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Abstract: Globally, many enterprises are currently focusing on big data technology to improve their
performance and operations. Recent literature points out several factors that influence the adoption
of big data. However, enterprises often resist using the business value of big data due to a lack of
knowledge. The purpose of this study is to investigate the factors influencing big data adoption by
Chinese enterprises and to develop an indicator system based on the Motivation–Opportunity–Ability
(MOA) model. Moreover, the Decision-Making Trial and Evaluation Laboratory (DEMATEL) method
is used to construct a network relationship map and to analyze its effects. Using the DEMATEL-based
Analytic Network Process (ANP) (DANP) method to identify the weight distribution of index, this
study quantitatively evaluates the influencing factors. The results show that leadership support,
perceived usefulness, financial support, data resources, industrial development, data talents, and
technical capability are key elements affecting the application of big data. Accordingly, some targeted
suggestions are proposed.
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1. Introduction

Over the last decade, the development of information and communication technology (ICT) and
the Internet have led to massive amounts of data being generated in various fields. The term “big data”
is used to describe this phenomenon in the digital world [1]. Big data plays an increasingly significant
role in the development of the economy and society [2], garnering attention in both academia and in
business [3]. Recent literature describes big data as the next “management revolution” [4], “the fourth
paradigm of science” [5], and the “the key to sustainable innovation within an Industry 4.0 factory” [6].
Due to these potentials social and economic benefits, many government agencies have formulated
relevant policies to promote the development of big data. Similarly, understanding that big data is a
crucial basic strategic resource, China’s “13th Five-Year Plan” propose measures to promote the use
of big data in an efficient way. Due to these factors, big data has become a mainstream activity of
many organizations [7]. According to the Gartner’s 2015 survey, 76% of global business are planning
to invest in big data. Additionally, the China Academy of ICT survey showed that 56% of Chinese
enterprises are planning to adopt big data.

Although the significance of big data is widely recognized, there is still no single clear definition
of it [8]. In 2011, the International Data Corporation defined big data as follows: “big data technologies
describe a new generation of technologies and architectures designed to economically extract value
from very large volumes of a wide variety of data by enabling high-velocity capture, discovery, and/or
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analysis” [9]. This concept is generally recognized because it embodies the characteristic “4Vs” of big
data: Volume, Variety, Velocity, and Value. Furthermore, the definition reveals the essential aim of
big data, which is discovering hidden values [10]. The United Nations’ Department of Economic and
Social Affairs classified big data into three categories: social networks (such as data from Facebook
or other social media platforms and Internet searches), traditional business systems (such as data
concerning e-commerce transactions), and the Internet of Things (such as data from mobile phone
tracking) [11]. The data from these different sources are widely used in multiple fields such as scientific
research, government management, and the global economy. This study focuses on the application of
big data in commerce and the business field.

Big data can be useful to enterprises from all industries in identifying customer needs, improving
productivity, and gaining a competitive advantage. More importantly, big data plays a new and
important role in achieving sustainable economic development [12]. Sustainability consists of three
aspects: environmental, economic, and social sustainability [13]. Enterprises can improve their
contributions to these three areas by using big data to develop resources and boost operational
efficiency. Depending on the industry, enterprises can use big data to reduce environmental impact,
produce individually tailored goods and services, provide better living experiences, and create many
opportunities for innovation and business models. In short, the implementation of big data systems
and the use of big data in general can improve sustainability immeasurably [14].

Due to large volumes of data and time constraints regarding processing speed, the adoption of
big data is a complex process that includes data collection, organization, storage, analysis, mining, and
application [15]. There are many prerequisites for the adoption of big data—such as a well-developed
IT infrastructure, the talents of specialist big data analysts, and special analytical tools—to address
technical challenges [16]. However, the most important challenge in the adoption of big data is
constructing an appropriate model and identifying managerial concerns [17]. This may enable
enterprises to consider all the factors that may affect the adoption of big data. However, many
companies have little or no knowledge about the concept or use of big data.

Identifying the key factors is a well-known method for conducting a structured system analysis
and has been used for effective IT management [18]. Since big data forms part of the larger concept
of IT, finding the key influencing factors concerning the adoption of big data is of great interest to
both academics and business managers. Several studies have been carried out, presenting a variety
of influencing factors concerning the adoption of big data. However, existing literature focused
mainly on qualitative research, with most of the studies being based on only one or a small number
of dimensions. This indicates a lack of quantitative evaluation and the analysis of the relationships
between the influencing factors. The fragmented findings of previous studies point to an urgent need
for comprehensive research that can provide clear and systematic insight for scholars and provide
guidance concerning the implementation and practice of big data for business managers. To address
this gap, this paper aims to provide a systematic study of the influencing factors of big data adoption
to broaden the understanding of big data and to assist Chinese enterprises with the adoption of big
data. More specifically, we focused on three research objectives:

• To construct a system that determines the influencing factors for the adoption of big data by
Chinse enterprises

• To explore the relationship among the influencing factors
• To identify the key factors and calculate the weight of each factor

The remainder of this study is organized as follows: Section 2 contains a literature review and
describes the model constructed to determine the influencing factors for the adoption of big data.
Section 3 introduced the research methodology and the computational procedure. Section 4 documents
the analysis of the relationships among the influencing factors and presents the results. Section 5
discussed the research results and is followed by conclusion in Section 6.
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2. Theoretical Framework

The factors that influence the adoption of big data that have been highlighted by very few
researchers. For instance, Brinkhues et al. proposed some of the factors that influence data capabilities
to be IT infrastructure, data resources, financial support, and cost and earnings expectations [19].
From a knowledge management perspective, Izhar and Shoid suggested that data quality, capacity,
infrastructure, and big data awareness were critical factors for the implementation of big data [20].
By investigating Chinese enterprises, Cheng and Li proposed the following factors concerning big
data adoption: data talent, technical ability, organizational culture, organizational structure, and
data policies [21]. Based on resource-based view, Hu summarized factors that affected enterprises’
motivation to use big data, which include technical capacity, environmental pressure, expected
earnings, data resources, and data quality [22]. All these factors should not be seen as independent
concepts, as they are all interrelated. These factors and their relationships with each other mean
that analyzing the adoption of big data from a systematic perspective could yield convincing results.
Previous studies have presented analyses of the interaction mechanism among the different factors.
However, framework for these influencing factors which cover all dimensions is scarce.

To address this problem, this study employs the Motivation–Opportunity–Ability (MOA) model.
The MOA model is a relatively well-known theoretical framework within the field of organizational
theory [23]. Ölander & Thøgerson was first to comprehensively analyze and explain the three
basic constructs of the MOA model and the relationships between them [24]. The principle of the
MOA framework states that each item of motivation, opportunity, and ability is indispensable for
the framework to lead to the desired outcome [25]. The MOA framework is characterized as a
meta-theory [26] and provides a complete analysis framework to explain individual or organizational
behaviors from both subjective and objective perspectives. Therefore, the framework has good stability
and predictability [27] which is why it is widely used in various research areas such as the adoption of
innovations, business decision-making, marketing, and knowledge management [28]. For example,
when analyzing enterprises’ behavior, Zhang applied the MOA theory to explain companies’ behavioral
patterns when they constructed a structural hole in the coalition organization [25]. Additionally, Chai
and Baudelaire analyzed the main obstacles to the improvement of energy efficiency in Singapore’s
basic industries based on the MOA model [29].

Following these previous studies, we propose that big data adoption not only relies on enterprises’
motivation and ability but is also upon how closely linked these enterprises are to specific opportunities
within the market and the environment. When associated with an opportunity, the subject’s ability and
motivation become more greater [30]. Therefore, the MOA model is suitable to analyze the influencing
factors for enterprises’ big data adoption. This study uses the model to construct a framework which
in turn examines enterprises’ behavior in-depth. This study also uses expert interviews to summarizes
the influencing factors from relevant literatures on the adoption of big data. After the influencing
factors have been discovered, they are divided into three dimensions within the MOA framework. The
index system is shown in Table 1.
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Table 1. The index system of influencing factors.

Influencing Factors Literatures Dimension

Environmental Pressure m1
Chen and Huang [31], Shi and Wu [32], Wamba et al. [33], He and Wang [34], Hu [11],
Izhar and Shoid [20] motivation

Perceived Ease of Use m2 Chen and Huang [31], Wong and Li [35], Jetzek et al. [36], He and Wang [34] motivation

Perceived Usefulness m3
Cheng and Li [21], Brinkhues et al. [19], Shi and Wu [32], Wamba et al. [33], Hu [22], Izhar
and Shoid [20] motivation

Leadership Support m4
Jetzek et al. [26], Wamba et al. [33], Akter and Wamba [37], He and Wang [34], Ma [38],
Félix et al. [39] motivation

Corporate Culture m5
Jetzek et al. [36], Wamba et al. [33], Akter and Wamba [37], Hu [22], Ma [38], Félix et al.
[39] motivation

Policies and Laws o1
Cheng and Li [21], Jetzek et al. [36], Wamba et al. [33], Wong and Li [35], Kim and Park
[40], Ekbia et al. [41] opportunity

Regulation Mechanism o2 Chen and Huang [31], Cheng and Li [21], Jetzek et al. [36], Ma [38], Kim and Park [40] opportunity

Risk o3
Ekbia et al. [41], Wamba et al. [33], Akter and Wamba [37], Wong and Li [35], Kim and
Park [40], Félix et al. [39] opportunity

Development of Industry o4
Chen and Huang [31], Cheng and Li [21], Shi and Wu [32], Wamba et al. [33], Kim and
Park [40] opportunity

Informatization Level o5
Chen and Huang [31], Cheng and Li [21], Jetzek et al. [36], Wamba et al. [33], Wong and Li
[35], Janssen et al. [7] opportunity

Data Talents a1
Cheng and Li [21], Wamba et al. [33], Akter and Wamba [37], Ma [38], Wong and Li [35],
Janssen et al. [7], Kim and Park [40], Félix et al. [39] ability

Technical Capability a2
Jetzek et al. [36], Brinkhues et al. [19], Wamba et al. [33], Akter and Wamba [37], Hu [22],
Izhar and Shoid [20], Ma [38], Kim and Park [40] ability

IT Infrastructure a3
Brinkhues et al. [19], Ekbia et al. [41], Shi and Wu [32], Akter and Wamba [37], He and
Wang [34], Izhar and Shoid [20], Wong and Li [35], Janssen et al. [7] ability

Data Resources a4
Jetzek et al. [36], Brinkhues et al. [19], Ekbia et al. [41], Akter and Wamba [37], Hu [22],
Izhar and Shoid [20], Janssen et al. [7], Kim and Park [40], Félix et al. [39] ability

Financial Support a5
Chen and Huang [31], Cheng and Li [21], Brinkhues et al. [19], Ekbia et al. [41], Wong and
Li [35], Ma [38], Kim and Park [40] ability

Management Ability a6
Chen and Huang [31], Cheng and Li [21], Jetzek et al. [36], Brinkhues et al. [19], Akter and
Wamba [37], He and Wang [34], Félix et al. [39] ability

As discussed above, the framework consists of three factors; motivation, opportunity, and ability.
We discuss each factor briefly below.

Motivation. The term motivation refers to the desire and willingness to engage in a certain
behavior [42] and it is an intrinsic reason for the adoption of big data. There are many factors that may
increase the motivation of enterprises, such as leadership support [39], environmental pressure [20],
and corporate culture [33]. Moreover, based on the technology acceptance model (TAM), perceived
usefulness and perceived ease of use also play an important role for the desire of organizations.
Drawing on the current literature mentioned above, we determine five indicators that comprise the
dimension of motivation (m1 to m5 shown in Table 1).

Opportunity. Opportunity refers to a collection of external environmental or contextual elements
that are not controlled by the subject and enable action [43]. It is clear that the regulation mechanism,
policies and laws concerning big data contribute to the legal environment for the adoption of big
data [36] while the development of industry [32] and its information level [23] form the industrial
foundation. However, Ekbia et al. found that external risk may have a negative impact on enterprises’
activities [41]. We therefore determine five indicators (o1 to o5 shown in Table 1) to describe the
dimension of opportunity.

Ability. Ability refers to the knowledge and skills that an entity or enterprise possesses which
are relevant to certain behaviors [28]. Because of the technology-intensive nature of big data
implementation, enterprises’ ability concerning big data cannot improve without the support of
data talents [37], technical capability [40], financial support [38] and data resources [41]. Additionally,
it is important to note that IT infrastructure provides the basis for execution of big data, making it
an essential element [19]. Lastly, solid management ability would increase the efficiency of big data
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project. Consequently, we put forward six indicators (a1 to a6 shown in Table 1) that comprise the
dimension of ability.

The MOA theoretical framework for this study—including the three dimensions and the 16
sub-variables—is shown in Figure 1.Sustainability 2018, 10, x FOR PEER REVIEW  5 of 15 
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3. Methodology

3.1. Method Selection

Enterprises’ big data adoption is a complex Multiple-Attribute Decision-Making (MADM) process.
A typical decision-making process consists of several different factors: determine goal, criteria, and
hierarchy [44]. For this study, determine goal is the adoption of big data. The first-level criteria
include motivation, opportunity, and ability and the second-level criteria include 16 factors such as
environmental pressure and perceived usefulness. These factors are not independent of each other
but are mutually influential and restrictive. Therefore, we need a method to consider the interactions
among the various factors.

There are several methods to address MADM problems, such as AHP, TOPSIS, or VIKOR methods.
Most methods assume that the criteria that can affect the decision-making process (e.g., the influencing
factors of big data adoption in this study), are independent of each other, but for many practical
problems, this assumption is not established [44]. Therefore, the Analytic Network Process (ANP)
was proposed to address the dependence and feedback between various criteria. However, the ANP
method operates under the assumption that the MADM problem network structure is known and the
elements are of the same weight. In fact, the network structure is frequently unknown, and the weight
of each element differ [45]. Furthermore, the comparison matrices of ANP are too many and some
matrices are too complicated to provide accurate and useful information to decision makers [46].

Recent studies have shown a variety of methods that have been widely adopted to solve MADM
problems. Among these methods, a combination of Decision-Making Trial and Evaluation Laboratory
(DEMATEL) and ANP is one of the most rapidly development methods [46]. The amalgamation of
DEMATEL and ANP can be divided into four categories: Network Relationship Map (NRM) of ANP,
Inner Dependency in ANP, Cluster-Weighted ANP, and DEMATEL-Based ANP (DANP) [46]. Among
these methods, DANP stands out, since it combines the advantages of the other three methods and is
more effective than the ANP method alone [47]. Therefore, this method has been developed rapidly
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and has been applied in fields of policy evaluation, risks analysis and factors research [46]. It has
become an important method for addressing MADM situations successfully.

In the DANP method, DEMATEL solves the problem of influencing factors within a multi-factor
interleaving system [48]. By using graph theory and matrix tool, the DEMATEL method can calculate
the cause and effect of each factor and convert the relationships among factors into an understandable
structural model that visually represents the interdependence among the factors (i.e., a directed causal
diagram) [49]. The DANP method also adopts a composite influence matrix instead of normal pair
wise comparison matrices within the ANP to discover the weight of each factor. This not only reduces
the complexity of the ANP method, but also solves the dependence and feedback relation issues among
the factors in the system. Therefore, this study uses the DANP method to identify the key influencing
factors for the adoption of big data in Chinese enterprises.

3.2. The DANP Method

The DANP method can be summarized as follows [49,50]:

(1) Application of DEMATEL for a NRM

Step 1: Calculating the direct influence matrix

This method first constructs the direct influence matrix (matrix A) according to the logical
relationships among the factors. A scale is incorporated that ranges from 0–4, indicating the degree
of influence among the factors. The scale values are 0—no, 1—very weak, 2—weak, 3—strong and
4—very strong. Next, the direct influence matrix A =

[
aij
]

n×n can be achieved. In matrix A, aij denotes
the degree of impact of element i on element j, and n is the number of factors.

A =



a11 · · · a1j · · · a1n
...

...
...

ai1 · · · aij · · · ain
...

...
...

an1 · · · anj · · · ann


Step 2: Calculating the normalized direct-relation matrix

Using the normalization Equations (1) and (2) deal with the direct matrix A to achieve a normalized
matrix (matrix G).

G = kA (1)

k = min{ 1
max

i
∑n

j=1 aij
,

1
max

j
∑n

i=1 aij
} (2)

Step 3: Calculating the total influence matrix

The total influence matrix can be derived from Equation (4), where I represents the identity matrix.

T = G + G2 + G3 + · · · = G(I − G)−1 (3)

The row sum di of the ith row elements tij of matrix T denotes the factor i that influences others.
Similarly, the column sum rj of the jth column elements tij of matrix T denotes the factor j that is
influenced by others. When i = j, ci = di + ri represents the degree of the central role that factor i plays
in the problem. If hi = di − ri is positive, factor i influences others. On the contrary, if hi is negative,
factor i is affected by others.
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(2) Measuring weights by DANP

Step 4: Normalizing the total influence matrix

The total influence matrix includes TD based on dimensions as well as TC based on criteria.
Normalizing TD and TC by Equations (4)–(8), Tα

D and Tα
C can be derived.

Tα
D =

[
tαij
D

]
m×m

=



t11
D /d1 · · · t1j

D/d1 · · · t1m
D /d1

...
...

...
ti1
D/di · · · tij

D/di · · · tim
D /di

...
...

...
tm1
D /dm · · · tmj

D /dm · · · tmm
D /dm


(4)

di = ∑ m
j=1tij

D, i = 1, 2, · · · , m (5)

Tα
C =



Tα11
C · · · Tα1j

C · · · Tα1m
C

...
...

...
Tαi1

C · · · Tαij
C · · · Tαim

C
...

...
...

Tαm1
C · · · Tαmj

C · · · Tαmm
C


(6)

In the normalized matrix Tα
C, Tαij

C is a mi ×mj sub-matrix. We take an example sub-matrix Tα12
C to

show the process of normalization.

C21 · · ·C2j · · ·C2m2

Tα12
C =

C11
...

C1i
...

C1m1



t12
11/t12

1 · · · t12
1j /t12

1 · · · t12
1m2

/t12
1

...
...

...
t12
i1 /t12

i · · · t12
ij /t12

i · · · t12
im2

/t12
i

...
...

...
t12
m11/t12

m1
· · · t12

m1 j/t12
m1
· · · t12

m1m2
/t12

m1


(7)

t12
i = ∑ m2

j=1t12
ij (8)

Step 5: Deriving unweighted super matrix

The unweighted super matrix W can be obtained using Equation (9).

W = (Tα
C)
′ (9)

Step 6: Constructing weighted super matrix

Tα
D is adopted along with the unweighted matrix W using Equation (10) to derive the weighted

matrix Wα.

Wα = Tα
DW =



tα11
D ×W11 · · · tα1i

D ×Wi1 · · · tα1n
D ×Wn1

...
...

...
tαj1
D ×W1j · · · tαji

D ×Wij · · · tαjn
D ×Wnj

...
...

...
tαn1
D ×W1n · · · tαni

D ×Win · · · tαnn
D ×Wnn


(10)
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Step 7: Calculating the limited super matrix

By multiple productions of the weighted super matrix Wα as lim
h→∞

(Wα)h, the limited supermatrix

W∗ and influential weights of each criterion can be obtained until it has converged and become a
long-term stable super matrix.

W∗ = lim
h→∞

(Wα)h (11)

4. Data Analysis and Results

4.1. Data Collection

The research team designed questionnaires according to the framework of influencing factors of
enterprises’ big data adoption (as shown in the Appendix A). Since the scope of this study is limited
to Chinese enterprises, the questionnaires were sent to 20 Chinese experts (including 8 scholars that
have concentrated their research on big data application, 6 experts with considerable experience in the
big data application field, and 6 senior managers from different enterprises that have carried out big
data applications). The questionnaire contained two pairwise comparison matrices that need to be
completed by experts. The first matrix is for the first-level criteria, which are the three dimensions of
motivation, opportunity, and ability. The second matrix pertains to the second-level criteria, which
are the 16 sub-criteria that refer to the factors of big data adoption. These experts were required to
first determine the relative importance between two criteria and then use the 0–4 scale mentioned in
the methodology section to assess their influential strength. Since the DEMATEL method can make
the most of the experts’ input, their opinions will be used to calculate the degrees of influence of each
criterion, both how they influence others and how they are influenced by others. This data will enable
us to build the NRM.

4.2. Building the Network Relation Map (NRM)

Using Equations (1)–(3) to calculate the arithmetic mean value of the questionnaire results, Tables 2
and 3 depict the given and received influence for each dimension and criterion, respectively.

Table 2. Sum of influences given and received on dimensions.

M O A di ri di+ri di−ri

M 0.5850 0.4567 1.0642 2.1059 2.3725 4.4784 −0.2666
O 0.9816 0.3845 1.1675 2.5336 1.2938 3.8274 1.2398
A 0.8059 0.4526 0.6428 1.9013 2.8745 4.7758 −0.9732

Table 3. Sum of influences given and received on criteria.

m1 m2 m3 m4 m5 o1 o2 o3 o4 o5 a1 a2 a3 a4 a5 a6

di 1.782 0.681 2.585 2.073 1.380 2.687 1.353 1.763 2.195 1.199 1.826 1.685 0.879 0.975 1.126 0.913
ri 1.008 1.357 1.900 2.247 0.716 0.863 1.043 1.437 2.157 0.761 2.195 2.137 1.467 2.491 2.498 0.827

di + ri 2.790 2.038 4.485 4.320 2.095 3.550 2.396 3.200 4.351 1.960 4.021 3.822 2.346 3.466 3.624 1.740
di − ri 0.774 −0.676 0.685 −0.174 0.664 1.825 0.310 0.327 0.038 0.439 −0.369 −0.452 −0.588 −1.516 −1.372 0.085

Table 2 shows that the central degrees are motivation (4.4784), opportunity (3.8274) and ability
(4.7758) respectively. The results indicate that the importance of the three dimensions can be prioritized
as ability > motivation > opportunity. The Ability dimension is also the most likely to be influenced
by others.

Concerning the influencing factors shown in Table 3, the results state that perceived usefulness,
development of industry, leadership support and data talents are the most important determinants.
Since the values of (di − ri) of the factors, which include policies and laws, environmental pressure,
perceived usefulness, corporate culture, information level, risk, regulatory mechanism, management
ability and development of industry, are positive among these variables. The results of the analysis
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show that these variables influence other factors. Additionally, the results indicate that perceived
ease of use, leadership support, data talents, technical capability, IT infrastructure, data resources and
financial support, are negative and are influenced by other factors. Based on the results of Tables 2
and 3, the NRM of enterprises’ big data adoption is shown in Figure 2 as.Sustainability 2018, 10, x FOR PEER REVIEW  9 of 15 
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4.3. Finding the Influential Weights of Each Factor

Based on the matrices derived through DEMATEL method, we can use Equations (4)–(9) to obtain
the unweighted super matrix W, as shown in Table 4. Next, we drive the weighted super matrix Wα

by using Equation (10). The matrix is shown in Table 5 below.
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Table 4. The unweighted super matrix W.

m1 m2 m3 m4 m5 o1 o2 o3 o4 o5 a1 a2 a3 a4 a5 a6

m1 0.079 0.414 0.184 0.100 0.231 0.189 0.109 0.095 0.195 0.089 0.081 0.083 0.066 0.083 0.079 0.191
m2 0.211 0.125 0.136 0.125 0.207 0.120 0.300 0.281 0.166 0.245 0.200 0.266 0.249 0.076 0.122 0.220
m3 0.289 0.207 0.208 0.300 0.240 0.281 0.177 0.181 0.222 0.290 0.317 0.320 0.308 0.401 0.358 0.131
m4 0.348 0.207 0.392 0.215 0.270 0.343 0.346 0.374 0.299 0.202 0.299 0.271 0.326 0.371 0.368 0.279
m5 0.073 0.047 0.080 0.260 0.053 0.068 0.068 0.070 0.119 0.175 0.103 0.060 0.053 0.069 0.074 0.180
o1 0.102 0.094 0.146 0.163 0.112 0.087 0.240 0.233 0.195 0.088 0.088 0.085 0.106 0.103 0.100 0.098
o2 0.113 0.107 0.160 0.180 0.122 0.246 0.097 0.246 0.213 0.271 0.103 0.098 0.116 0.112 0.111 0.106
o3 0.201 0.237 0.202 0.155 0.361 0.223 0.295 0.115 0.212 0.250 0.252 0.283 0.387 0.124 0.180 0.466
o4 0.461 0.421 0.345 0.337 0.299 0.323 0.316 0.339 0.226 0.326 0.368 0.374 0.292 0.565 0.489 0.252
o5 0.124 0.141 0.147 0.164 0.107 0.121 0.052 0.067 0.155 0.066 0.189 0.161 0.099 0.096 0.120 0.079
a1 0.190 0.188 0.204 0.191 0.196 0.205 0.150 0.186 0.217 0.197 0.121 0.196 0.115 0.163 0.226 0.232
a2 0.160 0.197 0.193 0.149 0.120 0.188 0.147 0.184 0.215 0.200 0.313 0.136 0.253 0.147 0.179 0.123
a3 0.167 0.172 0.140 0.134 0.098 0.128 0.176 0.088 0.091 0.075 0.147 0.089 0.076 0.107 0.200 0.092
a4 0.179 0.200 0.171 0.158 0.127 0.242 0.315 0.293 0.230 0.339 0.138 0.268 0.277 0.153 0.236 0.238
a5 0.210 0.210 0.219 0.243 0.273 0.189 0.168 0.206 0.195 0.146 0.190 0.268 0.242 0.373 0.121 0.258
a6 0.095 0.033 0.073 0.125 0.186 0.049 0.044 0.043 0.052 0.043 0.091 0.043 0.038 0.057 0.037 0.059

Table 5. The weighted super matrix Wα.

m1 m2 m3 m4 m5 o1 o2 o3 o4 o5 a1 a2 a3 a4 a5 a6

m1 0.022 0.115 0.051 0.028 0.064 0.073 0.042 0.037 0.075 0.034 0.034 0.035 0.028 0.035 0.033 0.081
m2 0.059 0.035 0.038 0.035 0.057 0.047 0.116 0.109 0.064 0.095 0.085 0.113 0.106 0.032 0.052 0.093
m3 0.080 0.057 0.058 0.083 0.067 0.109 0.069 0.070 0.086 0.112 0.134 0.136 0.130 0.170 0.152 0.056
m4 0.097 0.058 0.109 0.060 0.075 0.133 0.134 0.145 0.116 0.078 0.127 0.115 0.138 0.157 0.156 0.118
m5 0.020 0.013 0.022 0.072 0.015 0.026 0.026 0.027 0.046 0.068 0.044 0.025 0.022 0.029 0.031 0.076
o1 0.022 0.021 0.032 0.035 0.024 0.013 0.037 0.035 0.030 0.013 0.021 0.020 0.025 0.024 0.024 0.023
o2 0.025 0.023 0.035 0.039 0.027 0.037 0.015 0.037 0.032 0.041 0.025 0.023 0.028 0.027 0.027 0.025
o3 0.044 0.051 0.044 0.034 0.078 0.034 0.045 0.017 0.032 0.038 0.060 0.067 0.092 0.030 0.043 0.111
o4 0.100 0.091 0.075 0.073 0.065 0.049 0.048 0.052 0.034 0.050 0.088 0.089 0.070 0.134 0.116 0.060
o5 0.027 0.031 0.032 0.036 0.023 0.018 0.008 0.010 0.024 0.010 0.045 0.038 0.024 0.023 0.029 0.019
a1 0.096 0.095 0.103 0.096 0.099 0.094 0.069 0.086 0.100 0.091 0.041 0.066 0.039 0.055 0.076 0.079
a2 0.081 0.100 0.098 0.075 0.061 0.086 0.068 0.085 0.099 0.092 0.106 0.046 0.085 0.050 0.061 0.041
a3 0.084 0.087 0.071 0.068 0.049 0.059 0.081 0.041 0.042 0.035 0.050 0.030 0.026 0.036 0.068 0.031
a4 0.090 0.101 0.087 0.080 0.064 0.112 0.145 0.135 0.106 0.156 0.047 0.091 0.094 0.052 0.080 0.080
a5 0.106 0.106 0.111 0.123 0.138 0.087 0.078 0.095 0.090 0.068 0.064 0.091 0.082 0.126 0.041 0.087
a6 0.048 0.017 0.037 0.063 0.094 0.023 0.020 0.020 0.024 0.020 0.031 0.015 0.013 0.019 0.013 0.020

Lastly, the limits of the super matrix Wα (Equation (11)) are used to derive the weights of each
factor as shown in Table 6.

Table 6. The weights of dimensions and criteria.

Dimensions Global Weights Criteria Global Weights

Motivation 0.363

Environmental Pressure 0.047
Perceived Ease of Use 0.064
Perceived Usefulness 0.102
Leadership Support 0.113
Corporate Culture 0.036

Opportunity 0.212

Policies and Laws 0.026
Regulation Mechanism 0.030

Risk 0.048
Development of Industry 0.081

Informatization Level 0.028

Ability 0.425

Data Talents 0.080
Technological Capability 0.078

IT Infrastructure 0.055
Data Resources 0.088

Financial Support 0.094
Management Ability 0.030
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The results discussed above illustrate that the weights of leadership support (0.113), perceived
usefulness (0.102), financial support (0.094), data resources (0.088), development of industry (0.081),
data talents (0.080) and technological capability (0.078) far exceeds those of other factors. Therefore,
these 7 criteria are the key factors for the adoption of big data by enterprises.

5. Discussions

The model to determine enterprises’ big data adoption is illustrated by using an NRM (Figure 2).
The dimension of opportunity (di) has the highest value of the three dimensions. This means that it
needs to be prioritized for enterprises’ big data adoption which can enhance their motivation and
ability. From this information, we derive that the government and business need to improve the top
design first to provide good opportunities for enterprises to implement big data. The dimension of
Ability has the highest value (di + ri) means that it plays a pivotal part in adoption of big data. In
term of factors, the value of policies and laws (di) is the highest. This means that the government
needs to recognize the importance of suitable policies and laws pertaining to the promotion of big data
adoption and act to instate these policies and laws as soon as possible.

We identified seven key factors from the results of the DANP analysis. The following strategic
recommendations are proposed to promote the adoption of big data by Chinese enterprises.

Of the seven identified factors, leadership support and perceived usefulness belong to the
dimension of motivation. Since it has the highest value of all the factors, leadership support
demands that senior managers of enterprises should change their attitude towards understanding
and development of big data, establish big data thinking, and lead their enterprise towards the
implementation of big data. Perceived usefulness is the next key factor. If enterprises can perceive the
usefulness of big data, they will be likely to adopt big data more enthusiastically. Therefore, enterprises
should be encouraged to recognize the importance of big data for improving their operational efficiency
and enhancing management level and corporate image. Furthermore, if enterprises recognize the scope
and prospects of big data and its expected contributions, they will adopt big data as soon as possible.
We therefore state that the cognition of big data (perceived usefulness) can motivate enterprises to
adopt big data.

The development of the big data industry is a key factor in the opportunity dimension. Developing
the big data industry cannot only can accelerate the cultivation of data talents and technological
development, but also provide data trade platforms to increase data resources, which will encourage
the development of big data. Moreover, industrial development can simultaneously create external
conditions and have a demonstrational effect. It is, therefore, crucial for enterprises’ big data adoption
to cultivate leading enterprises, establish big data industry clusters, and optimize a big data industry
chain. For example, the establishment of big data industry in Guiyang not only promoted the
development of big data in general, but also accelerated the adoption of big data in local government
and enterprises, which in turn led to economic development in the whole region.

Financial support, data talents, data resources and technological capability are four key factors
in the dimension of ability. The results revealed that all aspects of ability are crucial for the adoption
of big data. If enterprises aim to benefit from big data, they should implement a series of processes
which include data acquisition, storage, transmission, and analysis. Each process requires funds to
provide the required human and material resources and to address possible risks. A lack of funds could
obviously lead to failure of the business adoption of big data. As one of the basic conditions for big
data adoption, the factor of data resources not only depends upon the enterprise itself to improve data
resources acquisition, but the support of government and society to expand data sources and promote
data sharing and transactions. The significance of big data does not lie in the accumulation of data, but
rather in the insight into the value of data through data analysis. To implement the necessary measures,
enterprises need to strengthen their personnel training as well as acquire data talents to improve their
advanced technology in real-time. By investigating and implementing the above measures, enterprises
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can enhance the technical capacity, translate data into knowledge, and promote productivity and the
bottom line.

6. Conclusions and Future Research

Although the adoption of big data may provide many benefits to organizations, enterprises should
acknowledge and resolve the challenges concerning the adoption of big data before it can add value to
their businesses. The process of big data adoption consists of many interrelated factors that may affect
enterprises’ activities. Understanding those factors clearly can facilitate the effective use of big data
within organizations. Therefore, a comprehensive framework is required for the development and
operation of big data.

After a detailed literature review, experts’ opinions were acquired and used to construct an MOA
theoretical framework to understand the interdependencies among various factors. This method
also expanded the scope of the MOA theory. Our study established an index system from a Chinese
perspective and emphasized the importance of coordination of the three dimensions of the model:
motivation, opportunity, and ability. The framework provides valuable insight for scholars and
managers concerning the full spectrum of factors that influence the adoption of big data. Although
some factors in our model have previously been tested in other technology innovation frameworks,
this study presents unique factors in the context of big data adoption. An example is data resources
that have not been mentioned in other IT adoption studies. However, it is an important factor in this
study due to the particular characteristics of big data. Similarly, privacy and security issues pertaining
to big data make policies and laws another important factor.

The model used the DEMATEL method to analyze the relationships between the main dimensions
and the 16 sub-variables or factors and constructed an NRM. Next, the DANP method was used to do
a quantitative analysis, calculate the index weights, and identify the key influencing factors. Using
the DANP method corrected the shortcomings of the ANP method and reflected the interdependent
feedback relationships among the factors. This ensured that the results were scientific and reasonable.
The results illustrate the change in factor weights in big data. For example, according to the factor
weights, leadership support is the most significant factor. We believe that this has arisen for two
reasons: The first is the unique business context of China, and the second is the fact that big data is
changing the methods and models of business management.

Referring to practical implications for enterprises, the conclusions can provide theoretical support
and meaningful practical guidance to enterprises to accomplish big data adoption. The framework
explained that the development of big data differs from other technological development strategies
and government agencies should encourage the development and actively participate in the process
of providing policies and support from a legal point of view. Furthermore, this study could assist
enterprises in finding the disadvantages in adopting big data. The results could make managers aware
of both the positive and the negative aspects of big data adoption in their enterprises and thus enable
them to improve weaknesses and make the suitable decisions.

This study provided several contributions but still has some limitations. First, this study was
conducted using a small sample size of experts. In the future, a larger sample size may provide more
explanatory power. It may also allow a more in-depth analysis to attain results with a more general
applicability. Second, this study was conducted in China using Chinese businesses with specific
characteristics. These contextual characteristics may influence the understanding of big data adoption
practices. Therefore, replications of this study in different geographical contexts and a comparison
of the results may represent an important next step. Finally, the results of this study have not been
empirically tested. Therefore, future research may invite enterprises to be part of our research to test
the findings of this paper. This may provide more managerial implications.
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Appendix A

Dear Madam/Sir:

Thank you for filling out this questionnaire during your busy schedule. Please rate the relationship
among the adoption factors of big data in enterprises, thank you for your support!

Please score the first-level indicator and the second-level indicator according to the scale meaning
in the table below and fill in the corresponding points in the blank.

Scale Meaning

0 the row factor has no effect on the column factor
1 the row factor has very weak effect on the column factor
2 the row factor has weak effect on the column factor
3 the row factor has strong effect on the column factor
4 the row factor has very strong effect on the column factor

Table A1. The first-level indicator of adoption of big data in enterprises.
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Table A1. The first-level indicator of adoption of big data in enterprises. 

 Motivation Opportunity Ability 
Motivation    

Opportunity    
Ability    

Table A2. The second-level indicator of adoption of big data in enterprises.
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