SUPPLEMENTAL INFORMATION Assessment of Heavy Metals and Color as Indicators of Contamination in Street Dust of a City in SE Spain: Influence of Traffic Intensity and Sampling Location

Pura Marín Sanleandro^{1,*}, Antonio Sánchez Navarro¹, Elvira Díaz-Pereira², Francisco Bautista Zuñiga³, Miriam Romero Muñoz and María José Delgado Iniesta^{1,*}

The supplemental information contains nine tables with data and three figures showing sample localization, an XR diffractogram and an SEM image. References cited are listed in the paper.

Figure S1. Sampling and localization.

Figure S2. Example of an XR diffractogram of urban dust.

Figure S3. SEM image of a magnetite sphere and a spectrum of the chemical composition of an urban dust sample.

		pH>7		
Elements	RL	RRL	ORL	IL
Cu	< 100	100 - 300	300-500	> 500
Cd	< 3	3–5	5-10	> 10
Cr	< 100	100-250	250-450	>450
Zn	< 300	300-500	500-1000	>1000
Pb	< 200	200-400	400-500	> 500
Ni	< 50	50-100	100-300	> 300

Table S1. Levels (mg/kg) proposed according to Aguilar et al. (1999) for the heavy metals, based on pH: Reference Level (RL), Recommended Research Level (RRL), Obligatory Research Level (ORL), and Intervention Level (IL).

Table S2. Discriminant analysis. Discriminant analysis carried out on the 127 samples. This enabled the correct classification of a high percentage of the samples according to three discrimination levels for each variable and for the 12 predictor variables (heavy metals and pollutant load).

Classification variable: Location sample							
Independent variables: As, Cd, Cr, Cu	, Fe, Mn, Ni,				I	Prediction	
Pb, Ti, V, Zn, and pollutant load (PL)	Location sample	n	% (*)	Sidewalk	Ledge	Road	
		Sidewalk	29	59	17 (58.6%)	4 (13.8%)	8 (27.6%)
Number of complete cases: 127		Ledge	12	58	2 (16.7%)	7 (58.3%)	3 (25.0%)
Number of groups: 3 (sidewalk, ledge, a	and road)	Road	86	72	(20.9%)	(7.0%)	(72.1%)
indifiber of groups. 5 (sidewalk, ledge, a	ind road)	Total	127	68			
		(*) %	cases	expl	ained		
Discriminant Eigenvalue Relative	Canonical						
1 0.3597 70.2	0.5144						
2 0.1529 29.8	0.3641						
European Functions of Wilks Chi square GL	P-value						
1 0.6379 52.5987 30	0.0066						
2 0.8674 16.6417 14	0.2758						

Cla	ssification v	ariable: Cc	olor sampl	e								
Ind	ependent v	ariables: A	s, Cd, Cr	, Cu,	Fe, Mn,	Ni,					Predictio	n
							Color	n	%	Dark	Brown	Light
Pb,	Ti, V, Zn, ai	nd pollutar	nt load (PI	_)			sample	(2)	(*)	45	14	1 (6 10
Nu	mbor of com	nlata casa	c· 107				Dark	63	71	(71.4%)	(22.2%)) 4 (6.4%
INU							Brown	32	63	5 (15.6%)	(62.5%)) (21.9%
Nu	mber of gro	ups: 3 (Dar	rks, brown	is, an	d lights)		Light	32	50	6 (18.8%)	(31.3%)	16 (50%
-	D' ' ' '	r' 1	D 1 <i>C</i>		<u> </u>	_	Total	127	64			
-	Eunctions	Eigenvalu	e Kelativ	e	Corrolation	_	(*) % ca	ses exp	olained		
	1	0.5178	83.22	ige	0.5841							
	2	0.1044	16.78		0.3075							
-						-						
	Derivative	Lambda										
	Functions	of Wilks	Chi square	GL	P-value							
	1	0.5961	11.6966	30 14	0.6307							
Cla	ssification v	ariable: Tr	affic inter	nsity								
				5								
Ind	ependent v	ariables: A	s, Cd, Cr	, Cu,	Fe, Mn,	Ni,					Prediction	
	•						Traff	fic	%) 	Mathum	11:-1
Pb.	Ti, TV, Zn,	and polluta	ant load (I	PL)			intens	sity	n (*) Low	Medium	High
- /	, , , ,	· · I · · ·	(,			Lov	v	62 66	41 5 (((19/)	10	11
Nu	mber of com	plete cases	s: 127							(66.1%) 15	(16.1%) 22	(17.7%)
		1					Mediu	um	51 43	3 (29.4%)	(43.1%)	(27.5%)
Nu	mber of gro	ups: 3 (Lov	v, mediun	1, hig	;h)		Hig	h	14 64	4	1	9
							Tota	al 1	127 52	(20.0%) 7	(7.1%)	(04.3%)
								n. nur	nber o	f samples,	(*) % cases	S
D'		T' 1	n 1		0	•			(explained	< <i>/</i>	
Eur	iminant	Eigenvalue	Porco	ntago	Can	onica				I I I I		
rui	1	0.2676	75.	.25	0.4	4595						
	2	0.08802	24.	.75	0.2	2844						
	Derivative	Lambda	<i>c</i> 1 ·	CI	D 1							
	Functions 1	0 7250	Cni square	30 30	P-value 0.1597							
	2	0.9190	9.8737	14	0.7714							

Factor	Туре	n	Mean (mg/k g)	Statistic	P-value	
	Dark	63	1026.0			
Color	Brown	32	1206.4	10 2155	0.0061	
	Light	32	1287.1	10.2155		
Sample	Sidewalks	29	1196.1			
localization	Ledges	12	1942.5		ns	
localization	Roads	86	1088.3			
Traffic	Low	62	1084.8			
intensity	Medium	51	1328.3	12 /036	0.0019	
mensity	High	14	1254.0	12.4930		

Table S3. Mean values of pollutant load (PL) in mg/kg. Kruskal-Wallis analysis. The dark-colored samples are the ones with the higher PL, which are those that were subjected to medium or high traffic intensities.

Table S4. Spearman correlation coefficients for the elements and PL.

	As	Cd	Cr	Cu	Fe	Mn	Ni	Pb	Ti	V	Zn	PL
As	1											
Cd	0.160	1										
Cr	0.025	0.116	1									
Cu	-0.117	0.187*	0.095	1								
Fe	0.032	0.523 **	0.549 **	0.308 **	1							
Mn	0.244 **	0.284 **	0.491 **	0.128	0.543 **	1						
Ni	0.041	0.109	0.991 **	0.043	0.530 **	0.483 **	1					
Pb	0.126	0.170	0.023	0.049	0.144	0.045	0.010	1				
Ti	-0.023	0.195*	0.395	0.168	0.448 **	0.272	0.384	0.041	1			
V	-0.163	0.196 *	0.121	0.076	0.406 **	0.185 *	0.127	0.104	0.335 **	1		
Zn	-0.011	0.507 **	0.053	0.078	0.271 **	0.114	0.039	0.007	0.031	0.061	1	
PL	0.016	0.554 **	0.580 **	0.320**	0.991**	0.542 **	0.558 **	0.254 **	0.218 *	0.086	0.861 **	1

* significant correlation at the 0.05 level (bilateral), ** significant correlation at the 0.01 level (bilateral)

Factor	Type	n	Mean (mg/kg)	Statistic	P-value
	Dark	63	608.8		
Color	Brown	32	668.9	5 5047	0.0408
	Light	32	725.7	5.5947	
Commlo	Sidewalk	29	680.1		
Sample	Ledge	12	1403.9		ns
localization	Road	86	539.6		
T. ((:	Low	62	673.2		
intensity	Medium	51	618.3	E 4626	0.0450
intensity	High	14	693.3	3.4030	

Table S5. Kruskal-Wallis statistical test for Zn as a function of color, sample localization, and traffic intensity. The accumulation of Zn was significantly higher in the light-colored samples from the ledges of streets with high traffic intensity.

Table S6. Kruskal-Wallis statistical test for Pb as a function of color, sample localization, and traffic intensity. The concentration of this metal was highest in the light-colored samples and lowest in the brown-colored ones.

Factor	Type	n	Mean (mg/kg)	Statistic	P-value
	Dark	63	181.8		
Color	Brown	32	110.6	12.4958	0.0019
	Light	32	235.2		
Commlo	Sidewalk	29	252.9		
Jacalization	Ledge	12	189.4		ns
localization	Road	86	150.1		
Traffic intensity	Low	62	137.8		
	Medium	51	229.2	30.1665	0.000
	High	14	163.6		

Table S7. Kruskal-Wallis statistical test for Cu as a function of color, sample localization, and traffic intensity. The concentration of this metal was highest in dark-colored samples from roads with high traffic intensity.

Factor	Type	n	Mean (mg/kg)	Statistic	P-value
	Dark	63	267.8		
Color	Brown	32	144.8	37.9467	0.000
	Light	32	126.0		
Commlo	Sidewalk	29	148.4		
Jacobization	Ledge	12	201.0	9.3935	0.0091
localization	Road	86	218.9		
Traffic	Low	62	157.6		
	Medium	51	234.7	11.2797	0.0035
mensity	High	14	271.3		

Table S8. Kruskal-Wallis statistical test for Cr as a function of color, sample localization, and traffic intensity. The concentration was highest in dark-colored samples but, in relation to the traffic intensity, was statistically higher in roads affected by medium traffic intensity.

Factor	Type	n	Mean (mg/kg)	Statistic	P-value
	Dark	63	158.4		
Color	Brown	32	75.6	23.6812	0.0000
	Light	32	78.6		
Commla	Sidewalk	29	80.6		
Sample	Ledge	12	100.7		ns
localization	Road	86	132.2		
Troffic	Low	62	80.0		
intensity	Medium	51	169.5	14.5552	0.0006
	High	14	93.5		

Table S9. Kruskal-Wallis statistical test for Ni as a function of color, sample localization, and traffic intensity. The Ni concentration only differed statistically according to the color, being highest in the dark-colored samples.

Factor	Туре	n	Mean (mg/kg)	Statistic	P-value
	Dark	63	69.7		
Color	Brown	32	26.5	12.5942	0.0018
	Light	32	40.2		
Comm10	Sidewalk	29	33.5		
Sample	Ledge	12	46.6		ns
localization	Road	86	58.1		
Traffic intensity	Low	62	35.6		
	Medium	51	76.0		ns
	High	14	31.7		