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Abstract: As the demand for small devices with embedded flash memory increases, semiconductor
manufacturers have been recently focusing on producing high-capacity multiple-chip products
(MCPs). Due to the frequently re-entrant lots between the die attach (DA) and wire bonding (WB)
assembly stages in MCP production, increased flow time and decreased resource utilization are
unavoidable. In this paper, we propose a dispatcher based on artificial neural networks, which
minimizes the flow time while maintaining high utilization of resources at the same time through
exploiting the possible intentional delays on DA stage. Specifically, the proposed dispatcher learns
the assignment preferences between available lots and DA resources based on assembly line data
generated by using a simulator, then the proposed dispatcher performs lot dispatching decisions by
considering the intentional delays. The numerical experiments were performed under various
configurations of the MCP assembly lines, and the results show that the proposed dispatcher
outperformed the existing methods.

Keywords: lot dispatching; semiconductor; assembly line; multiple-chip product; intentional delay;
artificial neural network; sustainability

1. Introduction

As the demand for small devices with embedded flash memory, such as smart phones, wearable
devices, and IoT devices, continually rises, modern semiconductor manufactures focus intensively
on producing multiple-chip products (MCPs) to improve capacities of compact flash memory [1,2].
To achieve high capacities while preserving compactness, MCP production involves very complex
and correlated assembly stages consisting of backlap, wafer sawing, die attach (DA), wire bonding
(WB), and molding (MD) [3,4]. In particular, in the DA and WB stages, wafers are grouped as a lot and
processed by a resource. Here, assigning a lot to a resource is referred to as the lot dispatching decision.

The MCP assembly line is an example of re-entrant manufacturing lines (RMLs) where lots can
revisit the same stage several times before exiting the line [5]. For producing the large capacity MCPs,
frequently re-entrant lots between the DA and WB stages are necessary to assemble multiple chips
into one single packaging module [4]. The WB stage is usually considered as a bottleneck compared to
the DA stage due to its extremely long processing time for soldering several wires to each die [6]. It is
essential to keep utilization of resources in the WB stage high so that the throughput of MCP assembly
lines can stay at the sustainable level.
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Keeping the resource utilization level high is achievable by simply providing a sufficient large
amount of work-in-process (WIP). In the meantime, to achieve economic sustainability of MCP
assembly lines, lean principles known as the enhancement of productivity by eliminating waste are
necessary to be realized [7-9]. One of the lean principles is to reduce the amount of WIP, which leads to
a reduction in inventory cost and a decrease in the flow time of lots [10]. Therefore, to reduce the flow
time of lots while increasing the utilization of resources, the properly managed WIP level is necessary.

Unfortunately, the re-entrant nature of MCP assembly lines brings about a challenge to the WIP
level control. Specifically, if newly arrived lots are frequently assigned to resources of the DA stage
without considering re-entrant lots, the WIP level of the WB stage will be excessively increased. On the
other hand, assigning a high priority level to re-entrant lots in the DA stage can result in a lack of WIP
at the WB stage, which decrease the utilization of WB resources [11,12].

Regarding MCP assembly lines under the characteristics described above, we aim to minimize
the waiting time of lots and the idle time of WB resources in order to reduce the flow time while
maintaining high utilization of the bottleneck stage. This is due to the fact that the flow time consists of
processing time, moving time, and waiting time. Since the processing and moving time are necessary
to complete all operations of a lot, the reduction in flow time is mainly achievable by decreasing the
waiting time. Furthermore, the average utilization rate of the resources increases as resources perform
operations with shorter idle periods. In this paper, the sum of the waiting time of a lot and the idle
time of WB resource that processes the lot is defined as the loss time of each lot dispatching decision.

To manage the WIP level, in an attempt to decrease the loss time, we focus on controlling the
lot flow in the DA stage. This is because the lot dispatching decision in a non-bottleneck stage has a
significant impact on the WIP level of an assembly line [6,13]. Moreover, the utilization of the DA stage
is not necessary to be kept high if that of the WB stage does not decrease because the throughput of the
assembly line is determined by the bottleneck stage [14]. For lot dispatching in the bottleneck stage,
a higher utilization rate of resources can be achieved simply by processing lots primarily with longer
processing time [6]. Therefore, the lot dispatching decisions of the WB stage in this research are carried
out by using the rule that assigns a high priority level to the lot which has the longest processing time
for a resource.

A considerable amount of literature has been published on controlling lot flows in RMLs.
Previous research can be categorized according to their approaches and performance metrics,
as presented in Table 1. In particular, simulation-based studies have attempted to understand the
characteristics of lot flows by performing tasks virtually in advance [6,13,15-18].

Table 1. Overview of previous research on lot flow of RMLs.

Approaches Performance Metrics  References
Flow time [15-18]

Simulation Setup change [6]
Tardiness [13]
Flow time [19,20]

. . Tardiness [4,21-23]

Dispatching rule Throughput [24,25]

Utilization [20,26]
. Flow time

Support vector regression Utilization [27]
Flow time [3,28]
Setup change [2]

Meta-heuristic Tardiness [29]
Throughput [30]
Utilization [2]

Case base reasoning Utilization [31]
Flow time [32]

Artificial neural network Utilization [33,34]
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There is another line of research that aims to control lot flows by using dispatching
rules [4,19-24,26]. Dispatching rules have been widely used in various areas because they have
the advantages of short computation time and ease of implementation [35,36]. A comprehensive
comparison between dispatching rules in semiconductor assembly and test lines can be found in [25].
The experimental results presented how the performances of dispatching rules vary depending on
whether there are initial setups or not. One major drawback of these approaches is that the hand-crafted
parameters embedded in such rules have limitations when addressing the complex lot flows of RMLs.

To overcome the limitations of the dispatching rules, authors in [27] investigated a dynamic
scheduling method based on support vector regression (SVR). Specifically, they proposed a composite
dispatching rule which is a linear combination of multiple dispatching rules with a weight assigned to
each rule. The scheduling model trained with SVR determines the weights of the composite dispatching
rule for a given production line state. Their method outperformed simple dispatching rules in terms of
multiple performance measures such as flow time and resource utilization.

Besides the rule-based methods, some studies investigating meta-heuristics have been conducted
to improve their particular objectives through exhaustive search over solution spaces [2,3,28-30].
However, they require considerably long computation time to reach optimality, which leads to
difficulties in applying them to a real-world assembly line. To reduce computation time for obtaining
solutions, researches in [31] extended the earlier work in [2] using case-based reasoning. Unfortunately,
Ref. [31] failed to achieve as much resource utilization as the existing method [2].

There have been a few publications investigating dispatching decisions in RMLs using artificial
neural networks (ANNSs) that have ability to capture complex non-linear dynamics [37]. Specifically, the
approach proposed by [32] selects dispatching rules when the desired performance measures are given
along with the status of the manufacturing lines. One of the limitations with this approach is that the
user is required to remove the bad training data causing the poor performance. The authors of [33,34]
presented the ANN-based method for determining the value of parameters constituting the proposed
formula used to yield selection probability of each batch. Their method outperformed existing
dispatching rules by assigning the parameters that rely on real-time information of the manufacturing
line. However, the proposed model works only if the specific equation for dispatching decisions
is given.

It should be noted here that previous studies have focused mainly on selecting one among the
waiting lots ready to be processed immediately. That is, a DA resource becomes idle only when there
is no waiting lot in front of the resource. Yet, it is well known that the performance can be improved
when allowing intentional delay to resource usage by idling a resource even though there are lots
waiting for its processing [38,39].

Motivated by the above considerations, we propose a dispatcher based on ANN for dispatching
lots to DA resources for reducing the loss time in a single model. Whenever a lot dispatching decision
is required, the proposed dispatcher is responsible for choosing the best lot by considering both
cases; when lots are processed directly and when lots undergo an intentional delay on a DA resource.
In other words, the proposed dispatcher maintains high utilization of resources and minimizes flow
time, by adjusting the priority of newly arrived lots and re-entrant lots according to the status of the
assembly line.

To achieve this, we use a simulator to generate training data that are used to train the dispatcher.
The main difference between the existing learning-based methods and our efforts lies in the fact
that the existing work requires training data generated from optimal solutions which are difficult to
obtain, while our method is capable of generating training data by simply performing simulations
with random decision making. In detail, the performances of the decisions in randomly generated
simulation logs are measured by the proposed score generator, and the evaluated simulation logs are
used to train the ANN in the proposed dispatcher. In real-time dispatching phase, the assignment of
each lot to a DA resource is represented in the form of a vector. The proposed method quantifies the
degree of preference for each assignment vector with a numerical score and then completes the lot
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dispatching decision based on the score. The preference of the assignment vector of a lot and a DA
resource has a higher value as the dispatching decision made by the assignment is likely to shorten the
lots waiting time and reduce the idle time of the WB resources.

Through extensive experiments, we demonstrate that proposed dispatcher is successful to reduce
the loss time of MCP assembly lines. To demonstrate its superior performance, we compared our
method with the conventional dispatching rules in terms of the waiting time and the idle time of
WB resources. The experiment results show that the proposed dispatcher outperforms the existing
methods in terms of the loss time.

The remainder of this paper proceeds as follows. The next section will describe the problem under
consideration and define the notations used in the paper. The proposed framework, consisting of a
simulator, score generator, and learning algorithm, is introduced in Section 3. The experimental results
are presented in Section 4. Finally, we conclude this work in Section 5.

2. Problem Description

We consider an MCP assembly line which involves DA and WB stages with multiple resources
for semiconductor manufacturing. For a given assembly line, the problem is defined as to reduce
the loss time consisting of the waiting time of lots and the idle time of WB resources. To resolve the
problem, we address lot dispatching decisions in the DA stage which is considered as a non-bottleneck
compared to the WB stage.

We are given a set of resource types, M = {M,|q = 1, ..., N; }, where M, is associated with 1,
resources, Ry 1, ..., Rq,nq. For each operation, its available resources and processing time are determined
according to the resource type. There is a set of job types, ] = {J;|i = 1,..,, Nj}, where J; consists of a
sequence of operations specified in a predetermined order. We represent the jth operation of J; as O; j,
and A(O; ;) indicates a set of resource types capable of processing O; ;. The kth lot for J; is denoted
as Lji, k =1,..,n;, where n; is the number of lots of type J;. Thus, L; is processed according to the
operation sequence corresponding to J;, and I(L; ) returns the smallest index among those of the
operations waiting to be processed. Additionally, the processing time of a lot is to be proportional to
the number of chips in the lot.

Figure 1 illustrates the lot flow of the MCP production process considered in this paper.
Specifically, a lot is required to be processed in the DA stage prior to the WB stage, and the final
operation of a lot is to complete in the WB stage. The dashed line at the bottom represents the flow of
lots which revisit the DA stage after finishing the WB operation.

DA stage WB stage
To DA
Newly arrived Cassette resource buffer DA WB
_ - ——
stocker D resource D resource
=== Lot To ToWB To
== D = WB stocker WB resource buffer D = MD stage
T _— —— _—
i stocker

Resource *
—r—e—
ToDA buffer ° e—=—r—r—o

DA resource buffer =

stocker
s s — E —
| s
| | e— —

Figure 1. Lot flow of DA and WB stages in MCP production.

As shown in Figure 1, there are three types of stockers, namely cassette, DA, and WB stockers
where lots stay temporarily. First, the cassette stocker provides locations for where newly arrived lots
wait for the first DA operation. Next, the DA stocker is a place where lots that have completed a WB
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operation wait for the re-entrance to the next DA operation. Finally, the WB stocker is where lots that
have completed a DA operation wait before they enter their WB operation.

Lots in either the cassette or DA stockers are transported to the WB stocker after DA operations
are finished. This means that newly arrived and re-entrant lots are located together in the WB stocker,
which yields complex lot flows. For this reason, it becomes challenging to manage the WIP level of the
WB stocker at appropriate level, which is highly likely to decrease the utilization of the WB resources
or increase the waiting time of lots in the WB stocker.

In front of each resource, there is a resource buffer in which a lot waits for the operation until the
resource becomes idle. The capacity of a resource buffer is assumed to be one. A lot is not interrupted
once its operation starts, and an operation is carried out by one resource at a time. Additionally, it is
assumed that there is no setup time between lots of different job types.

Furthermore, a candidate lot refers to one that is assignable to a DA resource when its resource
buffer is empty. The types of a candidate lot according to its status are illustrated in Figure 2.
A lot-dispatching method determines the assignment between a candidate lot, L;x, and a DA resource
with an empty resource buffer, Ry s, based on the decision policy if M; € A(O; i Lix) ). Furthermore,
once a lot is dispatched, it is excluded from the candidate lots.

Candidate lots
In-Cassette- In-DA- To-DA- At-WB-
Stocker Stocker Stocker Resource
Status oA
Cassette
stocker stocker I:l =
=== ===
Intentional
None Less More
delay

Figure 2. Candidate lots according to status and intentional delay.

For a DA resource, a lot can be moved from the stocker to the DA resource buffer immediately
whenever a candidate lot whose status is In-Cassette-Stocker or In-DA-Stocker is selected to be
dispatched. In particular, the flow time of a lot begins to be measured when the lot in the cassette
stocker is dispatched. Otherwise, in case that a candidate lot whose status is either To-DA-Stocker
or At-WB-Resource is selected, this results in an intentional delay on the DA resource due to the
additional time to carry out the remaining WB operation and/or to arrive at a DA stocker. The details
of how the dispatcher assigns a lot to a DA resource are described in Figure 3. The bottom part of the
step 3 shows the time for each lot to arrive the DA resource after the lot is selected by the dispatcher.

In the WB stage, intentional delays are not necessary since high utilization of resources should
be achieved. Accordingly, among the lots in the WB stocker, the lot with longest processing time is
assigned to a WB resource when its resource buffer is empty.



Sustainability 2018, 10, 4123 6 of 21

Step 1: Occurrence of empty DA resource buffer

= = = - = -
|
1

1
Empty DA

resource buffer

Step 2: Dispatcher selects one of the candidate lots

Step 3: Process of assigning the selected lots according to their status

(d) In-Cassette- (c) To-DA-Stocker (d) At-WB-Resource
Stocker O we
(b) In-DA-Stocker E—
Stock DA DA DA DA DA
tocker n resource stocker | L] resource stocker [l resource
Moving time Moving time Processing time + Moving time
(To resource buffer) (To DA stocker and resource buffer)| (To DA stocker and resource buffer)

Figure 3. Illustration of how the dispatcher assigns a lot to a DA resource.

3. Proposed Framework

Figure 4 depicts the overall process of the proposed framework. In the training phase, we deploy
a simulator that executes the DA and WB stages in MCP production as shown in Figure 1 to generate
simulation logs. By using the simulator, all lot dispatching decisions of a problem are determined
using a random decision generator (RDG) which is responsible for randomly assigning one of the
candidate lots to a DA resource with empty buffer. The performances of the decisions by RDG are
then measured, and the scored simulation logs will be used by a learning algorithm to train the ANN
embedded in the proposed dispatcher. In the real-time dispatching phase, for a given test problem,
the simulator calls the trained dispatcher whenever a lot dispatching decision is required.
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Figure 4. Overall framework of the proposed method.

3.1. Dispatcher Structure

Figure 5 illustrates the architecture of the proposed dispatcher which consists of five layers:
an input layer, three hidden layers, and an output layer. The input layer contains seven nodes,
and the number of nodes in each hidden layer is set to seven, whereas the output layer has one node.
The numbers of hidden layers and nodes in the hidden layers are empirically determined to reduce the
training error. The rectified linear unit (ReLU) is applied before each hidden layer in order to provide
a non-linear transformation, and all layers are fully connected [40].

] O O O

% % %
O OO T O—Q

Output layer

\_ %
\/J e
Input layer Hidden

layers

Figure 5. The structure of the proposed dispatcher.

A pair of a lots among the candidate lots and a DA resource is represented as a vector called a
lot-DA assignment vector for the input to the proposed dispatcher. Specifically, Table 2 presents the
components of the lot-DA assignment vector, for a particular lot, L;;, and a particular DA resource,
Rgys- Since the idle time of WB resources is one of the consisting term of the loss time considered,
most features of the vector are defined based on the information related to the WB stage.
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Using the defined features of a lot-DA assignment vector, the proposed dispatcher has the ability
to predict how long the lot waits at the WB stocker after it is processed by a DA resource. Furthermore,
the features provide a clue for estimating the idle time of the WB resource that will process the lot
involved in the vector. As a result, the proposed dispatcher is expected to be able to conduct lot
dispatching decisions which reduce the waiting time of lots and the idle time of WB resources.

Specifically, the lot-DA assignment vector contains seven features categorized into conflicting
lots, available WB resources, and the delay time as follows. First, the concept of conflicting lots is
introduced to represent lots that compete for WB resources. Lot, L 1, is called a conflicting lot of L;  if
Ly and L; . satisfy either one of the conditions presented in Equations (1) and (2).

AOw,1(1, ) NV AOs1(1,)4+1) # D (1)

AOr, 11, )+1) VA 1(1,)+1) # D ()

The five features corresponding to the conflicting lots of L;; are presented in Table 2 according to
their status. Each feature represents the number of conflicting lots that correspond to one of the five
different states. The proposed dispatcher can capture the distribution of the lots by collectively using
all these features.

Next, the number of WB resources capable of processing a lot is included as a feature to capture
the degree of potential conflict among the lots in the WB stage. In contrast to other features, this feature
for a lot has a fixed value according to its resource type required in the WB stage regardless of the
other lot dispatching decisions.

Finally, the delay time refers to how long it takes from the moment the lot dispatching decision is
made until R, s starts processing L; ;. If the status of L;  is In-Cassette-Stocker or In-DA-Stocker,
the value of the delay time is calculated as the sum of the time required for L; ; to move from the stocker
to the buffer of R, s and the time that L; ; spends in the buffer. Otherwise, the time required for L; to
move from the current location to DA stocker is added to the value mentioned above. Through this
feature, the proposed dispatcher is capable of inferring whether or not L; ; causes an intentional delay
in Rys.

The output layer represents the preference score of the assignment vector. All values in each node
are normalized to a range [0, 1] using the min-max normalization to accommodate the inconsistencies
of different units [41].

Table 2. Components of the lot-DA assignment vector, for L;; and Ry s.

Categories Descriptions Units

# of conflicting lots being moved from cassette and DA stockers to DA resource
buffers
# of conflicting lots in DA resource buffers

Conflicting lots of L # of conflicting lots being processed on DA resources Quantity
# of conflicting lots being moved from DA resources to a WB stocker
# of conlflicting lots waiting in the WB stocker
WB resource # of WB resources that are able to process L; x Quantity
. The interval between the time when the lot dispatching decision is made and the
Delay time Second

time when L;  starts to be processed by R

3.2. Training Phase

In the training phase, each generated problem is solved multiple times by using RDG. To obtain
various simulation logs in terms of the flow time and resource utilization, for each simulation,
the intentional delay level with a value between 0 and 1 is randomly selected. The intentional
delay level close to one means a high probability of selecting lot whose status is To-DA-Stocker or
At-WB-Resource, whereas the intentional delay level close to zero indicates a high probability of
selecting lot whose status is in In-Cassette-Stocker or In-DA-Stocker.
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Specifically, whenever a lot dispatching is required, a new random number with a value between
0 and 1 is generated. If this random number does not exceed the intentional delay level for that
simulation, RDG makes a dispatching decision by using only lots whose statuses are To-DA-Stocker
or At-WB-Resource among candidates, to simulate the intentional delay by letting the DA resource
associated with the decision to be idle until the dispatched lot ready to be processed by the resource.

Once all lot dispatching decisions of each problem are determined by RDG, the generated
simulation log containing the entire dispatching history each of which consists of a dispatched lot and
an assigned DA resource, and their lot-DA assignment vector is sent to the score generator.

The score generator evaluates each lot dispatching decision based on the waiting time of the
dispatched lot and the idle time of the WB resource that processed the lot. Here, the waiting time
indicates the time during which a lot stays in the WB stocker after being completed by a DA resource.
In contrast, the idle time of WB resource is calculated by subtracting the time at which its last operation
ends from the time at which it starts processing the lot.

For each dispatching decision, the loss time defined above is denoted here as I. Based on I,
the score generator calculates the score of a decision in the range of [0, 1] according to the concept of
min-max normalization as presented in Equation (3) [41].

L= Liin

score = max(_( (Smax - Smin)) + smax/smin)r 3)

lmax — Lnin
where [,,;;, and [,y respectively stand for the minimum and maximum values among all the possible
values of ], and s,;;, and sy, refer to the minimum and maximum values among the possible values
of score, respectively.

In Equation (3), [y is set to be twice the median of [ values. This prevents a considerably
high I from being converted to an unwanted positive score, which makes it possible to construct
well-balanced training data. This is reasonable because we do not focus on predicting ! precisely;
the primary aim is to determine the lot dispatching decision expected to minimize /.

As a loss function, we used a squared error [42], defined as (score — scorepm)z, and the
back-propagation training algorithm is used to minimize the loss function [43]. Here, score is
the calculated score value for a dispatching decision by using Equation (3) and scorep,, means the
preference score for the decision in the training phase.

3.3. Real-Time Dispatching Phase

In the real-time dispatching phase, when a DA resource buffer is empty, lot-DA assignment
vectors for all the possible assignments between candidate lots and DA resources are generated.

The generated lot-DA assignment vectors are given to the proposed dispatcher as the input,
and the proposed dispatcher calculates the preference score of each vector. After this calculation,
the lot and DA resource involved in the vector with the highest scores are selected as the lot dispatching
decision. As a result, the lot is assigned to the DA resource.

The proposed dispatcher is anticipated to reach a better lot dispatching decision quickly compared
to the conventional meta-heuristics through a simple calculation using the weights predetermined
during the training. Therefore, it is expected that the proposed method can be introduced into
the real-world assembly lines where lot dispatching decisions are required to be determined in a
real-time manner.

4. Experiments

To show the effectiveness of the performances of the proposed dispatcher, we prepared three
datasets by varying the composition of job types while fixing the total numbers of lots in each problem.
A lot has several chips uniformly distributed between 74 and 370. Each dataset contains five job types
with various numbers of lots. The characteristics of the datasets are summarized in Table 3.
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Table 3. Descriptions on the datasets used for the experiments.

Avg. Number of Lots of Each Job Type

Dataset No. Avg. Number of Operations
J1 J2 I3 Ja Js
1 34.50 24.66 24.06 24.46 14.46 526.08
2 24.31 24.48 24.43 24.84 24.72 590.97
3 14.25 24.71 2413 24.37 34.36 644.87

The three datasets represent the different levels of difficulty for the dispatching problem of
assembly lines. In this experiment, the difficulty is assessed in terms of the number of operations to
complete the entire processing of lots. As the number of operations involved in a dataset increases,
its computational complexity grows because the number of decisions required to resolve problems of
the dataset increases proportionally.

Table 4 represents the operations of each job type and resource types that can perform each
operation. The odd-numbered operations of a job type are assumed to be processed in the DA stage,
whereas the even-numbered operations are processed in the WB stage. The last column in Table 4
shows the processing time of each operation per chip in the corresponding resource type. Additionally,
the time required for a lot to move from the stocker to the resource buffer and vice versa is 900 s.

As shown in Table 4, the greater an index a job type has, the longer the number of operations that
belong to the job type is. Compared to datasets 1 and 2, dataset 3 has problems where the number of
lots of J5 is greater than that of the other job types. Accordingly, dataset 3 has the greatest number of
operations and high complexity among datasets.

Table 4. Problem description for experiments.

Ji 0;; Stages A(O;j) Processing Time
011 DA (My, My, M) (14,1.4,2.1)

h 015 WB (M, Ms, Mg) (14.4,16.2,16.2)
021 DA (M1, My, M3) (2.8,3.5,2.8)
052 WB (M, Ms, M) (234, 25.2,25.2)

L2 Os3 DA (My, Ma, M3) (3.5,3.5,3.5)
On4 WB (M, Ms, M) (234,25.2,25.2)
031 DA (M, M3) (3.5,2.8)
032 WB (M, Ms, Mg) (32.4, 32.4, 36)

s 033 DA (Mp, M3) (35,3.5)
O34 WB (M, Ms, M) (39.6, 41.4, 39.6)
O41 DA (M, M3) 4.2,4.2)
Oy WB (M, Ms, M) (32.4, 32.4, 36)

| Ou3 DA (M, M3) (35,3.5)

4 Oy WB (M, Mg) (36, 63)

Oys DA (Ma, M3) (3.5,3.5)
Oy WB (Ms, M) (41.4, 39.6)
Os1 DA (My, My, M) (2.8,2.8,2.1)
Os» WB (My, Ms, M) (50.4, 45, 45)
Os3 DA (M1, M) (2.8,2.8)

/ Os4 WB (M, Ms, M) (36, 36, 21.6)

5 Oss DA (M1, M) (2.1,2.1)

Ose WB (M, Ms, M) (36, 36, 21.6)
Os7 DA (M1, My, M3) (2.1,2.1,2.1)
Osg WB (My, Ms, M) (36, 36, 21.6)

For each dataset, 200 problems were generated by varying the quantity of the lots and the total
number of lots for each job type. Specifically, 50 problems were used to train the proposed dispatcher,
while the remaining problems were used to test the performance of the proposed dispatcher after it
was trained. It is assumed that each dataset has several lots requiring more than two days for all lots
to leave the assembly line, which is the well-known practice of the assembly line considered [2]. In the
experiments, N); and Nj are set to be 6 and 5, respectively. Specifically, for each problem, both the
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DA and WB stages have three different resource types, with 4 and 12 resources respectively assigned
to them.

In the training phase, we generated simulation logs by solving each problem 500 times using
RDG. The scores of the generated simulation logs were calculated by the score generator through using
Equation (3). The performance of lot dispatching is measured by means of the waiting time of lots
and the idle time of the resources of the WB stage. Specifically, the average waiting time of lots, AWT,
is calculated as: N

AWT — Zi:]1 Zk’:1 (Ci,k —Vik — ti,k) 4)
Ny ’
Zizl n;
where c; ;. and r; ;. are the time that the last WB operation of L;  is completed and L;  leaves the cassette
stocker, respectively, and t;  indicates the sum of processing time of L; ; on resources.
Additionally, the average idle time of the WB resources, AIT, is defined as follows:

g
Z Z (fq,s - tq,S)
VgeQs=1
Y ng ’

VgeQ

AIT = (5)

where f, s represents the time at which R, s completes its last operation and ¢, is the total processing
time of the operations assigned to R, s between time 0 and f; s, and () is a set of indexes of the resource
types which belong to the WB stage. Moreover, to collectively measure the overall performance in
terms of AWT and AIT, we used the average loss time denoted as ALT that is the sum of these
two values.

After we trained three instances of the proposed dispatcher for each dataset, the dispatcher
generated by the training data of dataset 3 outperformed the others under all the datasets. Therefore,
we used this instance of the dispatcher for all the experiments performed in this research.

For the comparison purposes, we implemented the conventional dispatching rules such as the
first-in-first-out (FIFO), the last-in-first-out (LIFO), the most-operations-remaining (MOR), and the
least-operations-remaining (LOR), all of which are widely used to reduce the flow time or increase
resources utilization [44]. In particular, LIFO is known to perform better in terms of minimizing the
maximum and mean flow time in dynamic job shop scheduling problem [45]. Here, FIFO selects the
oldest lot that has been dispatched from the cassette stocker among the candidate lots, while LIFO
addresses the latest one that has been dispatched. Both rules randomly dispatch the lot from the
cassette stocker when the lots whose status is In-Cassette-Stocker exist in the candidate lots only.

Furthermore, we also compared the proposed dispatcher with the composite dispatching rule
using SVR proposed by [27]. The dispatching rules mentioned above are used to construct a linear
combination of the composite dispatching rule. The weight assigned to each rule is determined by
the model trained with SVR whenever a lot dispatching decision is required. The feature set and the
parameters of SVR used in the experiments are identical to those in [27].

The performance comparison results for the proposed dispatcher, RDG, and the other dispatching
methods considered under each dataset are presented in Figure 6, where Figure 6a—c show the results
for AWT, AIT, and ALT, respectively. In terms of AWT, FIFO, LIFO, and LOR shows the better
performances than the proposed dispatcher for all the datasets. This is because FIFO and LIFO assign
a low priority level to the lot whose status is In-Cassette-Stocker, and LOR prefers the job type
whose number of operation is small. As a result, the waiting time of lots are reduced owing to the
decrease in the number of lots in the WB stocker. However, these simple policy causes an increase in
the probability that the WB resources become idle eventually. As shown in Figure 6b, these rules lead
to made excessively large value of AIT.

MOR tends to disallow resources from being idle since this rule assigns a high priority level to lots
according to the number of operations to be processed. Although this might result in almost zero AIT,
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it yields a considerable AWT compared to all the other methods including the proposed dispatcher
due to the increased WIP level.

Meanwhile, in terms of ALT, the proposed dispatcher and SVR outperformed the other methods
in all datasets, as shown in Figure 6¢c. However, SVR showed lower performances than the proposed
dispatcher in terms of all performance measures. This is due to the lack of features that can represent
the concept of conflicting lots and predict intentional delay even though SVR attempts to choose
the proper dispatching rule according to a given assembly line state. In addition, the performance
difference between two methods can be attributed to the fact that the proposed method is possible to
select one of candidate lots while SVR performs one of the existing dispatching rules.

Table 5 highlights the improvement rate of the proposed dispatcher over the other dispatching
methods in terms of ALT. The proposed dispatcher has reduced ALT from at least 53% to 85%
compared to the existing methods. Furthermore, as shown in Table 6, the statistically significant
differences in ALT between the proposed dispatcher and the existing methods are investigated by the
t-test at the 1% level presented. The top number in each cell means the difference in ALT between the
proposed dispatcher and the existing method corresponding to each column, and the bottom number
indicates the corresponding p-value. All p-values in Table 6 are less than 0.01, which confirms the
results of Figure 6¢c and Table 5.

Table 5. ALT improvement rate of the proposed dispatcher compared to existing methods.

Dataset No. SVR RDG FIFO LIFO LOR MOR

1 53% 80% 85% 84% 75% 69%
2 55% 79% 83% 83% 76% 72%
3 54% 80% 82% 83% 76% 74%

Table 6. Significant difference in ALT between the proposed dispatcher and existing methods.

Dataset No. SVR RDG FIFO LIFO LOR MOR
1 313.25 1105.75 1505.36 1466.09 851.14 625.32

699 x 1078 322 x 10751  1.01x107'% 338x10°10 315x10°102 233 x 1012
5 420.76 1345.44 1679.17 1731.36 1121.52 895.17

599 x 10772 579 x 1071 499 x107% 170 x 1077 626 x10"71 572 x 10°11°
3 491.54 1698.65 1883.17 1972.73 1313.5 1195.98

738 x 107 746 x 107° 948 x 10742 6.34 x 1071%1 146 x 107140 287 x 10714

Based on the above observation, the proposed dispatcher successfully reduces both AWT and AIT
at the same time in contrast to the existing methods which focus only on one performance measure.
Therefore, the proposed dispatcher appears to achieve a reduction in the flow time while maintaining
high utilization of resources in the bottleneck stage.

We provide a further analysis of the effects of lot dispatching decisions. Figures 7-9 present the
dispatching results of each resource over time, an utilization of the WB resources, and the WIP level
of the WB stocker obtained by using dataset 3, respectively. Here, the values in the utilization graph
represent the number of WB resources processing a lot divided by the total number of WB resources.

According to Figure 7a, the proposed dispatcher keeps the WIP level close to zero while always
maintaining the utilization rate of WB resources at approximately 100% at all times (shown in
Figures 8a and 9a). These successful performances might be attributed to the sophisticated dispatching
ability of the proposed dispatcher than the existing dispatching rules.
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In contrast to the proposed dispatcher, as presented in Figure 7b, LIFO reduces the waiting time
by maintaining an extremely low WIP level. However, this causes WB resources to be idle frequently,
resulting in the severe fluctuations of the utilization for the WB resources (shown in Figures 8b and 9b).

Figures 8c and 9c indicate that MOR continues to run WB resources by keeping the WIP at a
high level, leading to inevitable increases in the waiting time. However, it was observed that the WIP
level drops to 0 between 750 and 1000 min and between 2000 and 2500 min (shown in Figure 7c).
This arises due to the fact that MOR prevents the selection of lots with few remaining operations in the
cassette stocker.

Additionally, we compared the lot dispatching decision patterns over time by the proposed
dispatcher, LIFO, and MOR. In Figure 10, heat maps visualize the frequency of status of the lots
dispatched by each dispatching method over time, where Figure 10a—c represent the results of the
proposed dispatcher, LIFO, and MOR, respectively. The value in Figure 10 indicates the number of
dispatched lots that correspond to each status for the interval of three hours.

In Figure 10a, the proposed dispatcher appears to increase the utilization of WB resources by
dispatching the lots whose status is In-Cassette-Stocker at an early stage with a low WIP level.
Subsequently, when the WIP level reaches a sufficient level, it tends to prevent the waiting time of lots
from increasing by dispatching the lots whose status is In-DA-Stocker or At-WB-Resource.

On the other hand, Figure 10b indicates that LIFO assigns a higher priority to the lots whose
status is At-WB-Resource. As a result, the time required to complete the dispatching of all lots
becomes longer compared to those in the other methods. In contrast to LIFO, the results illustrated in
Figure 10c present that MOR shows a tendency to concentrate on the dispatching lots whose status
is In-Cassette-Stocker, which increases the waiting time of lots due to the rise in the WIP level,
although this behavior enables to keep the utilization of WB resources high.

Finally, an analysis of the effects of the intentional delay decision was conducted. Table 7 presents
how much ALT is reduced under the condition where intentional delays are allowed compared to
when they are not. The negative values in the table indicates an increase in ALT when intentional
delays are allowed.

The result shows that the proposed dispatcher yielded better results when intentional delays
were allowed. The solution space with intentional delays becomes wider than the other case because
the lots whose status is To-DA-Stocker or At-WB-Resource are not included as candidate lots without
intentional delays. Due to the advantage of ANN, which can capture complex patterns of data,
the proposed dispatcher appears to obtain a superior solution in a widened solution space.

Table 7. ALT improvement rates achieved by allowing intentional delays.

Dataset No. Ours SVR RDG FIFO LIFO LOR MOR

1 63% 6% —81% —141% —133% —86% —12%
2 63% 6% —79%  —121% —130% —94% —26%
3 61% 8% —95% —121% —133% —90% —44%

The existing dispatching methods except for SVR yielded significantly high values of ALT with
intentional delays. The rules which mainly focus to reduce the waiting time of lots, including FIFO,
LIFO, and LOR, seem to be possible to shorten the idle time by eliminating intentional delays. Moreover,
the decreased number of candidate lots alleviated the tendency of MOR to keep numerous lots in the
DA stocker for a long time, leading to the decreased AWT. Although SVR succeeded in reducing ALT
when intentional delays were allowed, the improvement rates were much smaller than the proposed
dispatcher for all datasets.
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5. Conclusions

In this paper, we presented a novel method for reducing the waiting time of lots and the idle time
of resources in the bottleneck stage of semiconductor MCP assembly lines by considering intentional
delays. To learn an efficient lot dispatching policy at the DA stage with intentional delays, we employed
ANN which has the ability to capture complex non-linear dynamics. Furthermore, the score generator
was also proposed to obtain the training data for ANN by evaluating the performances of the decisions
in randomly generated simulation logs.

The experiments demonstrate that the proposed method is successful in decreasing the flow time
and increasing the utilization of bottleneck resources at the same time. In other words, the proposed
method guarantees sustainability in terms of low WIP level and high resource utilization at the
bottleneck stage. Specifically, the proposed dispatcher outperforms the traditional dispatching rules
in terms of the loss time for all the datasets considered. Furthermore, through the comparison
experiments without intentional delays, the proposed dispatcher yields better dispatching decisions
than the existing methods especially when the problem becomes complex.

Although satisfactory results were obtained, there exist some other aspects needed to be
considered to further improve the proposed method such as setup changes. Since setup change
constraints are not only related to resource utilization but also to satisfying the production requirements,
these are necessary to be taken into account from a global perspective. Therefore, we plan to investigate
a reinforcement learning algorithm which is capable of finding a policy that maximizes global rewards
in order to enable more intelligent dispatching under assembly lines with the setup change constraints.
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