based method to calculate CO2 emissions in relation to ECRP, and revealed the relationship
among CO2 emissions, empty container repositioning policies, and handling capacity. More recently,
Bernat et al. [34] presented new periodic review policies integrating CO2 emissions, repair option,
street-turns, as well as stochastic parameters. A simulation model with metaheuristic approach was
then developed to assess the optimality of these policies.

Empty container repositioning is an extremely important issue in the container shipping
industry [11]. A highly efficient repositioning plan can effectively reduce the amount of repositioned
and leased empty containers, and shorten the total repositioning distance from the nodes with surplus
empty containers to the nodes with deficit empty containers, which leads to a reduction of total
repositioning cost for container carriers. However, uncertainty in container shipping may have a
negative effect on empty container movements [15], which causes the inefficiency, and even infeasibility,
of the current repositioning plan. Thus, a reliable and robust repositioning plan is required to tackle
these unpredictable factors in the container transportation system. At the same time, a well-organised
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repositioning plan can also reduce fuel consumption, traffic congestion, and emissions, due to the
decrease of empty container movements. Accordingly, empty container repositioning not only has
an economic impact on container carriers, but also an environmental influence on the sustainable
development of containerised transportation.

To incorporate environmental and stochastic characteristics of container shipping, this paper
proposes a chance-constrained programming model for ECRP in an intermodal transportation system,
which allows for, explicitly, CO2 emissions and uncertainty simultaneously. Stochastic demand and
supply, in the model, are treated as random variables. The purpose of this paper is to determine
how many empty containers should be repositioned, which route should be used to transport empty
containers, as well as where and how many empty containers should be leased in order to satisfy
the demands, which are referred to as distribution plan, routing plan, and leasing plan, respectively.
In addition, we conduct a numerical example to evaluate the results obtained under deterministic and
stochastic situations, as well as investigate the impact of model parameters and random variables on
the total cost and component costs. The main contributions of this paper are three-fold. First and most
significantly, it enriches the literature on ECRP by incorporating CO2 emissions, and stochastic demand
and supply. The uncertainty of ECRP facilitates us to construct a chance-constrained programming
model, achieving a minimal expected total cost. Second, we use sample average approximation (SAA)
to convert this model into its deterministic equivalents, and develop a two-phase tabu search algorithm
to solve the associated SAA problem. Third, we examine the effects of unit leasing cost, stochastic
demand and supply, as well as weights on costs and CO2 emissions.

The rest of this paper is organised as follows. Section 2 formulates stochastic ECRP with
CO2 emissions as a chance-constrained programming model. Section 3 presents a hybrid solution
methodology integrating a two-phase tabu search algorithm and SAA method. Section 4 illustrates the
computational results. The conclusions and future research directions are given in Section 5.

2. Mathematical Model for Stochastic ECRP with CO2 Emissions

The aim of this section is to present a chance-constrained mixed integer programming model
for stochastic ECRP with CO2 emissions, minimising the expected total cost. Section 2.1 introduces
notations and assumptions, whilst Section 2.2 describes the mathematical model.

2.1. Notations and Assumptions

Table 2 lists notations to be used in the following sections.

Table 2. Notations.

Term Definition

Index and set

V the set of nodes, V = Vrail ∪Vport

Vrail the set of railway stations

Vport the set of ports

Vs
rail the set of railway stations with surplus empty containers, Vs

rail ⊆ Vrail

Vd
rail the set of railway stations with deficit empty containers, Vd

rail ⊆ Vrail

Vs
port the set of ports with surplus empty containers, Vs

port ⊆ Vport

Vd
port the set of ports with deficit empty containers, Vd

port ⊆ Vport

A the set of arcs, A = Arail ∪ Aship

Arail
the set of railway arcs, including the arcs between two railway stations and the arcs
between one railway station and one port

Aship the set of ship arcs, i.e., the arcs between two ports
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Table 2. Cont.

Term Definition

Index and set

Rij
rail , Riq

rail

the sets of candidate railway routes between two railway stations and from one
railway station to one port, distinguished by the origin stations, destination railway
stations/ports, and intermediate railway stations.

Rship the set of candidate ship routes distinguished by their port calling sequences

T the planning horizon

i, j two railway stations, i, j ∈ Vrail

p, q two ports, p, q ∈ Vport

a a transportation arc, a ∈ A

k a candidate railway route, k ∈ Rij
rail ∪ Riq

rail

r a candidate ship route, r ∈ Rship

t a time period, t = 1, 2, . . . , T

Input parameters

distrail
a the distance of arc a (km)

crail
a

the unit transportation cost of one empty container on railway arc a,
crail

a = 30 + 0.15 ∗ distrail
a (US$/TEU)

cship
a,r

the unit transportation cost of one empty container on ship arc a of ship route r
(US$/TEU)

cload
i the unit loading cost of one empty container at railway station i (US$/TEU)

cunl
j the unit unloading cost of one empty container at railway station j (US$/TEU)

cload
p the unit loading cost of one empty container at port p (US$/TEU)

cunl
q the unit unloading cost of one empty container at port q (US$/TEU)

cinv
i

the unit inventory cost of storing one empty container per time period at railway
station i (US$/TEU)

cinv
p

the unit inventory cost of storing one empty container per time period at port p
(US$/TEU)

clea
i the unit leasing cost of one empty container at railway station i (US$/TEU)

clea
p the unit leasing cost of one empty container at port p (US$/TEU)

cco2 the unit CO2 emission-related cost (US$/kg)

eco2
a the CO2 emissions of arc a (kg/TEU)

capa the transportation capacity of railway arc a (TEUs)

capr the transportation capacity of ship route r when one ship is deployed (TEUs)

capi
the handling capacity of railway station i, including loading and unloading
operations (TEUs)

capp the handling capacity of port p, including loading and unloading operations (TEUs)

capinv
i the inventory capacity of railway station i (TEUs)

capinv
p the inventory capacity of port p (TEUs)

ht
i the number of empty containers stored at railway station i at the end of time t (TEUs)

ht
p the number of empty containers stored at port p at the end of time t (TEUs)

δk
a a binary variable, equal to 1 if the arc a is on the railway route k; 0 otherwise

δr
a a binary variable, equal to 1 if the arc a is on the ship route r; 0 otherwise
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Table 2. Cont.

Term Definition

Random variables

dt
i the uncertain demand of empty containers at railway station i at time t (TEUs)

st
i the uncertain supply of empty containers at railway station i at time t (TEUs)

dt
p the uncertain demand of empty containers at port p at time t (TEUs)

st
p the uncertain supply of empty containers at port p at time t (TEUs)

Decision variables

xt
ij the number of repositioned empty containers by train from i to j at time t

xt
pq the number of repositioned empty containers by ship from p to q at time t

xt
iq the number of repositioned empty containers by train from i to q at time t

yk,t
ij

a binary variable, equal to 1 if railway route k is selected to transport empty containers
from i to j at time t; 0 otherwise

yr,t
pq

a binary variable, equal to 1 if ship route r is selected to transport empty containers
from p to q at time t; 0 otherwise

yk,t
iq

a binary variable, equal to 1 if railway route k is selected to transport empty containers
from i to q at time t; 0 otherwise

zt
i the number of leased empty containers at railway station i at time t

zt
p the number of leased empty containers at port p at time t

Xt the vector of all decision variables at time t, i.e., Xt =
(

xt
ij, xt

pq, xt
iq, yk,t

ij , yr,t
pq, yk,t

iq , zt
i , zt

p

)

The mathematic model for stochastic empty container repositioning is constructed reliant on the
following assumptions.

Assumption 1: Compared with other transportation modes, road transportation is unsuitable
and costly for transporting containers over long distance, due to its working hour restrictions for
truck drivers, infrastructure deficits, and relatively higher operation costs. In addition, because of
the pollution caused by the burning process of fuel, it is not an eco-friendly transportation mode.
Therefore, only two transportation modes are taken into account, i.e., railway transportation and
maritime transportation. Thus, the intermodal network we discuss in this problem only includes two
types of nodes, i.e., railway stations and ports.

Assumption 2: The stochastic demand and supply of empty containers at any railway station and
port are independent of time periods. That is, the variabilities of stochastic demand and supply are
kept the same during the planning horizon.

Assumption 3: CO2 emission is only incurred by transporting empty containers from the nodes
with surplus empty containers to the nodes with deficit empty containers. In other words, it is assumed
that leasing empty containers will not contribute to CO2 emission.

Assumption 4: There is no restriction on the amount of leased empty containers at any railway
station and port at any time period. When surplus empty containers cannot satisfy the demand,
sufficient empty containers are leased to fulfil the shortage in a complementary way. In addition,
the leased empty containers are not required to be returned in the planning horizon.

Assumption 5: In order to simplify this model and reduce computational burden, the ECRP in
this paper is addressed, regardless of multiple types of containers. Therefore, we only consider the
standard containers, i.e., twenty-foot equivalent unit (TEU).

Assumption 6: All empty containers can be used without considering damage, repairs,
and discards during the planning horizon. This assumption can be relaxed by adding the percentages
of defective empty containers into the model if necessary.
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Assumption 7: The scope of this study is limited to the regional intermodal network, including
railway hinterland network of ports and the ship routes among these ports. Additionally, the train
services are all assumed to be direct, to ensure that inland transportation time is short enough compared
with the one time period. Similarly, the travel times of all ship routes are much smaller than one time
period. Consequently, we assume that all repositioned empty containers can be transported from their
origins to their destinations within one time period.

Assumption 8: All demands of empty containers can be satisfied at each time period by
repositioning and leasing empty containers, which is consistent with Assumption 4.

Assumption 9: For the stochastic demands at each railway station and port, they follow
different uniform distributions, respectively, with the same variability but different expected values.
The stochastic supplies are in the same manner as illustrated in Section 4.2.

2.2. A Chance-Constrained Nonlinear Integer Programming Model

The objective function of the model is to minimise the expected value of total weighted cost,
which is the weighted sum of repositioning cost and CO2 emission-related cost. Thus, the total
weighted cost at time period t can be defined by Equation (1), where Q1

(
Xt) and Q2

(
Xt) are

repositioning cost and CO2 emission-related cost respectively, and Xt is the vector of decision variables
at time period t.

Q
(
Xt) = ω1Q1

(
Xt)+ ω2Q2

(
Xt) (1)

According to the notations as presented in Section 2.1, Q1
(
Xt) and Q2

(
Xt) are defined as below.

Q1
(
Xt) = ∑

a∈Arail

crail
a

 ∑
i∈Vs

rail

∑
j∈Vd

rail

xt
ij ∑

k∈Rij
rail

yk,t
ij δk

a + ∑
i∈Vs

rail

∑
q∈Vd

port

xt
iq ∑

k∈Riq
rail

yk,t
iq δk

a


+ ∑

p∈Vs
port

∑
q∈Vd

port

xt
pq ∑

r∈Rship

yr,t
pq ∑

a∈Aship

δr
acship

a,r

+ ∑
i∈Vs

rail

cload
i

 ∑
j∈Vd

rail

xt
ij + ∑

q∈Vd
port

xt
iq

+ ∑
p∈Vs

port

cload
p

 ∑
j∈Vd

rail

xt
pj + ∑

q∈Vd
port

xt
pq


+ ∑

j∈Vd
rail

cunl
j

 ∑
i∈Vs

rail

xt
ij + ∑

p∈Vs
port

xt
pj

+ ∑
q∈Vd

port

cunl
q

 ∑
i∈Vs

rail

xt
iq + ∑

p∈Vs
port

xt
pq


+ ∑

i∈Vrail

cinv
i ht

i + ∑
p∈Vport

cinv
p ht

p

+ ∑
i∈Vrail

clea
i zt

i + ∑
p∈Vport

clea
p zt

p

(2)

Q2
(
Xt) = cco2 ∑

a∈A
eco2

a

 ∑
i∈Vs

rail

∑
j∈Vd

rail

xt
ij ∑

k∈Rij
rail

yk,t
ij δk

a

+ ∑
i∈Vs

rail

∑
q∈Vd

port

xt
iq ∑

k∈Riq
rail

yk,t
iq δk

a + ∑
p∈Vs

port

∑
q∈Vd

port

xt
pq ∑

r∈Rship

yr,t
pqδr

a


(3)

The repositioning cost is represented by Equation (2), which includes transportation cost, handling
cost (i.e., the sum of loading cost and unloading cost), inventory cost, and leasing cost, while CO2

emission-related cost is expressed by Equation (3).
Let ξ be a random vector including all random variables at time periods, i.e.,

ξ =
(

dt
i , st

i , dt
p, st

p, i ∈ Vrail , p ∈ Vport, ∀t = 1, 2, . . . , T
)

. (4)
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The proposed stochastic empty container repositioning problem can be formulated as a
chance-constrained nonlinear integer programming model.

P0 f (X) = minE

(
T

∑
t=1

Q
(
Xt, ξ

))
, (5)

subject to

(i) Flow chance constraints

Pr

 ∑
j∈Vd

rail

xt
ij + ∑

q∈Vd
port

xt
iq ≤ ht−1

i + st
i − dt

i

 ≥ ε1, ∀i ∈ Vs
rail , ∀t = 1, 2, . . . , T, (6)

Pr

 ∑
j∈Vd

rail

xt
pj + ∑

q∈Vd
port

xt
pq ≤ ht−1

p + st
p − dt

p

 ≥ ε1, ∀p ∈ Vs
port, ∀t = 1, 2, . . . , T, (7)

Pr

ht−1
j + st

j + ∑
i∈Vs

rail

xt
ij + ∑

p∈Vs
port

xt
pj + zt

j ≥ dt
j

 ≥ ε2, ∀j ∈ Vd
rail , ∀t = 1, 2, . . . , T, (8)

Pr

ht−1
q + st

q + ∑
i∈Vs

rail

xt
iq + ∑

p∈Vs
port

xt
pq + zt

q ≥ dt
q

 ≥ ε2, ∀q ∈ Vd
port, ∀t = 1, 2, . . . , T. (9)

Constraints (6)–(7) impose that the maximum number of repositioned empty containers from
surplus railway stations and ports cannot exceed their available empty containers with a possibility
of at least ε1. Constraints (8)–(9) enforce that all demands of empty containers must be satisfied by
repositioning and/or leasing, with a possibility of at least ε2 at deficit railway stations and ports.

(ii) Flow conservation constraints

ht
i = ht−1

i + st
i − dt

i − ∑
j∈Vd

rail

xt
ij − ∑

q∈Vd
port

xt
iq, ∀i ∈ Vs

rail , ∀t = 1, 2, . . . , T, (10)

ht
j = ht−1

j + st
j + zt

j − dt
j + ∑

i∈Vs
rail

xt
ij + ∑

p∈Vs
port

xt
pj, ∀j ∈ Vd

rail , ∀t = 1, 2, . . . , T, (11)

ht
p = ht−1

p + st
p − dt

p − ∑
j∈Vd

rail

xt
pj − ∑

q∈Vd
port

xt
pq, ∀p ∈ Vs

port, ∀t = 1, 2, . . . , T, (12)

ht
q = ht−1

q + st
q + zt

q − dt
q + ∑

i∈Vs
rail

xt
iq + ∑

p∈Vs
port

xt
pq, ∀q ∈ Vd

port, ∀t = 1, 2, . . . , T. (13)

Constraints (10)–(13) guarantee the flow conservation of empty containers stored at all railway
stations and ports. For example, the total number of empty containers stored at surplus railway station
i at time t, equals the sum of empty containers stored at time t – 1, and those supplied minus the
demand of empty containers, and those repositioned to deficit railway stations and ports at time
period t.

(iii) Capacity constraints

∑
i∈Vs

rail

∑
j∈Vd

rail

xt
ij ∑

k∈Rij
rail

yk,t
ij δk

a + ∑
i∈Vs

rail

∑
q∈Vd

port

xt
iq ∑

k∈Riq
rail

yk,t
iq δk

a ≤ capa, ∀a ∈ Arail , ∀t = 1, 2, . . . , T, (14)
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∑
p∈Vs

port

∑
q∈Vd

port

xt
pqyr,t

pqδr
a ≤ capr, ∀a ∈ Aship, ∀r ∈ Rship, ∀t = 1, 2, . . . , T, (15)

∑
j∈Vd

rail

xt
ij + ∑

q∈Vd
port

xt
iq ≤ capi, ∀i ∈ Vs

rail , ∀t = 1, 2, . . . , T, (16)

∑
i∈Vs

rail

xt
ij + ∑

p∈Vs
port

xt
pj ≤ capj, ∀j ∈ Vd

rail , ∀t = 1, 2, . . . , T, (17)

∑
j∈Vd

rail

xt
pj + ∑

q∈Vd
port

xt
pq ≤ capp, ∀p ∈ Vs

port, ∀t = 1, 2, . . . , T, (18)

∑
i∈Vs

rail

xt
iq + ∑

p∈Vs
port

xt
pq ≤ capq, ∀q ∈ Vd

port, ∀t = 1, 2, . . . , T, (19)

ht
i ≤ capinv

i , ∀i ∈ Vrail , ∀t = 1, 2, . . . , T, (20)

ht
p ≤ capinv

p , ∀p ∈ Vport, ∀t = 1, 2, . . . , T. (21)

Constraint (14) limits the total number of empty containers transported by a train on arc a, while
Constraint (15) restricts the arc flow of empty containers on ship route r. Constraints (16)–(19) state
that the amount of empty containers loaded and unloaded is within the handling capacity at railway
stations and ports. Constraints (20)–(21) ensure that the number of empty containers stored cannot
exceed the inventory capacity at railway stations and ports.

(iv) Route selection constraints

∑
k∈Rij

rail

yk,t
ij = 1, ∀i ∈ Vs

rail , ∀j ∈ Vd
rail , ∀t = 1, 2, . . . , T, (22)

∑
r∈Rship

yr,t
pq = 1, ∀p ∈ Vs

port, ∀q ∈ Vd
port, ∀t = 1, 2, . . . , T, (23)

∑
k∈Riq

rail

yk,t
iq = 1, ∀i ∈ Vs

rail , ∀q ∈ Vd
port, ∀t = 1, 2, . . . , T. (24)

Constraints (22)–(24) ensure that only one route can be used to reposition empty containers
from one node with surplus empty containers to another with deficit empty containers, that
is, the repositioned empty containers with the same origin and destination cannot be split over
different routes.

(v) Decision variables constraints

xt
ij, xt

pq, xt
iq ≥ 0, ∀i ∈ Vs

rail , ∀j ∈ Vd
rail , ∀p ∈ Vs

port, ∀q ∈ Vd
port, ∀t = 1, 2, . . . , T, (25)

yk,t
ij , yr,t

pq, yk,t
iq ∈ {0, 1},

∀i ∈ Vs
rail , ∀j ∈ Vd

rail , ∀p ∈ Vs
port, ∀q ∈ Vd

port

∀k ∈ Rij
rail ∪ Riq

rail , ∀r ∈ Rship, ∀t = 1, 2, . . . , T

(26)

zt
i , zt

p ≥ 0, ∀i ∈ Vrail , ∀p ∈ Vport, ∀t = 1, 2, . . . , T. (27)

Constraints (25)–(27) require that all decision variables take non-negative values.

3. Solution Methodology

In this section, we propose a heuristic solution methodology to solve the mathematical model
for stochastic ECRP with CO2 emissions in Section 2. Specifically, the SAA method is adopted to
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convert the chance-constrained mixed integer programming model into its deterministic equivalents
in Section 3.1, while a two-phase tabu search algorithm is developed in Section 3.2.

3.1. SAA Method

The chance-constrained programming model was first proposed by Charnes and Cooper [42],
and is then further studied in the domain of stochastic optimisation. But, now, it is still a
challenging problem to solve. So far, there are some stochastic optimisation methods for solving
the stochastic programming model, e.g., stochastic approximation, stochastic gradient descent,
finite-difference stochastic approximation, simultaneous perturbation stochastic approximation,
and scenario optimisation. However, these methods all have difficulties in calculating the values
of uncertain functions accurately, especially for the approximation of chance constraints. SAA is a
widely used approach proposed by Kleywegt et al. [43] for solving stochastic programming model
based on Monte Carlo simulation. Compared with other stochastic programming methods, SAA can
effectively approximate the expected total cost and two types of chance constraints regarding stochastic
demand and supply in our model [44]. Therefore, we employ the SAA method to solve the stochastic
ECRP with CO2 emissions. In detail, we first generate an independent identically distributed sample{

ξ1, ξ2, . . . , ξN}, according to the probability distributions of random variables, which consists of N
realisations of the random vector ξ, i.e.,

ξn =
{

dt
i(n), st

i(n), dt
p(n), st

p(n)
∣∣∣i ∈ Vrail , p ∈ Vport, ∀t = 1, 2, . . . , T

}
, ∀n = 1, 2, . . . , N. (28)

Then, the expected value of objective function E
(

T
∑

t=1
Q
(
Xt, ξ

))
can be approximated by sample

average function 1
N ∑N

n=1 ∑T
t=1 Q

(
Xt, ξn) [44]. Similarly, the possibilities that chance constraints are

satisfied can be also approximated [45]. Take chance Constraint (6), for example, we first define the
indicator function of (0, ∞), 1(0,∞) : R→ R , i.e.,

1(0,∞)(s) =

{
1, i f s ≥ 0
0, i f s < 0

, (29)

and then Equation (6) can be rewritten as

Pr

 ∑
j∈Vd

rail

xt
ij + ∑

q∈Vd
port

xt
iq ≤ ht−1

i + st
i − dt

i

 = 1
N

N
∑

n=1
1(0,∞)

ht−1
i + st

i − dt
i − ∑

j∈Vd
rail

xt
ij − ∑

q∈Vd
port

xt
iq

. (30)

According to law of large numbers theory, the value of the right-hand side will converge to
the value of left-hand side, with the possibility of 1, as sample size N increases to infinity. Thus,
the chance-constrained programming model for ECRP P0 can be converted into the corresponding
deterministic SAA problem P1.

P1 fN(X) = min
N

∑
n=1

T

∑
t=1

Q
(
Xt, ξn)/N, (31)

subject to Constraints (10)–(27), and the following Constraints (32)–(35):

1
N

N

∑
n=1

1(0,∞)

ht−1
i + st

i(n)− dt
i(n)− ∑

j∈Vd
rail

xt
ij − ∑

q∈Vd
port

xt
iq

 ≥ ε1, ∀i ∈ Vs
rail , ∀t = 1, 2, . . . , T, (32)
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1
N

N

∑
n=1

1(0,∞)

ht−1
p + st

p(n)− dt
p(n)− ∑

j∈Vd
rail

xt
pj − ∑

q∈Vd
port

xt
pq

 ≥ ε1, ∀p ∈ Vs
port, ∀t = 1, 2, . . . , T, (33)

1
N

N
∑

n=1
1(0,∞)

ht−1
j + st

j(n) + ∑
i∈Vs

rail

xt
ij + ∑

p∈Vs
port

xt
pj + zt

j − dt
j(n)

 ≥ ε2, ∀j ∈ Vd
rail , ∀t = 1, 2, . . . , T, (34)

1
N

N
∑

n=1
1(0,∞)

ht−1
q + st

q(n) + ∑
i∈Vs

rail

xt
iq + ∑

p∈Vs
port

xt
pq + zt

q − dt
q(n)

 ≥ ε2, ∀q ∈ Vd
port, ∀t = 1, 2, . . . , T. (35)

To evaluate the quality of optimal solution derived from SAA method, the optimality gap (i.e.,
the difference between lower bound and the objective value of optimal solution) need to be computed.
In order to get a lower bound for true problem P0, we generate M independent identical samples
with N realisations of random vector ξ. As a result, we can acquire M corresponding SAA problems.
By solving them, we obtain M candidate solutions X1, X2, . . . , XM, and M associated objective values
f 1
N , f 2

N , . . . , f M
N . Thus, as suggested by Verweij et al. [44], the lower bound f N can be estimated by

f N =
1
M

M

∑
m=1

f m
N . (36)

Besides, as stated by Luedtke and Ahmed [46], a posteriori analysis should be conducted to see
whether the chance constraints are satisfied for each candidate solution. Therefore, a large independent
sample

{
ξ1, ξ2, . . . , ξN′}, comprising N′ realisations of random vector ξ, needs to be generated to check

the feasibility of candidate solutions and select the feasible ones. Then, we recalculate the objective
values of all feasible solutions denoted as X̂ by

fN′
(
X̂
)
= min

N′
∑
n=1

T

∑
t=1

Q
(
X̂t, ξn)/N′, (37)

and choose the one with the minimal total weighted cost as the optimal solution X∗. Accordingly,
the optimality gap can be calculated in Equation (38) as follows.

fN′(X∗)− f N (38)

3.2. Two-Phase Tabu Search Algorithm

As a mature approach, tabu search algorithm has been extensively applied to transportation
operation research, e.g., stop-skipping scheduling problem [47] and vehicle routing problem [48].
Therefore, a two-phase tabu search algorithm is designed to solve the deterministic SAA problem for
stochastic ECRP with CO2 emissions, which is composed of a distribution phase and routing phase.
The procedure of two-phase tabu search algorithm, incorporating SAA method, is illustrated as a
flowchart in Figure 1.
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3.2.1. Distribution Phase

In the distribution phase, a tabu search algorithm is developed to determine how many empty
containers are required to reposition from surplus nodes to deficit nodes, as well as where and how
many empty containers to be leased at deficit nodes, i.e., distribution plan and leasing plan. The main
elements are presented, next, in detail.

(i) Neighbourhood structure

In the procedure of tabu search, neighbourhood structure is a key factor for the performance and
efficiency of this algorithm, which transforms the current solution into one of its neighbour solutions
in the search space [49]. The neighbourhood structure of distribution phase is obtained by considering
add or drop moves based on the current solution. Add moves are defined as the moves that increase
the amount of repositioned empty containers between one surplus node and one deficit node, while
drop moves are described as the moves that decrease the number of repositioned empty containers
between two nodes.

For each decision variable of distribution plan xt
ij, xt

pq, or xt
iq, a random number is generated from

uniform distribution on the interval (0, 1) to compare with the predetermined selection possibility,
which indicates whether an add or drop move is performed for the variable. Then, at each iteration
of distribution phase, an add/drop move sample is introduced to represent the move status of
all distribution variables. The move status is sorted into three categories: drop move, no move,
and add move, corresponding to values −1, 0, and 1, respectively, which the add/drop move sample
can take, and the variability range of add or drop moves follows a uniform distribution between
1 TEU and 5 TEUs. Accordingly, all neighbour solutions are obtained, based on the add/drop move
sample. For the leasing plan, the corresponding decision variables, zt

i and zt
p (i.e., the amount of

leasing containers at each deficit railway station or port), can be calculated by the difference between
the number of repositioned and deficit empty containers. Considering that the leasing cost is time
independent, therefore, there is no need to hire surplus empty containers in preparation for the demand
of the next time period, which will incur more inventory cost.

(ii) Evaluation of neighbour solutions

To decide which move should be performed, we need to evaluate the objective value of each
neighbour solution [50]. In the distribution phase, the handling cost, inventory cost, leasing cost,
and CO2 emission-related cost are straightforward and easy to calculate. However, since the routes
for transporting empty containers are derived from the routing phase, which is implemented after
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the distribution phase, the transportation cost is hard to estimate. In order to get a relatively exact
evaluation, we assume that each empty container is shipped on the route with the minimal cost.
Thus, the evaluation of neighbour solutions is the sum of transportation cost estimate and other
component costs.

(iii) Tabu attributes, tabu duration, and aspiration criterion

For add or drop moves in distribution phase, the tabu attribute is the increase or decrease of
repositioned empty containers from surplus nodes to deficit nodes, respectively. To avoid the cycling
search, a dynamic tabu duration is introduced, which varies with the number of decision variables
of the distribution plan. In addition, an aspiration criterion is used to ensure that a tabu add or drop
move can be applied when a better solution is found [51].

3.2.2. Routing Phase

The routing phase proposes a tabu search algorithm to specify the routes for transporting the
empty containers from surplus nodes to deficit nodes, i.e., a routing plan. The details are stated
as follows.

(i) Neighbourhood structure

Considering the characteristics of the binary decision variables of routing phase, swap moves
are introduced to obtain the neighbour structure, which transit the current solution to its neighbour
solutions in the search space. Swap moves are defined as the moves that specify one candidate route
to replace the current route for transporting empty containers. This type of move can ensure that all
neighbour solutions satisfy the route selection constraints. Similar to the distribution phase, a swap
move sample is employed in this phase to indicate whether a swap move is performed for each
decision variable of routing phase, i.e., yk,t

ij , yr,t
pq, and yk,t

iq .

(ii) Evaluation of neighbour solutions

Compared with the distribution phase, the evaluation of neighbour solutions in routing phase
is more straightforward. For the given distribution plan and leasing plan, routing phase yields the
corresponding optimal routing plan, which only causes the change of transportation cost. Therefore,
in order to simplify the calculation and select the best swap move in a highly efficient manner, we use
the transportation cost as the evaluation value of each neighbour solution.

(iii) Tabu attributes, tabu duration, and aspiration criterion

For swap moves, the tabu attribute is the changes of routes for transporting empty containers.
Since the number of decision variables of distribution phase is relevant with that of routing phase, tabu
duration needs to change dynamically to maintain algorithm performance. In the process of searching,
if a better solution is encountered, resulting from one tabu swap move, the tabu status of this move
will be updated as nontabu, which is defined as an aspiration criterion.

4. Computational Study

In order to demonstrate the proposed chance-constrained nonlinear mixed integer programming
model, and evaluate the two-phase tabu search algorithm integrating SAA method, a numerical
example is studied in Section 4, considering railway and maritime transportation. In addition,
we compare the results of deterministic and stochastic cases, and conduct the sensitivity analyses of
model parameters and random variables.

4.1. Deterministic Case

In this section, a sea–rail intermodal network is considered, which consists of seven railway
stations and three ports, as shown in Figure 2. The planning horizon T is three time periods, i.e.,
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t = 1, 2, 3. At the beginning of the planning horizon, the numbers of empty containers at all nodes are
assumed to be zero. Additionally, the unit handling cost, the unit inventory cost, the unit leasing cost,
and the unit CO2 emission-related cost are set to be 15 (US$/TEU), 5.6 (US$/TEU), 200 (US$/TEU),
and 2 (US$/kg), respectively.
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Figure 2. A sea–rail intermodal network.

The railway network information is listed in Table 3, including the distance, cost, and CO2

emission when empty containers are transported by train, while the maritime network information
is displayed in Table 4, including the port calling sequence of each ship route and the cost and CO2

emission between two ports when empty containers are transported by ship.

Table 3. The railway network information.

Arc Distance (km) Cost (US$/TEU) CO2 (kg/TEU)

(S1, S2) 195 59.25 9.86
(S1, S4) 158 53.7 7.99
(S1, S5) 158 53.7 7.99
(S2, S3) 190 58.5 9.61
(S2, S6) 98 44.7 5
(S3, S7) 88 43.2 4.45
(S4, S5) 145 51.75 7.34
(S4, P1) 135 50.25 6.83
(S5, S6) 100 45 5.06
(S5, P1) 165 54.75 8.35
(S6, S7) 100 45 5.06
(S6, P2) 100 45 5.06
(S7, P3) 100 45 5.06

Table 4. The maritime network information.

Ship Route Port Calling Sequence Arc Cost (US$/TEU) CO2 (kg/TEU)

1 P1→P2→P1 (P1, P2) 18 9.75
2 P2→P3→P2 (P2, P3) 15 3.68
3 P1→P3→P1 (P1, P3) 30 13.43

4 P1→P2→P3→P2→P1
(P1, P2) 17 9.75
(P2, P3) 16 3.68
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It is assumed that three stations (i.e., S1, S2, S3) and three ports (i.e., P1, P2, P3), in this case, are
treated as surplus railway station/port or deficit railway station/port, which can generate the demand
and supply of empty containers. In other words, the other four stations S4, S5, S6, and S7, are treated as
a balanced station/port without repositioning and leasing containers. Tables 5 and 6 give the demand
and supply of empty containers at these six nodes during the planning horizon.

Table 5. The demand of empty containers at each time period.

Demand of Empty Containers (TEUs) S1 S2 S3 P1 P2 P3

t = 1 424 428 392 490 446 632
t = 2 396 324 414 530 548 454
t = 3 378 292 406 582 532 594

Table 6. The supply of empty containers at each time period.

Supply of Empty Containers (TEUs) S1 S2 S3 P1 P2 P3

t = 1 366 368 436 464 552 606
t = 2 436 276 316 622 466 550
t = 3 336 328 356 628 586 550

The key parameters of two-phase tabu search algorithm are described as follows. For the
distribution phase, the maximum number of iterations max_d and tabu length are set as 100 and
4. For the routing phase, the maximum number of iterations max_r is set as 50, while the tabu
length is dependent on the number of routing decision variables at each time period. The solution
methodology, incorporating SAA method and two-phase tabu search algorithm, is coded in MATLAB
R2012a. The program is run on a 2.5GHz dual core PC with 4GB RAM.

Given the weights of repositioning cost and CO2 emission-related cost ω1 = 1, ω2 = 1, we can
obtain the repositioning plan with a total cost of $65,991, including the distribution plan, routing plan,
and leasing plan at each time period, as shown in Table 7. Table 8 lists the costs of the deterministic
case, consisting of transportation cost, handling cost, inventory cost, leasing cost, CO2 emission-related
cost, and total cost.

Table 7. The repositioning plan of the deterministic case.

Time Period t Distribution Plan Routing Plan Leasing Plan

1

S3→S1: 10 TEUs S3→S2→S1

S1: 48 TEUs
S3→S2: 34 TEUs S3→S2
P2→S2: 26 TEUs P2→S6→S2
P2→P1: 26 TEUs Ship route 4
P2→P3: 26 TEUs Ship route 2

2

S1→S2: 20 TEUs S1→S2

S2: 18 TEUs
S3: 22 TEUs

S1→S3: 20 TEUs S1→S2→S3
P1→P2: 24 TEUs Ship route 4
P3→S2: 10 TEUs P3→S7→S6→S2
P3→S3: 56 TEUs P3→S7→S3
P3→P2: 30 TEUs Ship route 2

3

S2→S3: 36 TEUs S2→S3

-
P1→S1: 42 TEUs P1→S4→S1
P1→P3: 22 TEUs Ship route 3
P2→S3: 14 TEUs P2→S6→S7→S3
P2→P3: 22 TEUs Ship route 2



Sustainability 2018, 10, 4211 17 of 24

Table 8. The costs of the deterministic case.

Time
Period t

Transportation
Cost (US$)

Handling
Cost (US$)

Inventory
Cost (US$)

Leasing
Cost (US$)

CO2
Emission-Related

Cost (US$)

Total Cost
(US$)

1 6330.7 3600 156.8 9600 2264.4 22,012
2 10,684 4800 380.8 8000 3229.5 27,095
3 9326.7 4080 380.8 0 3097.6 16,885

Total 26,342 12,540 918.4 17,600 8591.5 65,991

To assess the influence of the weights of repositioning cost and CO2 emission-related cost, we test
the deterministic case under different weight combinations. As shown in Figure 3a,b,e, for a given
weight ω1, transportation cost, handling cost and CO2 emission-related cost decline with the increasing
value of weight ω2. As CO2 emission is only incurred by repositioning empty containers, less empty
containers are transported when CO2 emission-related cost dominates the total weighted cost. In other
words, when the value of weight ω2 goes up, more empty containers are leased to satisfy the demand
because it makes no contribution to CO2 emission. As a consequence, the three component costs drop
to a low level with the decreasing number of repositioned empty containers, and vice versa.

On the contrary, inventory cost and leasing cost present an increasing tendency, as illustrated in
Figure 3c,d. As discussed above, less empty containers are repositioned resulting from the growth of
weight ω2. Consequently, it leads to more empty containers accumulating at surplus railway stations or
ports, which incur high inventory cost. On the other hand, more leased empty containers undoubtedly
result in the rise of leasing cost. As depicted in Figure 3f, compared with other component costs, total
cost ascends significantly with the weights ω1 and ω2 both declining from 0.6 to 0. Nevertheless, it
grows slowly when the two weights are larger than 0.6. We conjecture that this can be explained by the
interaction of multiple component costs and relevant model parameters. Hence, it is can be concluded
that total cost and other component costs are strongly dependent on the weight combinations.

Next, we examine the effect of unit leasing cost on the number of leased empty containers under
three different weight combinations for each time period and the whole planning horizon. As expected,
the amounts of leased empty containers for the three weight settings all descend with the growth of
unit leasing cost in Figure 4. However, for the weight setting ω1 = 0, ω2 = 1, the number of leased
empty containers is less sensitive to the unit leasing cost, and fluctuates fiercely because the change
of unit leasing cost cannot affect the total weighted cost when ω1 = 0. Furthermore, we note that the
number of leased empty containers for the weight setting ω1 = 0, ω2 = 1 is generally more than the
other two weight settings. Since the value of ω1 for the other two weight settings is 1, that means the
leasing cost accounts for a larger percentage of total weighted cost, and freight companies are preferable
to repositioned empty containers rather than leased empty containers to reduce high leasing cost.
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Figure 5 illustrates the influence of unit leasing cost on CO2 emission-related cost under three
different weight combinations. As indicated in Figure 5, CO2 emission-related cost grows with the
increase of unit leasing cost. This can be explained by less leased empty containers, which forces more
empty containers to be repositioned as a complementary way to satisfy the demand. At the same time,
more CO2 is emitted during the process of repositioning, resulting in more CO2 emission-related cost.
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4.2. Stochastic Case

As mentioned in Section 2.1, the uncertain demand of empty containers dt
i and dt

p both follow
uniform distributions, i.e., dt

i ∼ U(mi, mi + λ1), with mi the demand of deterministic case at railway
station i, and dt

p ∼ U
(
mp, mp + λ1

)
, with mp the demand of deterministic case at port p, where

coefficient λ1 is defined as the variability of uncertain demand. Similarly, the uncertain supply
of empty containers st

i and st
p also follow uniform distributions, i.e., st

i ∼ U(ni, ni + λ2) and
st

p ∼ U
(
np, np + λ2

)
, where ni and np, the supplies of deterministic case at railway station i and

port p, respectively, as well as λ2, the variability of uncertain supply. Here, λ1 and λ2 both take value 6.
For SAA method parameters, we set sample sizes N, N′, and replication number M, to be 500, 10,000,
and 10, respectively. Confidence levels ε1 and ε2 are both assumed to be 0.5. In addition, other input
parameters are the same with those of deterministic case. Table 9 reports the distribution plan, routing
plan, and leasing plan of stochastic case at each time period, while Table 10 shows the associated costs.

Table 9. The repositioning plan of the stochastic case.

Time Period t Distribution Plan Routing Plan Leasing Plan

1

S3→S1: 16 TEUs S3→S2→S1

S1: 48 TEUs
S2: 3 TEUs

S3→S2: 27 TEUs S3→S2
P2→S2: 36 TEUs P2→S6→S2
P2→P1: 32 TEUs Ship route 4
P2→P3: 32 TEUs Ship route 2

2

S1→S2: 24 TEUs S1→S2

S2: 22 TEUs
S3: 26 TEUs

S1→S3: 21 TEUs S1→S2→S3
P1→P2: 56 TEUs Ship route 4
P3→S2: 8 TEUs P3→S7→S6→S2

P3→S3: 62 TEUs P3→S7→S3
P3→P2: 32 TEUs Ship route 2

3

S2→S1: 16 TEUs S2→S1

S1: 2 TEUs
S3: 5 TEUs

S2→S3: 30 TEUs S2→S3
P1→S1: 41 TEUs P1→S4→S1
P1→P3: 32 TEUs Ship route 3
P2→S3: 21 TEUs P2→S6→S7→S3
P2→P3: 30 TEUs Ship route 2

Table 10. The costs of the stochastic case.

Time
Period t

Transportation
Cost (US$)

Handling
Cost (US$)

Inventory
Cost (US$)

Leasing
Cost (US$)

CO2
Emission-Related

Cost (US$)

Total Cost
(US$)

1 7716.7 4290 177.1 10,200 2725.8 25,110
2 11,873 6090 459.3 9600 4039.7 32,062
3 11,172 5100 503.4 1400 3799.6 21,975

Total 30,762 15,480 1139.8 21200 10,565 79,147

As compared with the results of deterministic case, stochastic demand and supply result in a
different repositioning plan. With respect to the distribution plan, repositioned empty containers
rise dramatically from 418 TEUs of deterministic case to 516 TEUs of stochastic case. Similarly,
for the leasing plan, leased empty containers grow relatively steadily, from 88 TEUs to 106 TEUs.
By contrast, there is no change in the routing plan. Due to the rise of repositioned and leased empty
containers, the total cost and other component costs go up considerably in comparison to those of the
deterministic case.

To further investigate the effect of stochasticity, we test the stochastic case with different λ1 and
λ2, i.e., different variabilities of stochastic demand and supply. As shown in Figure 6, the leasing cost
and total cost ascend with coefficient λ1. In Figure 6a, we can also observe that the leasing cost with
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λ2 = 1 is always more than those with λ2 = 5 and λ2 = 9, when λ1 varies from 1 to 10. This implies
that lower supply variability provides less available empty containers than the other two situations, so
more leased containers are required to satisfy the demand, which incurs more leasing cost.
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Figure 6. The comparisons of leasing cost and total cost with different coefficient λ1. (a) Leasing cost
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Likewise, the effect of coefficient λ2 is also analysed. It can be seen from Figure 7 that the
inventory cost rises noticeably, while the total cost fluctuates within a certain range and goes up very
slightly. In addition, we notice that the total cost with λ1 = 9 is more than other two situations in
Figure 7b, which indicates that more operation cost is requested to cope with higher variability in
empty container demand.Sustainability 2018, 10, x FOR PEER REVIEW  22 of 25 
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5. Conclusions

This paper has presented an empty container repositioning problem (ECRP) allowing for CO2

emissions, and stochastic demand and supply. To formulate this problem, a chance-constrained mixed
integer programming model is proposed to minimise the expected value of total weighted cost in
a sea–rail intermodal network. In order to solve it, sample average approximation (SAA) method
is used to convert it into its deterministic equivalents. Two-phase tabu search algorithm is then
developed to obtain the optimal solution of the converted SAA problem. Specifically, the first phase
yields the distribution plan and leasing plan, whilst the second phase produces the routing plan.
Finally, a computational study has been carried out to validate the proposed model and developed



Sustainability 2018, 10, 4211 22 of 24

solution methodology. The results indicate that the repositioning plan and total cost are affected not
only by stochastic factors, but also by weight combinations. To explore the effect of them, a series of
sensitivity analyses is conducted. We conclude that stochastic demand and supply can both increase
the transportation cost, handling cost, inventory cost, leasing cost, CO2 emission-related cost, and total
cost compared with the deterministic case. At the same time, the amounts of repositioned and leased
empty containers also present an increasing tendency. Moreover, the impact of variabilities of stochastic
factors on costs is examined. Higher variability of stochastic demand results in more leasing cost
and total cost, while higher variability of stochastic supply leads to the increased inventory cost and
fluctuating total cost. With respect to the weights of repositioning cost and CO2 emission-related cost,
it is found that both of them have a positive or negative relationship with the costs. Transportation
cost, handling cost, and CO2 emission-related cost decline with the increasing value of weight ω2

and the decrease of weight ω1. By contrast, inventory cost and leasing cost present an opposite trend.
Additionally, the results also show that the rise of unit leasing cost can lead to the decrease of the
number of leased empty containers, and the increase of CO2 emission-related cost. These findings in
this paper can provide implications for decision-makers when an operation plan for repositioning
and leasing empty containers needs to be determined in a stochastic environment. Furthermore,
the decision-maker can obtain the different repositioning plans under different weight combinations,
according to their preferences.

There are two directions which are worth investigating for future research. The first direction
is to integrate the routing problem of loaded containers in the decision process of ECRP. The second
direction is to consider uncertain factors from the perspective of fuzzy theory.
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