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Abstract: As a result of increasingly serious environmental pollution, it is vital to reduce carbon
emissions to achieve green and sustainable development for manufacturing processes. Customer
satisfaction, as an important factor affecting enterprise profits, is of great importance in the promotion
of sustainable development. Because an accurate delivery time and high delivery rate improve
customer satisfaction and enhance an enterprise’s competitive advantage in the market, this paper
proposes a new optimization method for achieving low carbon emissions, a high delivery rate, and a
low cost for a job-shop scheduling problem. The computational results show the negative correlation
between assembly cost and carbon emissions, and the positive correlation between assembly cost and
delivery time by Pareto optimization. The proposed method, which takes into consideration carbon
emissions, greatly supports the objective of achieving a green and sustainable development.
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1. Introduction

Green and sustainable development has become an important aspect of the progression of the
manufacturing industry in the future [1–3]. As far as the environment is concerned, the “green”
highlights the aim of producing the required products with lower carbon emissions so as to reduce
the environmental pollution caused by the manufacturing process, and the “sustainable” highlights
the aim of producing the required products at a lower cost [4,5]. The enterprises with healthy and
sustainable development would have a strong competitiveness advantage in the modern market.
As production scheduling plays an important role in the manufacturing process that makes useful
of manufacturing resources [6–8], it is of great significance for manufacturing enterprises to develop
a scheduling method to achieve green and sustainable manufacturing. This paper summarizes the
existing research as follows:

(1) Green and sustainable development aspects: Low carbon is an important indicator of green
development, Ding et al. [9] considered a permutation flow-shop scheduling problem with the
objectives of minimizing the total carbon emissions and makespan. Liu [10] presented a job-shop
scheduling model and established a carbon footprint model to quantify the carbon emission
of different scheduling plans, in which three carbon efficiency indicators were put forward to
estimate the carbon emission of jobs and equipment. Yin et al. [11] proposed a low-carbon
mathematical scheduling model to optimize productivity, energy efficiency, and noise reduction.
Liu [12] developed an ε-archived genetic algorithm to examine two-batch scheduling problems
to minimize CO2 emission and total weighted tardiness.

(2) Optimization objective aspects: Han et al. [13] proposed a multi-objective scheduling model
considering the production quality, the makespan, and equipment performance. Gong et al. [14]
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introduced a multi-objective model for intelligent production systems to schedule jobs, equipment
idleness, and human resource under real-time electricity pricing. Besides, many research
usually simplify the complex processing environment into a single equipment production
problem to facilitate the calculation [15–17]. Li et al. [18] studied a single equipment scheduling
problem to determine the maintenance activity and job sequence. González et al. [19] tackled
a single equipment scheduling problem with sequence-dependent setup time to minimize the
weighted tardiness.

(3) Equipment maintenance aspects: Preventive maintenance plays an important role in continuous
production. Feng et al. [20] integrated imperfect preventive maintenance and sequence-dependent
group scheduling in flow-shop manufacturing cells, and proposed a system-level model.
Tayeb et al. [21] introduced a game theory approach for a permutation flow-shop scheduling
problem to meet production and maintenance criteria. Gholami et al. [22] presented the hybrid
flow-shop and scheduling overview of the equipment in the case of random availability, and
integrated the simulation into the genetic algorithm for the random fault equipment scheduling
mixed-model shop. Wong et al. [23] developed a real-time segmented rescheduling method
for dynamic factors and used a genetic algorithm for the pre-stitching process of dynamic
garment manufacturing.

Through the abovementioned literature, it can be found that in solving the green and sustainable
scheduling problem, existing contributions focus on how to transform multi-objective optimization
into single-objective optimization [24–26], ignoring the balance of multi-objectives. In addition, these
consider the delivery time window [27] without using it as a constraint. Much of the literature focuses
on applying carbon emissions for power dispatching problems, but not for scheduling problems
in the manufacturing process [28]. Despite this, there is extensive literature focused on equipment
maintenance and multi-objective optimization [29,30], however how to solve the scheduling problems
of low-carbon and sustainable development has become a research gap, especially taking delivery time
as one objective for customer satisfaction so as to promote the circular sustainable development of
enterprises. The aim of this study is to fill this research gap and provide guidance for the government
and firms whose focus is achieving green and sustainability development.

Our proposal is motivated by the importance of providing a new multi-objective optimization
method for the job-shop scheduling problem to promote green and sustainable development in the
manufacturing industry. This study assumes that equipment faults obey the Weibull distribution, and
aims to provide an improved genetic algorithm to solve the multi-objective workshop scheduling
model. This model and method will also provide a guidance for enterprises to analyze the key factors
affecting carbon emissions and costs, and formulate targeted countermeasures to achieve green and
sustainable development. In addition, this study hopes to provide reference value for scholars engaged
in the research of green production scheduling. Furthermore, this paper develops a new method to
minimize carbon emissions and cost, and maximize the product delivery. Accordingly, three methods
are used to solve this problem: an improved genetic algorithm (I-GA), a genetic algorithm (GA), and
a clonal immune algorithm (CIA). In addition, the relationship between assembly cost and carbon
emissions in the production process is discussed.

2. Problem Description

There are N work pieces to be processed in S stages on an assembly line. The work pieces pass
through the stages in turn and each stage consists of K pieces of equipment. There is at least one
piece of equipment in each stage. Each work piece has to undergo an assembly process at each stage.
There are three maintenance strategies for equipment failure, including minor repair, major repair, and
replacement. The maintenance operations are required as much as possible during the idle state of the
equipment. The basic assembly model is shown in Figure 1.
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Figure 1. The basic assembly model.

Figure 1. represents the basic assembly model, where Mik represents the number of machine.
Assume all work pieces arrive at time zero, and preventive maintenance cannot interrupt the processing.
The parameters and decision variables are shown in Table 1.

Table 1. The parameters and decision variables.

tpm
[i][j][k] time of minor maintenance R0 equipment’s initial reliability

tpo
[i][j][k] time of overhaul maintenance ω[k] the value waste of equipment caused by the replacement

tpr
[i][j][k] time of replacement during maintenance R(a[k−1]) reliability of equipment k before replacement operation

tmr
[i][j][k] the repair time ν[k] utilization value of equipment k from initial state to complete

deterioration

tsetup setup time of the equipment dm the earliest time of the customer’s demand

ϑ the acceleration penalty factor dn the latest time of the customer’s demand

∂ the operation cost per unit time Lmd unit time loss cost of equipment during preventive
maintenance downtime

cpm
[i][j][k] cost of minor maintenance Lbd unit time loss cost of the equipment during breakdown

downtime

cpo
[i][j][k] cost of overhaul maintenance Z1

[i][j][k] the power consumption of equipment k in standby state

cpr
[i][j][k] cost of replacement during maintenance Z3

[i][j][k] the power consumption of equipment k during processing

cmr
[i][j][k] the cost of repair Z4

[i][j][k] the power consumption of equipment k during no-load
operating

Cmr
[i][j][k] total cost of repair T2

[i][j][k] time required for the equipment from the startup state to
the steady state

Cp
[i][j][k] total cost of maintenance T2′

[i][j][k] time required for equipment from clicking shutdown to
stable stop state

Cpe the penalty cost T1
[i][j][k] time of equipment k in standby state

C f
[i][j][k] fixed costs T3

[i][j][k] time of equipment k during processing
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Table 1. Cont.

ρ carbon emissions per unit of energy consumption T4
[i][j][k] no-load operating time of equipment k

Q total energy consumption t[i][j][k] the processing time of the j process of the i product on the
equipment k

Qcarbon the amount of carbon dioxide emissions a start time point of equipment

b stop running time point of equipment Pk(t) input power of equipment k at time t

3. Multi-Objective Optimization Method

3.1. Cost Analysis for Assembly Operation

As a result of the preventive maintenance of the equipment, the equipment will be shut down,
which will bring economic losses to the enterprise. Therefore, time value, actual maintenance cost, and
value waste are taken into account when calculating the equipment preventive maintenance cost in
this paper. The maintenance cost respectively is

Cpm
[i][j][k] = Lmdtpm

[i][j][k] + cpm
[i][j][k] (1)

Cpo
[i][j][k] = Lmdtpo

[i][j][k] + cpo
[i][j][k] (2)

Cpr
[i][j][k] = Lmdtpr

[i][j][k] + cpr
[i][j][k] (3)

The repair cost is calculated:

Cmr
[i][j][k] = Lbdtmr

[i][j][k] + cmr
[i][j][k] (4)

Based on Equations (1)–(4), it can be obtained that

C1 = ∑i∈I ∑j∈I ∑k∈K Cpm
[i][j][k] + ∑i∈I ∑j∈I ∑k∈K Cpo

[i][j][k] + ∑i∈I ∑j∈I ∑k∈K Cpr
[i][j][k]

+∑i∈I ∑j∈I ∑k∈K Cmr
[i][j][k]

(5)

The value waste of equipment will be calculated according to the reliability. That is

ω[k] =
R
(

a[k−1]

)
R0

(6)

The replacement of equipment will lead to the salvage value waste of equipment, and the value
waste will bring additional cost to the enterprise. The value waste of different equipment is related to
the equipment type. Therefore, a constant related to the equipment type is introduced. The cost of
value waste caused by equipment replacement can be calculated as

C2 = ν[k] ×ω[k] (7)

In addition, customer’s demand can be represented by the time window [dm, dn]. When the
completion time falls into the time window, the assembly task is completed according to the customer’s
requirements. When the completion time deviates from the time window, it means that the customer’s
demand cannot be met. The penalty diagram of the time window constraint is shown in Figure 2
(d1, d2, d3, d4 represents penalty threshold of time windows).
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Different lengths of the assembling operation may lead to the advance or extension of the delivery
time, which may lead to customer dissatisfaction and loss of profit. In order to avoid the penalty cost
and promote enterprise’s sustainable development, a penalty cost function is given as

Cpe =



dm−t′
dn−dm × ϑ, t′ ∈ [d1, d2)

dm−t′
dn−dm , t′ ∈ [d2, dm)

0, t′ ∈ [dm, dn]

t′−dm

dn−dm , t′ ∈ [dn, d3)

dm−t′
dn−dm × ϑ, t′ ∈ [d3, d4)

(8)

where d1, d2, d3, d4 are constant. In Equation (8), the penalty cost can be used to express the customer’s
unsatisfied rate of delivery time. The larger the penalty value is, the larger the customer’s unsatisfied
rate is. As a result of the operation cost related to normal working time, the operation costs Co can be
given as

Co = ∂ ∑i∈I ∑j∈I ∑k∈K t[i][j][k] (9)

As the fixed cost C f
[i][j][k] is incurred by each equipment start-up including labor cost and

depreciation cost. So the total assembly costs including preventive maintenance costs, repair costs,
costs of value waste caused by replacements, penalty costs, operational costs, and fixed costs can be
expressed as

C = ∑i∈I ∑j∈I ∑k∈K Cpm
[i][j][k] + ∑i∈I ∑j∈I ∑k∈K Cpo

[i][j][k] + ∑i∈I ∑j∈I ∑k∈K Cpr
[i][j][k]+

∑i∈I ∑j∈I ∑k∈K Cmr
[i][j][k] + ν[k] ×ω[k] + Cpe + ∂ ∑i∈I ∑j∈I ∑k∈K t[i][j][k]+

∑i∈I ∑j∈I ∑k∈K C f
[i][j][k]

(10)

3.2. Carbon Analysis for Assembly Operation

Under normal circumstances, equipment with different gears can be divided into the power-off
phase, the standby phase, the equipment start-up phase, the low-speed operation phase, the no-load
operation phase, the mid-range operation phase, the high-speed operation phase, and the equipment
shutdown phase. The equipment power under different stages is shown in Figure 3.
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In order to obtain the energy consumption in the assembly process, the equipment’s operation
is divided into different stages: standby energy consumption, on/off energy consumption, energy
consumption in production, and energy consumption of no-load equipment.

(1) Standby energy consumption

When the equipment is in the standby phase, the power consumption will be caused by the
equipment activating. Suppose the energy consumption in the standby phase is represented by Q1.
There is

Q1 = ∑i∈I ∑j∈I ∑k∈K z1
[i][j][k]T

1
[i][j][k] (11)

(2) On/off energy consumption

It takes a period of time from the start-up of the equipment to stable operation, and from the
shutdown of the equipment to the stop operation state. Although the product assembly operation
cannot be carried out during this period, certain energy consumption will be caused. The energy
consumption can be expressed by equipment power and its running time, shown as

Q2 =
∫ a+T2

[i][j][k]

a
Pk(t)dt +

∫ b

b−T2
[i][j][k]

Pk(t)dt (12)

(3) Energy consumption in production

While the equipment is in production, a large amount of energy will be consumed. The energy
consumption is

Q3 = ∑i∈I ∑j∈I ∑k∈K z3
[i][j][k]T

3
[i][j][k] (13)

(4) Energy consumption of no-load equipment

Between the completion of the previous assembly process and the start of the next assembly
process, the equipment status is shown in two ways: one is to continue the no-load operation, the other
is to shut down to stop the operation state, until the next process restarts the equipment. The energy
consumption of the no-load state of the equipment is expressed quantitatively, indicating the energy
consumption of the no-load operation of the equipment, shown as follow:

According to the above four formulas, the total energy consumption of the equipment in the
process of assembly can be obtained. The carbon emission calculation method during the whole
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assembly process can be obtained according to the energy consumption of the equipment. Therefore,
the calculation formula of the carbon emission during the assembly process is presented as

Qcarbon = ρ(∑i∈I ∑j∈I ∑k∈K z1
[i][j][k]T

1
[i][j][k] +

∫ a+T2
[i][j][k]

a
Pk(t)dt +

∫ b

b−T2
[i][j][k]

Pk(t)dt+

∑i∈I ∑j∈I ∑k∈K z3
[i][j][k]T

3
[i][j][k] + ∑i∈I ∑j∈I ∑k∈K z4

[i][j][k]T
4
[i][j][k])

(14)

3.3. Delivery Time Analysis of Assembly Operation

Assume that the failure rate of the assembly equipment follows the Weibull distribution with
the shape parameter β and the size parameter η. Thus, the equipment failure rate function λ(t) is
shown as

λ(t) =
β

η

(
t
η

)β−1
e−(

t
η )

β

(15)

According to the equipment failure rate function, the expected number of equipment failures
in the maintenance period τ can be deduced, and m(τ) is used to represent the expected number of
failures during the maintenance period τ. m(τ) is calculated as

m(τ) =
∫ τ

0
λ(t)dt =

∫ τ

0

β

η

(
t
η

)β−1
e−(

t
η )

β

dt (16)

Among them, the probability density function and probability distribution function of equipment
failure obeying the Weibull distribution are shown in Figure 4. According to the basic properties of the
Weibull function, the frequency of equipment in a fixed period can be deduced.
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According to Figure 4 and Equation (16), the expected failure time of the equipment can be
obtained. That is

T1 = ∑ t[ ]
[i][j][k]

∫ τ

0

β

η

(
t
η

)β−1
e−(

t
η )

β

dt (17)

where t[ ]
[i][j][k] represents the time required for different maintenance strategies, which include minor

repair, overhaul, and replacement (i.e., tpm
[i][j][k], tpo

[i][j][k], tpr
[i][j][k]).

Theorem 1. Suppose y[i][j][k] is used to indicate the maintenance strategy, and the strategy for minor repair,
overhaul, and replacement is expressed by 1, 2, and 3, respectively. The maintenance time of equipment failure,
that is, the calculation formula for the equipment shutdown time, can be deduced as follows:



Sustainability 2018, 10, 4205 8 of 19

t[ ]
[i][j][k] =

1
2

{
(3− y[i][j][k])(2− y[i][j][k])t

pm
[i][j][k] +

[
(tpr
[i][j][k] + tpo

[i][j][k]) + (2y[i][j][k] − 5)(tpr
[i][j][k] − tpo

[i][j][k])
]
(2.5y[i][j][k] − 0.5y[i][j][k]y[i][j][k] − 2)

}
(18)

In Equation (18), there is

y[i][j][k] =


1, minor repairs before the operation of the assembly process
2, overhaul before the operation of the assembly process

3, replacement before the operation of the assembly process
(19)

where k = 1, 2, . . . , K.

Proof. (a) While using a minor repair strategy (i.e., y[i][j][k] = 1), substituting y[i][j][k] = 1 into
Equation (18) results in the following Equation (20).

t[ ]
[i][j][k] =

1
2

{
(3− 1)(2− 1)tpm

[i][j][k] +
[
(tpr
[i][j][k] + tpo

[i][j][k]) + (2− 5)(tpr
[i][j][k] − tpo

[i][j][k])
]
(2.5− 0.5− 2)

}
= tpm

[i][j][k] (20)

It means that while a minor repair strategy is adopted, the equipment maintenance time is tpm
[i][j][k].

(b) While using an overhaul maintenance strategy (i.e., y[i][j][k] = 2), substituting y[i][j][k] = 2 into
Equation (18) results in the following Equation (21).

t[ ]
[i][j][k] =

1
2

{
(3− 2)(2− 2)tpm

[i][j][k] +
[
(tpr
[i][j][k] + tpo

[i][j][k]) + (4− 5)(tpr
[i][j][k] − tpo

[i][j][k])
]
(5− 2− 2)

}
= tpo

[i][j][k] (21)

It means that while an overhaul maintenance strategy is adopted, the equipment maintenance
time is tpo

[i][j][k], which is consistent with the assumption.
(c) While using a replacement maintenance strategy (i.e.,y[i][j][k] = 3), substituting y[i][j][k] = 3 into

Equation (18) results in the following Equation (22).

t[ ]
[i][j][k] =

1
2

{
(3− 3)(2− 3)tpm

[i][j][k] +
[
(tpr
[i][j][k] + tpo

[i][j][k]) + (6− 5)(tpr
[i][j][k] − tpo

[i][j][k])
]
(9 ∗ 2.5− 3 ∗ 0.5− 2)

}
= tpr

[i][j][k] (22)

It means that while a replacement maintenance strategy is adopted, the equipment maintenance
time is tpr

[i][j][k], which is consistent with the assumption. �

Thus, it can be obtained that the time of the fault response mechanism T2 is

T2 = ∑ tsetup (23)

Assuming now that T3 represents the processing time of the j process of the i product on the
equipment k, and the processing time is

T3 = ∑i∈I ∑j∈I ∑k∈K t[i][j][k] (24)

3.4. Improved Genetic Algorithm

This paper comprehensively considers preventive maintenance and the penalty cost which
increases with the delivery time window as constraints. With the objectives of minimizing the total
assembly costs, minimizing the amount of assembly carbon emission, and the assembly completion
time, the optimization model is shown in the following Equations (25)–(27).

minC = ∑
i∈I

∑
j∈I

∑
k∈K

Cpm
[i][j][k] + ∑

i∈I
∑
j∈I

∑
k∈K

Cpo
[i][j][k] + ∑

i∈I
∑
j∈I

∑
k∈K

Cpr
[i][j][k] + ∑

i∈I
∑
j∈I

∑
k∈K

Cmr
[i][j][k]

+ν[k] ×ω[k] + Cpe + ∂ ∑
i∈I

∑
j∈I

∑
k∈K

t[i][j][k] + ∑
i∈I

∑
j∈I

∑
k∈K

C f
[i][j][k]

(25)

minQcarbon = ρ×∑(Q1 + Q2 + Q3 + Q4) (26)
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minT = ∑(T1 + T2 + T3) (27)

where C represents the cost of the assembly operation, Qcarbon represents the amount of carbon
emissions during the assembly process, and T represents the completion time of the assembly operation.
The details are shown hereafter: total assembly costs include preventive maintenance costs, repair
costs, costs of value waste caused by replacement, penalty costs, operation costs, and fixed costs.
The amount of assembly carbon emission include different amounts under the four different states,
respectively. The assembly completion time consists of equipment maintenance time, fault response
mechanism time (setup time), and processing time.

In this paper, a genetic algorithm (GA) is improved, the efficiency coefficient method is used to
transform the multiple current problem into a single goal. A detailed description is given below.

(1.) Multiple objective transformation

In the production scheduling process under the Flexible Job-shop Scheduling Problem (FJSP)
mode, the “efficiency coefficient method” was adopted to convert the three goals of minimizing
assembly cost C, minimizing amounts of carbon emission Q, and minimizing completion time T into a
single goal. The conversion is

f1 =

√
e−e( C−a1

a0−a1
)e−e( Q−b1

b0−b1
)e−e( T−c1

c0−c1
) (28)

where a0, b0, and c0 represent the unqualified threshold of minimizing the assembly cost, minimizing
carbon emissions, and minimizing the completion time, respectively. a1, b1, and c1 represent the
qualified threshold of minimizing the assembly cost, minimizing carbon emissions, and minimizing
the completion time, respectively. Their values are determined according to the historical data of
production scheduling.

(2.) Chromosome coding

The two-layer coding is carried out in the form of a real number system. The encoding and
decoding of chromosomes are shown in Figure 5 during production scheduling.
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According to Figure 5, the first layer is the product process coding. When the number first appears,
it is expressed as the first process of the product, such as 1, 1, 1, 2, 2, 2, and so on. In turn, it represents
the first processes, second processes, and third processes of product No. 1, etc. until the third processes
of product No. 2. The second layer is equipment coding, indicating the equipment corresponding to
the product process. According to the two-layer coding rules, the processing sequence of products and
the corresponding equipment can be decoded.

(3.) Fitness function

Fitness function plays an important role in the evolution of the genetic algorithm to determine
whether the chromosome should carry out the next evolutionary operation. In the design of the
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fitness function, this paper converts multiple goals into a single goal including function with efficiency
coefficient, and takes the new single goal inverse as the fitness function, indicating that the closer the
optimization goal is, the higher the fitness value of the population will be. According to the mutation
probability function, the highly adaptable chromosome is retained in proportion, and it is also evolutionarily
manipulated to converge to the optimal goal value faster. The fitness function is shown as

f2 =
1√

e−e( C−a1
a0−a1

)e−e( Q−b1
b0−b1

)e−e( T−c1
c0−c1

)

(29)

(4.) Crossover operator

In the initial population, according to the crossover probability, a number of chromosomes are
randomly selected for the crossover operation. The crossover probability formula is given as

pc =

pc1 −
(pc1−pc2)( f ′− favg)

fmax− favg
, f ′ ≥ favg

pc1, f ′ < favg

(30)

In Equation (30), pc1 and pc2 are random variables within (0, 1) to control the cross population.
f ′ represents the individual fitness value of the current population, fmax represents the maximum
fitness value of the individual function in the current population, and favg represents the average
fitness value of the individual in the current population. According to the crossover probability,
chromosome crossover was determined. In this paper, a two-point crossover was adopted, that is,
two points were randomly selected in the parent chromosome as the crossover region. After two
chromosomes were crossed, invalid coding was performed to eliminate the invalid coding, so as to
ensure the feasibility of population scheme. The cross operation is shown Figure 6.
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(5.) Mutation operator

In the initial population, according to the crossover probability, a number of chromosomes are
randomly selected for the crossover operation. The mutation probability formula is shown as

pm =

pm1 − (pm1−pm2)( fmax− f )
fmax− favg

, f ≥ favg

pm1, f < favg
(31)

In Equation (31), pm1 pm2 is a random variable within (0, 1) to control the mutant population.
f represents the individual fitness value of the current population, fmax represents the maximum
fitness value of the individual function in the current population, and favg represents the average
fitness value of the individual in the current population. According to the crossover probability,
the chromosome was determined for the mutation operation. In this paper, the two-point crossover
method was adopted, that is, two points were randomly selected from the parent chromosome as the
mutation region for gene exchange. The variation operation diagram is shown in Figure 7.
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4. Case Study

Low carbon assembly and timely delivery play active roles in the development of enterprises.
This paper chose a manufacturing enterprise (H Enterprise) in Chongqing as a case study. H Enterprise
produces eight kinds of products according to market demand. Eight kinds of products are all
assembled in the same assembly workshop. There are six types of equipment in the assembly workshop
responsible for performing assembly tasks for different types of products, among which different
assembly stages of different products are assembled on the corresponding equipment. The data of
process time and order are shown in Table 2.

Table 2. The data of process time and order.

P1 P2 P3 P4 P5 P6 P7 P8

M1 7.96 23.55 24.09 27.20 7.94 56.71 84.45 62.95
M2 61.00 69.10 60.93 72.19 4.81 70.06 77.07 8.22
M3 8.67 66.58 34.54 4.24 73.46 39.87 97.04 52.46
M4 10.17 66.08 40.78 38.41 6.25 3.16 62.39 65.39
M5 98.56 26.98 31.16 18.13 37.90 87.31 60.82 7.00
M6 48.40 82.66 25.59 14.06 74.83 93.21 56.72 79.99

The enterprise completes the assembly activities of the product within the specified delivery time
window [dm, dn] according to the customer’s order and delivers it to the customer on time. When the
assembly completion time is advanced or delayed, the enterprise will bear a certain penalty cost. The
time window is shown in Table 3.

Table 3. Product delivery time window.

Item P1 P2 P3 P4

Time Window (330 350) (500 550) (650 670) (680 700)

Item P5 P6 P7 P8

Time Window (250 300) (400 450) (550 570) (600 650)

4.1. Job Shop Sequence

Given the initial population number (Pop_size = 100), the population cross probability (Pc = 0.8),
the population mutation probability (Pm = 0.2), and the maximum number of iterations (200), the
Gantt chart for various product assembly job plans was obtained and is shown in Figure 8 as a result
of the improved GA.

According to Figure 8, it can be seen that the requirements are met. In addition, this paper gives
the specific parameter values, including equipment utilization, cost, carbon emissions, etc., the specific
data are shown in Table 4.
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Figure 8. Gantt diagram of the assembly job.

In Table 4, there is further evidence of the requirements being met, as can be seen by the high
utilization rate of equipment e.g., the utilization rate of equipment 1 and equipment 6 is 100%.

Table 4. The specific data of assembly.

E1 E2 E3 E4 E5 E6

M1 5–1, 1–1, 6–1, 2–1, 7–1, 4–1, 8–1, 3–1 0.00 100.00% 294.85 212.29
M2 5–2, 1–2, 6–2, 2–2, 7–2, 4–2, 8–2, 3–2 3.15 99.26% 426.53 308.96
M3 5–3, 1–3, 6–3, 2–3, 7–3, 4–3, 8–3, 3–3 91.55 80.46% 468.41 391.27
M4 5–4, 1–4, 6–4, 2–4, 7–4, 8–4, 3–4, 4–4 189.77 60.66% 482.40 459.29
M5 5–5, 1–5, 6–5, 2–5, 7–5, 8–5, 3–5, 4–5 126.42 74.42% 494.28 430.47
M6 5–6, 1–6, 6–6, 2–6, 7–6, 8–6, 3–6, 4–6 0.00 100.00% 475.46 342.33

Note: E1 denotes equipment, E2 denotes process, E3 denotes equipment idle time, E4 denotes equipment utilization,
E5 denotes cost, and E6 denotes carbon emissions.

In order to further verify the effectiveness of the algorithm designed in this paper, the number of
iterations was set to 200 times, and its iterative optimization diagram is shown in Figure 9. The (a) in
Figure 9 shows the optimal solution under 200 iterations, and the (b) in Figure 9 shows the optimal
solution and average solution under 100 iterations. According to Figure 9, the improved GA can
satisfactorily satisfy the solution of the model, and can quickly converge to minimize the optimal value
1063 of the average value of the multiple objective.
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In addition, the optimal value and the maximum difference are compared in this paper. Under
the condition that the maximum number of iterations is set to 200, the optimal value and the worst
value in each step of the iteration are shown in Figure 10.
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By calculation, it can be found that the optimal value is 1101, and the worst value is 1193. Detailed
data are shown in Figure 10. Through the results, it can be shown that the proposed method and the
designed model have certain practicability. At the same time, the algorithm designed in this paper can
well satisfy the solution of the model.

4.2. Pareto Optimal Solution

In order to further analyze the decisions of multi-objective production scheduling, we drew the
decision graph of the multi-objective Pareto optimization based on the optimization results (as shown
in Figure 10). According to the Pareto optimal figure (Figure 10), the amount of carbon emissions is
negatively correlated with the cost it pays when H Enterprise makes production scheduling plans
with low carbon emissions and a low cost set as the goal. That is to say, this enterprise often needs
to pay extra manufacturing costs to achieve low carbon emissions. Similarly, in order to reduce the
actual manufacturing costs, enterprises usually use environmental pollution as the price of reducing
costs. The result is that although the cost dropped, carbon emissions increased. Besides, it is also
concluded that improving equipment utilization is a strategy to achieve low-carbon manufacturing.
Thus, a relatively reasonable optimization solution can be found by using the methods in this paper,
which have a great significance to produce low-carbon production at the lowest possible cost under
the existing resources, and are shown in Figure 11.

According to Figure 11 (F1 represents the amounts of carbon emissions, and F2 represents the
optimal value), improving the equipment utilization rate is an effective strategy to achieve low-carbon
manufacturing, which has important theoretical and practical significance for the realization of
low-carbon manufacturing, furthermore, it can provide more favorable theoretical support for the
formulation of relevant policies. As for the government, we call for more incentive policies to
promote the utilization of equipment in the manufacturing industry, such as increasing investment in
the construction of high-level maintenance teams, increasing training of professional and technical
personnel, so as to maintain the stability of the equipment maintenance technical team. Additionally,
the development of policies to encourage intelligent real-time dynamic monitoring and management of
equipment in order to reduce downtime, and an increase in incentives for the construction of a shared
database of equipment maintenance schemes to achieve accurate and rapid maintenance of equipment.
For enterprises, it is necessary to strengthen the comprehensive management of equipment, analyze and
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count the processing quality of equipment in each process to continuously improve the performance,
accuracy and efficiency of equipment, so as to achieve low-cost and low-carbon manufacturing.
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4.3. Comparison and Analysis

In order to further analyze the application effect of the proposed method in this enterprise, the
control variable method was adopted to compare the three kinds of methods. Using the optimization
objective satisfaction evaluation index [31] as the evaluation index in this paper, the calculation is

IBM =
1

C/Cmax + Q/Qmax + T/Tmax
(32)

where C, Q, and T represent the total cost, carbon emission, and completion time during the job-shop
scheduling, respectively. Cmax, Qmax, and Tmax represent the maximum value of C, Q, and T. For this
index, the smaller the C, Q, and T, the better, that is, the greater the IBM, the higher the optimization
satisfaction. The optimization comparison analysis is shown in Table 5.

Table 5. The optimization comparison analysis.

E7 C Q T E8 Optimization Rate

CIA 3793.70 2528.32 523.55 0.46
28.45–37.99%GA 2831.04 3276.66 713.41 0.42

IGA 2641.93 1848.77 519.54 0.59

Note: Cmax = 4000, Qmax = 3500, Tmax = 1000.

It can be concluded from Table 5 that the model and algorithm in this paper can be improved
by 37.99% when compared with genetic algorithm (GA), and by 28.45% when compared with clonal
immune algorithm (CIA). In this paper, three kinds of methods were used to run 10 times, respectively,
and the calculation results are shown in the Table 6.

The detailed scheduling data parameters calculated, including the start time, the end time, and
the processing time under different algorithms, are shown in Table 7.

Tables 6 and 7 show that the model designed and the improved algorithm have certain advantages
in controlling cost, carbon emission, and delivery time in this paper. The Gantt chart of production
scheduling optimization solved by using the genetic algorithm (GA) is shown in the Figure 12.
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Table 6. The comparative data of three methods when they run 10 times.

E9 E10
E11

E12 E13
1 2 3 4 5 6 7 8 9 10

I-GA
C 2641.93 2958.96 3170.32 3434.51 2721.19 3460.93 4227.09 3196.74 2774.03 3989.31 3257.50

3.14Q 1848.77 2070.63 2218.53 2403.41 1904.24 2421.89 2958.04 2237.02 1941.21 2791.65 2279.54
T 519.54 581.89 623.45 675.40 535.13 680.60 831.27 628.64 545.52 784.51 640.59

GA
C 2831.04 3170.76 3397.25 3680.35 2915.97 3708.66 4529.66 3425.56 2972.59 4274.87 3490.67

4.32Q 3276.66 3669.86 3931.99 4259.66 3374.96 4292.43 5242.66 3964.76 3440.50 4947.76 4040.12
T 713.41 799.02 856.09 927.43 734.81 934.57 1141.46 863.23 749.08 1077.25 879.64

CIA
C 3793.70 4248.94 4552.44 4931.81 3907.51 4969.75 6069.92 4590.38 3983.39 5728.49 4677.63

5.16Q 2528.32 2831.72 3033.98 3286.81 2604.17 3312.10 4045.31 3059.27 2654.73 3817.76 3117.42
T 523.55 586.37 628.26 680.61 539.26 685.85 837.68 633.49 549.73 790.56 645.54

Note: E9 represents the algorithm adopted, E10 represents the goal function, E11 represents the number of
experiments, E12 represents the mean value of the goal function, and E13 represents the average running time of
the algorithm.
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The Gantt chart of production scheduling optimization solved by using the clonal immune
algorithm (CIA) is shown in the Figure 13.
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Figure 13. Gantt chart for the clonal immune algorithm (CIA).

According Tables 4–6 and Figures 12 and 13, this paper concludes that the new approach has
the advantage of achieving low carbon and rapid completion, (C = 3793.70, Q = 2528.32, T = 523.55
under CIA, C = 2831.04, Q = 3276.66, T = 713.41 under GA, C = 2641.93, Q = 1848.77, T = 519.54
under I-GA/new method). This method is conducive to the realization of a green and sustainable
development of enterprises.
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Table 7. The detailed scheduling data parameters calculated under different algorithms.

Job Shop Scheduling under Improved Genetic Algorithm (I-GA)

P1 P2 P3 P4 P5 P6 P7 P8

E14 E15 E16 E14 E15 E16 E14 E15 E16 E14 E15 E16 E14 E15 E16 E14 E15 E16 E14 E15 E16 E14 E15 E16

M1 42.10 50.06 7.96 161.88 185.43 23.55 512.41 536.50 24.09 569.33 596.53 27.20 0.00 7.94 7.94 58.66 115.37 56.71 185.43 269.88 84.45 427.90 490.85 62.95
M22 50.06 111.06 61.00 185.43 254.53 69.10 536.50 597.43 60.93 596.53 668.72 72.19 7.94 12.75 4.81 115.37 185.43 70.06 269.88 346.95 77.07 490.85 499.07 8.22
M3 111.06 119.73 8.67 254.53 321.11 66.58 597.43 631.97 34.54 668.72 672.96 4.24 13.00 86.46 73.46 185.43 225.30 39.87 346.95 443.99 97.04 499.07 551.53 52.46
M4 119.73 129.90 10.17 321.11 387.19 66.08 631.97 672.75 40.78 672.96 711.37 38.41 86.00 92.25 6.25 225.30 228.46 3.16 443.99 506.38 62.39 551.53 616.92 65.39
M5 129.90 228.46 98.56 387.19 414.17 26.98 672.75 703.91 31.16 711.37 729.50 18.13 92.00 129.90 37.90 228.46 315.77 87.31 506.38 567.20 60.82 616.92 623.92 7.00
M6 228.46 276.86 48.40 414.17 496.83 82.66 703.91 729.50 25.59 729.50 743.56 14.06 130.00 204.83 74.83 315.77 408.98 93.21 567.20 623.92 56.72 623.92 703.91 79.99

Job Shop Scheduling under Genetic Algorithm (GA)

P1 P2 P3 P4 P5 P6 P7 P8

E14 E15 E16 E14 E15 E16 E14 E15 E16 E14 E15 E16 E14 E15 E16 E14 E15 E16 E14 E15 E16 E14 E15 E16

M1 7.94 15.90 7.96 72.61 96.16 23.55 243.56 267.65 24.09 267.65 294.85 27.20 0.00 7.94 7.94 15.90 72.61 56.71 96.16 180.61 84.45 180.61 243.56 62.95
M2 12.75 73.75 61.00 143.81 212.91 69.10 298.20 359.13 60.93 359.13 431.32 72.19 7.94 12.75 4.81 73.75 143.81 70.06 212.91 289.98 77.07 289.98 298.20 8.22
M3 174.86 183.53 8.67 223.40 289.98 66.58 439.48 474.02 34.54 474.02 478.26 4.24 101.40 174.86 73.46 183.53 223.40 39.87 289.98 387.02 97.04 387.02 439.48 52.46
M4 307.61 317.78 10.17 320.94 387.02 66.08 514.80 555.58 40.78 555.58 593.99 38.41 301.36 307.61 6.25 317.78 320.94 3.16 387.02 449.41 62.39 449.41 514.80 65.39
M5 345.51 444.07 98.56 531.38 558.36 26.98 626.18 657.34 31.16 657.34 675.47 18.13 307.61 345.51 37.90 444.07 531.38 87.31 558.36 619.18 60.82 619.18 626.18 7.00
M6 482.98 531.38 48.40 624.59 707.25 82.66 843.96 869.55 25.59 869.55 883.61 14.06 408.15 482.98 74.83 531.38 624.59 93.21 707.25 763.97 56.72 763.97 843.96 79.99

Job Shop Scheduling under Clonal Immune Algorithm (CIA)

P1 P2 P3 P4 P5 P6 P7 P8

E14 E15 E16 E14 E15 E16 E14 E15 E16 E14 E15 E16 E14 E15 E16 E14 E15 E16 E14 E15 E16 E14 E15 E16

M1 7.94 15.90 7.96 72.61 96.16 23.55 270.76 294.85 24.09 180.61 207.81 27.20 0.00 7.94 7.94 15.90 72.61 56.71 96.16 180.61 84.45 207.81 270.76 62.95
M2 15.90 76.90 61.00 146.96 216.06 69.10 373.54 434.47 60.93 293.13 365.32 72.19 7.94 12.75 4.81 76.90 146.96 70.06 216.06 293.13 77.07 365.32 373.54 8.22
M3 132.80 141.47 8.67 226.55 293.13 66.58 446.87 481.41 34.54 390.17 394.41 4.24 13.00 86.46 73.46 146.96 186.83 39.87 293.13 390.17 97.04 394.41 446.87 52.46
M4 141.47 151.64 10.17 293.13 359.21 66.08 517.95 558.73 40.78 551.48 589.89 38.41 107.49 113.74 6.25 247.04 250.20 3.16 390.17 452.56 62.39 452.56 517.95 65.39
M5 151.64 250.20 98.56 359.21 386.19 26.98 558.73 589.89 31.16 589.89 608.02 18.13 113.74 151.64 37.90 250.20 337.51 87.31 452.56 513.38 60.82 517.95 524.95 7.00

Note: E14 represents the start time, E15 represents the end time, and E16 represents the processing time.
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5. Conclusions

With the increasing seriousness of environmental pollution, energy-saving and emission-reduction
topics have become the focus of sustainable development. However, achieving low carbon and
green development is a very complex issue, which includes how to quantify carbon emissions in
the production scheduling process to optimize carbon emissions, how to formulate reasonable and
effective maintenance strategies to reduce equipment waste, how to meet customer delivery time
requirements to attract customers to continue to cooperate with enterprises. Because achieving
low-carbon development has a great significance for reducing environmental pollution, a new method
is designed to promote the green development of the manufacturing industry in this paper. This paper
contributes a multi-objective assembly sequence optimization model to minimize the assembly cost,
minimize the carbon emissions of the assembly, and minimize the delivery time. In this model, by
considering the constraints of equipment failure and the delivery time window, the frequency and
regularity of equipment failures following the Weibull distribution are analyzed. Then, an improved
genetic algorithm is designed for solving the multi-objective optimization model. Through a case
study, it was verified that the amount of carbon emissions is negatively correlated with the costs paid
when an enterprise makes production scheduling plans with low carbon emissions and a low cost set
as the goal.

The contribution of this paper is mainly reflected in two aspects. Firstly, a multi-objective
production shop scheduling optimization model is established based on low carbon emissions, a high
delivery rate, and a low cost. In the model, factors such as the equipment failure rate and delivery
time window are considered comprehensively, furthermore, the improved genetic algorithm is used
to solve the model. As a second contribution, the relationship between equipment utilization rate,
workshop scheduling cost, and carbon emissions is analyzed, which provides practical suggestions for
the government and enterprises, including encouraging the formulation of relevant policies to improve
equipment utilization rates, so as to achieve low-carbon manufacturing. This is of great significance
for achieving low-carbon manufacturing and reducing environmental pollution.

The results showed that the proposed method and the designed model have a certain practical
value. The promotion of low carbon production scheduling development is of great importance
to the practice of researchers in this field, and more so for enterprises. However, there are still
some deficiencies not considered in the current production environment. For example, the impact of
employee’s operation methods on low carbon emissions is not fully taken into account. In later studies,
the impact of employee’s on low carbon emissions in assembly operations will be studied in-depth.
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