
sustainability

Article

An Adaptive Offloading Method for an IoT-Cloud
Converged Virtual Machine System Using a Hybrid
Deep Neural Network

Yunsik Son 1,† , Junho Jeong 1,† and YangSun Lee 2,*
1 Department of Computer Engineering, Dongguk University, Seoul 04620, Korea;

sonbug@dongguk.edu (Y.S.); yanyenli@dongguk.edu (J.J.)
2 Department of Computer Engineering, Seokyeong University, Seoul 02713, Korea
* Correspondence: yslee@skuniv.ac.kr; Tel.: +82-2-940-7743
† These authors contributed equally to this work.

Received: 28 September 2018; Accepted: 29 October 2018; Published: 30 October 2018
����������
�������

Abstract: A virtual machine with a conventional offloading scheme transmits and receives all context
information to maintain program consistency during communication between local environments
and the cloud server environment. Most overhead costs incurred during offloading are proportional
to the size of the context information transmitted over the network. Therefore, the existing context
information synchronization structure transmits context information that is not required for job
execution when offloading, which increases the overhead costs of transmitting context information in
low-performance Internet-of-Things (IoT) devices. In addition, the optimal offloading point should
be determined by checking the server’s CPU usage and network quality. In this study, we propose
a context management method and estimation method for CPU load using a hybrid deep neural
network on a cloud-based offloading service that extracts contexts that require synchronization
through static profiling and estimation. The proposed adaptive offloading method reduces network
communication overheads and determines the optimal offloading time for low-computing-powered
IoT devices and variable server performance. Using experiments, we verify that the proposed
learning-based prediction method effectively estimates the CPU load model for IoT devices and can
adaptively apply offloading according to the load of the server.

Keywords: Internet of Things; cloud system; offloading; virtual machine; static profiler; context information;
deep neural network

1. Introduction

In the developing IT environment, one challenge with the appearance of each new device is
that a separate development language and environment are required. One of the solutions to this
problem is to use a virtual machine (VM). However, in Internet-of-Things (IoT) environments with
limited resources, it is difficult to apply this to existing virtual machines directly. Various studies on
lightweight VMs have been conducted to solve this problem [1–3]. In addition, there is research on
VMs for supporting Web environments such as HTML5 and JavaScript in IoT devices in addition to
simply overcoming development environments [4,5]. The Secure compiler, used for developing secure
IoT services based on secure software and virtual machines for services, has also been studied [6].

In recent years, resource requirements for services to be processed by IoT devices have exceeded
IoT devices’ performance improvements; hence, it has been difficult to process services directly from
IoT devices, and IoT–Cloud environments have been studied [7,8].

The IoT–Cloud converged virtual machine system [9] can perform tasks requiring high computing
power by delegating tasks that are difficult to perform in the low-performance IoT equipment

Sustainability 2018, 10, 3955; doi:10.3390/su10113955 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-2580-4393
https://orcid.org/0000-0003-4963-0057
http://www.mdpi.com/2071-1050/10/11/3955?type=check_update&version=1
http://dx.doi.org/10.3390/su10113955
http://www.mdpi.com/journal/sustainability


Sustainability 2018, 10, 3955 2 of 15

development environment to the Cloud server environment by applying an offloading technique.
The context information of the work environment must be transmitted and synchronized to maintain
the consistency of programs during communication between the Cloud environment and the local
environment. Therefore, the VM to which the existing offloading technique is applied is a structure that
transmits/receives all context information. The disadvantage of such a structure is that the amount of
context information to be transmitted is increased by that which is not necessary for performing the task.
Because most of the overhead costs that occur during offloading are proportional to the size of the context
information transmitted over the network, these costs are increased in low-performance IoT devices.

The proposed method involves two aspects for effective offloading. First, to reduce the resource
consumption rate in the context information transmitted from low-performance IoT equipment
to the Cloud server, it is crucial to determine the context information required for the offloading
performance function using a static profiler; thus, a context information synchronization method
for sending/receiving context information was studied. A VM employing the improved context
information synchronization technique reduces the overheads caused by the context information
synchronization process of low-performance IoT devices, thereby increasing the offloading efficiency.
Next, to determine the effective offloading time, we predict the CPU usage trend, which is one of the
workload indices, through deep learning. The predicted CPU usage trend is indicative of future CPU
usage information; therefore, it is an indicator of offloading execution decisions. Using the proposed
method, it is possible to reduce the size of the data that needs to be synchronized between the local
device and the server during offloading and determine an appropriate offloading point.

The remainder of this paper is organized as follows. In Section 2, we examine the IoT–Cloud
converged VM system as an execution environment, as well as the features of an existing offloading
scheme, context information, and deep learning model used in this study. In Section 3, we describe the
proposed offloading method for IoT devices. In Section 4, the performance of the proposed method is
verified using experiments. Finally, we present our conclusions in Section 5.

2. Related Research

2.1. IoT–Cloud Converged Virtual Machine System

The IoT–Cloud converged VM system provides the computing power of high-performance cloud
servers to low-performance IoT devices using lightweight VMs, profilers, offloading techniques,
and Just-in-time (JIT) compilers. This system can execute the contents written in various programming
languages by applying the advantages of existing smart VMs [1,3,5] to low-performance IoT devices.
Figure 1 shows the overall structure of the IoT–Cloud converged VM system. The core component
is a light-weight VM, an IoT–Cloud VM, for building a platform-independent environment in
low-performance IoT devices. The VM makes existing smart VMs lighter [1,3,5] to meet the requirements
of low-performance IoT devices. The IoT–Cloud VM can be applied to high-performance IoT equipment
by delegating high-complexity tasks to the high-performance Cloud server environment by applying the
offloading technique [9].

2.2. Offloading

The offloading method is a Cloud computing method used to maximize the efficiency of
resource consumption in the development environment of low-performance equipment such as IoT
equipment [10–13]. The offloading technique can delegate high-complexity tasks to a high-performance
Cloud server environment to be performed in a local environment, thereby reducing resource
consumption due to employing low-performance equipment [14–16]. The advantage of offloading is
that it can overcome low performance due to the high computational power of servers, but overhead
costs are incurred during network communication between the local and server environments.



Sustainability 2018, 10, 3955 3 of 15

Figure 1. Overall configuration of the IoT–Cloud virtual machine system. IoT: Internet of Things.

If the overhead costs are greater than those incurred by operating in the local environment without
performing offloading, the offloading performance deteriorates. Therefore, by analyzing the execution
load information for each program element through profiling, the data to be offloaded must transmit
and receive data with improved performance during offloading. A method of minimizing the size
of data to be transmitted is required for efficient offloading because the overhead costs of network
communication are proportional to the size of the transmitted and received data [17–20].

Methods for selecting computation offloading operations are largely classified into static
and dynamic approaches. La et al. [16] classified offloading techniques as shown in Figure 2.
The static technique reduces the execution load by selecting the part to be offloaded during program
development. The static method has the advantage of a low load in terms of cost analysis at runtime.
However, the cost analysis is possible only using predictable variables [17]. Meanwhile, the dynamic
method selects the part to be offloaded by considering fluctuation factors during execution, such as the
network state and remaining battery power. The dynamic method can accurately reflect the current
state of the mobile device. Nevertheless, it is difficult to design a model that reflects all variables,
and the required workload for the cost analysis is significant [18,19].

Partial offloading is a method of submitting some of the work to the Cloud. When a specific
task is frequently used and cannot be performed in parallel, the communication costs and waiting
times are increased. The full offloading method, on the other hand, addresses only the interaction with
the user on the mobile device; it defers execution to the Cloud. For frequent interaction with a user,
synchronization problems typically occur. Therefore, it is necessary to selectively assign an operation
that is suitable for offloading to the Cloud.

In the proposed approach, it is difficult to reflect real-time fluctuating factors, such as mobility
and communication scenarios. Therefore, the offloading decision is based on the mobile augmentation
Cloud service (MACS) model [20], which estimates the code transmission cost, memory, and CPU
usage for each function using the profiler at the content compilation time. The offloading object
determines the unit of work based on the function.



Sustainability 2018, 10, 3955 4 of 15

Figure 2. Classified computation offloading methods.

The IoT–Cloud converged VM system uses the computational offloading technique to provide
the high-performance computing power of the Cloud server on low-performance IoT devices [9].
In this case, context synchronization must be performed because the program to be offloaded
must maintain consistency between the IoT devices and the Cloud server. An efficient context
synchronization technique is required because the network communication overheads linked to
context synchronization can reduce the performance gain using offloading. In this study, we extract
the context information required for offloading execution through static profiling for efficient context
synchronization. The context synchronization method based on context information extracted through
static profiling is expected to reduce network communication overheads because synchronization is
only attempted on the context information necessary for the task to be offloaded.

2.3. Context Information

The context information is that required by the interpreter of the IoT–Cloud VM to execute the
program. It is predominantly composed of the context information necessary for all function executions
and the stack context information for managing command execution and variables. Figure 3 shows
the composition of the core contextual information, which is required by all functions, and includes
the instruction buffer, gPc, used to access the instruction buffer, sp, used to access the operation stack,
ep, used to access the activation record, SpDisplay, used to manage the operation stack, and ArDisplay,
used to manage the frame position information where the function starts in the activation record.
The stack context information consists of an operation stack used when executing stacking or arithmetic
instructions, an activation record for managing local variables, and a constant pool for managing literals
and global variables. Figure 4 shows the composition of the stack context information. The operation
stack terminates the function execution at the start position of the function frame, loads the return
address and the lexical level of the function, and executes the operation instruction and the load
instruction from the following area. The activation record, similar to the operation stack, loads the
address to be returned and the lexical level of the function at the start of the function frame then
subsequently manages the local variables used in the function.

Figure 3. Core context information for executing processes on the IoT–Cloud virtual machine.



Sustainability 2018, 10, 3955 5 of 15

Figure 4. Context information for stack frames.

2.4. TreNet

TreNet is a neural network for the trend prediction of time series data. It is a hybrid neural network
combining long short-term memory (LSTM), a convolutional neural network (CNN), and a feature
fusion layer [21]. In the LSTM layer, time series data consisting of the current trend slope (lk) and
persistence (sk) are inputted to the CNN layer, and raw data sets are inputted to determine the
dependency of the current trend and pattern transition point, as well as predicting the forecast slope
(l′k) and persistence (śk) of future trends. Figure 5 shows the structure of TreNet, which is used
to analyze the current characteristics of CPU usage and determine offloading timing by predicting
future trends.

Figure 5. Structure of TreNet. CNN: convolutional neural network; LSTM: long short-term memory.

3. Adaptive Offloading Method

3.1. Static Profiler for Context Information

The context information required to execute offloading depends on the case of the execution
target function. Here, we use a metric to classify contextual information that needs to be synchronized
according to the offloading function to be performed, determined in a previous study [9]. Table 1 shows
the context information requiring synchronization according to the type of offloading object function,
which, according to defined metrics, depends on the existence of delivery parameters, the presence
of delivery return values, and the use of global variables. In this study, we analyze the light-weight
virtual machine intermediate language (LVIL) code of light-weight virtual machine executable format
(LVEF) through static profiling to extract parameter information and return value and global variable
information. Figure 6 shows the structure of a static analyzer used to analyze context information.



Sustainability 2018, 10, 3955 6 of 15

Table 1. Context information requiring synchronization according to function type classification.

Parameters and Return Value Types

Core Context Stack Context Address Context

gPc, gProcFrameP,
sp, ep, DisVector,

SpDisplay,
ArDisplay

Operation
Stack

Activation
Record

Constant
Pool

Variable
Offset

Area Information
Indicated by

Address Value

Type
Information
(Type Size)

Array
Information

N
ot

Ex
is

tin
g

th
e

pa
ra

m
et

er
s

an
d

re
tu

rn
va

lu
es

N
ot

us
in

g
ad

dr
es

s
re

fe
re

nc
es Use local variable only O X X X X X X X

Use global Variables O X X O O X O X

U
si

ng
ad

dr
es

s
re

fe
re

nc
es Use global array variables O X X O O O O O

A pointer variable refers to a global
variable’s address O X X O O O O X

A pointer variable refers to a global
variable’s address O X X O O O O O

Ex
is

tin
g

th
e

pa
ra

m
et

er
s

an
d

re
tu

rn
va

lu
es

N
ot

us
in

g
ad

dr
es

s
re

fe
re

nc
es

The value of a local variable is passed
as a parameter or a return value O O X X X X X X

The value of a global variable is passed
as a parameter or a return value O O X O O X O X

U
si

ng
ad

dr
es

s
re

fe
re

nc
es Local variables’ references O O O X O O O X

Local array variables’ references O O O X O O O O

Global variables’ references O O X O O O O X

Global array variables’ references O O X O O O O O



Sustainability 2018, 10, 3955 7 of 15

Figure 6. Structure of the static profiler for context information.

The function analyzer extracts the parameters and returns the value information. The parameter
information and return value information are classified into three categories: address variables,
global variables, and local variables. For local variables, the parameter and return value information
do not affect the synchronization of the context information other than the operation stack. Therefore,
in this case, information on the number of parameters to be loaded on the operation stack is required
for operation stack synchronization, and information on the presence or absence of the return value is
extracted. For an address variable, not only the operation stack but also the activation record must
be synchronized. Therefore, the command code details the parameter and return value while the
offset describes the location information in which the variable is managed and extracts the data size
information of the variable, which is the synchronization range index of the activation record. If it is a
global variable, it requests the data area analyzer to extract detailed information of global variables.

When analyzing the use of global variables in the function analyzer, the data area analyzes
the literal table, and the internal symbol table of the data area of the smart assembly format (SAF)
determines the offset address of the global variable. The offset address indicates the synchronization
start area of the constant pool and the data size and extracts the information of the literal constant.

The context information table manager manages the information extracted from the function
analyzer and the data area analyzer as a table of parameter information, return value information,
and global variable information. When context information extraction is completed, the information
managed in the table is generated as a JavaScript object notation (JSON) format file by the context
information generator.

3.2. Context Information Synchronization

The core context information is crucial for the interpreter to execute the program and consists
of an instruction buffer, a frame pointer indicating the start frame of the function, and pointers for
accessing the context information. In conventional context synchronization, pointers pointing to the
function start frame information of the operation stack and the activation record transmit all pointers
indicating the start frame information of the function. However, as the information required for
offloading is the frame information of the offloading performing function, if only the pointer pointing
to the starting frame of the offloading performing function is synchronized, both the size of data and
the resources consumed during communication are reduced. All pointers except for the start frame
position information of the function are collected and transmitted every time offloading is performed
because the value changes when the command is executed by the interpreter.



Sustainability 2018, 10, 3955 8 of 15

In the stack context information, unlike the constant pool, the operation stack and activation record
are required context information in all function cases. The operation stack is the context information
used when executing the load and computing instructions by the interpreter. The operation stack
increases the start frame of the function to execute the instruction of the function at the time of the
function call and loads the address to be returned after completing the function execution. Because
the operation stack executes the instruction in units of functions, the area requiring synchronization
is a frame area of the function to be offloaded. Therefore, the operation stack synchronizes from the
start frame position of the offloading performing function to the position where the parameter value is
loaded. This reduces the data size of the operation stack to collect when loading. If there is a return
value after offloading, the data size of the operation stack to be collected is reduced by performing
synchronization from the start frame position of the performed function to the position where the
return value is loaded.

The activation record is context information which manages local variables necessary for function
execution. The activation record updates the start frame position information of the function to
manage the local variable of the function to be executed when the function is called. After function
execution, the function frame area disappears. As the activation record manages local variables by
function, the area that needs to be synchronized during offloading is the frame area of the function
to be offloaded. Therefore, the activation record is synchronized from the start frame position of
the function to be offloaded to the end of the function frame, thereby reducing the data size of the
activation record synchronized at the time of offloading. Also, when the function is completed in the
offloading environment, the function frame of the activation record disappears, so synchronization of
the activation record does not proceed after offloading.

3.3. CPU Usage Trend Learning Model

The CPU usage trend learning model is based on TreNet, and the overall structure is composed
of a dataset loader, data processor, and TreNet. Figure 7 shows the overall structure of the learning
machine for trend prediction. Data processing involves processing a set of CPU usage data into a form
suitable for trend learning; the data set loaded into the memory in the dataset loader is processed into
a local dataset, a slope dataset, and a result data set. The local dataset is used to determine the pattern
conversion point in a form that is normalized by the utilization distribution and bundled with the
specified window size.

The slope dataset is a slope change data set of the CPU usage distribution and represents historical
trend information from past to present. The data processor derives a linear function that minimizes the
error in the CPU usage distribution using the least squares method to extract the gradient change data
from the CPU usage distribution. The resulting dataset is used to learn the results of map learning
and processed into a set of gradients indicating the future at the input data point according to the aim
of this study.

As CPU usage trends represent real-time information, it is impossible to predict sustainability
even by obtaining the slope. Therefore, TreNet learns the slope but not the persistence of the trend.
The map learning proceeds in the following order.



Sustainability 2018, 10, 3955 9 of 15

Figure 7. Structure of the learning model for performance load prediction.

(1) The local dataset is input to the CNN layer of TreNet, while the LSTM layer is input to
the tilt dataset;

(2) The CNN and LSTM layers learn the dependencies in the input dataset and send the results to
the feature fusion layer;

(3) The feature fusion layer fuses the results of the CNN and LSTM layers to determine
the dependence of the slope and pattern transition point;

(4) The output layer derives the predictive slope through the dependency relationships and
the resulting datasets learned in the feature fusion layer.

4. Experimental Results

We compare the amount of context information sent from the existing VM to confirm that it is
reduced when applying the proposed context information synchronization scheme. Table 2 shows
the experimental environment in which the context information synchronization technique is applied.
The amount of context information to be transmitted before and after applying the synchronization
technique is approximately 1.3 times greater than the core context information, 1.6 times greater than
the operation stack, and twice the activation record. Therefore, it is confirmed that the amount of
context information to be synchronized is reduced prior to applying the proposed context information
synchronization method.

Table 2. Experimental environments for the proposed context information synchronization method.

Environments Server IoT Device

Processor Intel(R) Core (TM) i7-4770K 3.50 GHz BCM2837 64-bit QUAD Core 1.2 GHz
Memory 16 GB RAM 1 GB RAM

Operating System Microsoft Windows 10 Raspbian

Figure 8 compares the context synchronization time required to offload the decimal, perfect,
and bubble sort algorithms; the average of 1000 times offloading is displayed for each algorithm.
Figure 9 compares the size of the context information synchronized during context synchronization.
It is confirmed that the context synchronization method reduces the total synchronization time by
approximately 10% more than the existing system (Figure 8). Furthermore, the size of the context
information to be synchronized is reduced by approximately 30% from the conventional synchronization



Sustainability 2018, 10, 3955 10 of 15

method (Figure 9). The CPU usage pattern is required to model the real-world CPU usage distribution and
analyzes and classifies the CPU usage data sets collected for the NAB (Numenta anomaly benchmark).

Figure 8. Context synchronization time required to run the prime number, perfect number, and bubble
sort algorithms.

Figure 9. Context information network traffic size required to run the prime number, perfect number,
and bubble sort algorithms.

The distribution of CPU usage in the dataset illustrates either stability after a surge in usage rate,
stability after a steep decline, a stable usage rate, or stable usage. The peak value is classified into
patterns in which the utilization rate continuously changes (Figure 10).

Figure 10. CPU usage classified into patterns of (a) rapid increases or decreases in usage rate, (b) peak
usage rate, (c) stable usage rate, and (d) continuously changing usage rate.



Sustainability 2018, 10, 3955 11 of 15

The CPU usage distribution is modeled using the M/M/1 queuing system, which follows the
time-variable Poisson process [17,18]. The M/M/1 queuing system is not suitable for modeling
CPU usage that changes in real time because the arrival rate of work is fixed. On the other hand,
time-varying M/M/1 queuing systems, which describe the workload changing in real time, can model
the CPU usage rate because the arrival rate of work varies with time. The arrival rate of work for each
pattern model is defined as follows.

Where the work arrival rate follows a stable upward pattern (model 1):

λ(t) = 0.04 f or 0 ≤ t < 2 (1)

λ(t) = 0.1t− 0.16 f or 2 ≤ t < 3 (2)

(t) = 0.14 f or 3 ≤ t (3)

Where the work arrival rate follows a stable downward pattern (model 2):

λ(t) = 0.14 f or 0 ≤ t < 2 (4)

λ(t) = −0.1t + 0.34 f or 2 ≤ t < 3 (5)

λ(t) = 0.04 f or 3 ≤ t (6)

Where the work arrival rate follows a stable and peaked pattern (model 3):

λ(t) = 0.04 f or 0 ≤ t < 2 (7)

λ(t) = 0.1t− 0.16 f or 2 ≤ t < 3 (8)

λ(t) = −0.1t + 0.44 f or 3 ≤ t < 4 (9)

λ(t) = 0.04 f or 4 ≤ t (10)

Patterns in which the arrival rate is constantly changing (model 4):

λ(t) = 0.05172t− 0.00554 f or 0.0 ≤ t < 1.0 (11)

λ(t) = 0.20536t− 0.15918 f or 1.0 ≤ t < 1.5 (12)

λ(t) = −0.0846t + 0.27576 f or 1.5 ≤ t < 2.0 (13)

λ(t) = −0.14484t + 0.39624 f or 2.0 ≤ t < 2.5 (14)

λ(t) = 0.2688t− 0.63786 f or 2.5 ≤ t < 3.0 (15)

λ(t) = −0.31804t + 1.12266 f or 3.0 ≤ t < 3.5 (16)

λ(t) = 0.098t− 0.33348 f or 3.5 ≤ t < 4.0 (17)

λ(t) = 0.01476t− 0.00052 f or 4.0 ≤ t < 4.5 (18)

λ(t) = 0.15328t− 0.62386 f or 4.5 ≤ t < 5.0 (19)

The results are verified using a simulator to show that the modeled CPU usage distribution is
typically modeled according to the defined arrival rate of work (Figure 11) [22].

Figure 12 is a comparison of the CPU usage distribution modeled using the time-varying M/M/1
queuing system and the results predicted by the proposed scheme. The raw slope represents the
modeled CPU usage and the predicted slope shows the predicted value of the server workload based
on hybrid depth learning. First, (a) shows a steady pattern of usage rates but (b) shows a steeply
decreasing pattern with a steady utilization rate distribution. Figure 12c illustrates a peak followed by



Sustainability 2018, 10, 3955 12 of 15

a rapid decrease and (d) shows the workload pattern of the IoT application proposed by Bell LAB [23].
From the experimental results, we can confirm that the prediction slope is similar to the CPU usage
distribution slope. Therefore, the hybrid deep neural network model can effectively predict the slope
of CPU usage and consequently the workload of the server. Based on these prediction results, the IoT
client VM can efficiently determine the offloading execution.

Figure 11. CPU modeling simulation results for (a) model 1, (b) model 2, (c) model 3, and (d) model 4.

Figure 12. Estimates of server load using hybrid deep neural network for (a) model 1, (b) model 2,
(c) model 3, and (d) model 4.



Sustainability 2018, 10, 3955 13 of 15

5. Conclusions and Further Research

The VM to which the conventional offloading technique is applied must synchronize all
context information for communication between the server and the local server. As the amount
of context information for transmission is large, the resource consumption rate of context information
synchronization is increased in low-performance IoT equipment. In order to solve these problems,
this study classified offloading functions according to the context information required to perform the
offloading function and context information synchronization. We investigated core context information,
the operation stack, and activation record synchronization, which represent the core contextual
information for function execution. First, regarding the required context information, the data size of
the pointer managing the function start frame to be transmitted was reduced. Next, the operation stack
and the activation record employed the common point for managing the resources in the function
frame unit, and only the frame area necessary for function execution was synchronized to reduce the
respective data sizes. The VM using the proposed context information synchronization scheme can
reduce the resource consumption rate of IoT equipment because the amount of data to be transmitted
was reduced compared to the existing VM when context information was synchronized. From the
perspective of the business community selling devices, the advantage of reducing the resources
required by IoT devices is that it allows them to focus on the IoT device’s functions. As a result,
IoT device developers can help to build competitive advantages in uncertain environments through
faster new device development [24].

We also analyzed the static profiling-based context synchronization technique to reduce the
network overhead costs of the context synchronization of existing systems. The proposed scheme
only synchronizes context information that is essential for function execution. When using global
variables inside the offloading function, synchronization is required every time global variable values
are assigned to IoT devices. Also, if a program uses reference variables such as pointers, arrays,
and variable addresses, it must share the referenced memory region between the server and the local
system. In order to solve this problem, we investigated the synchronization technique of context
information in which global variables are managed using analyzed information by evaluating the
use of global variables of functions through the static profiler. For the case where the memory area
referred to in IoT equipment is offloaded, we also proposed a method to maximize the offloading
efficiency by minimizing the overheads of context information synchronization in low-performance
IoT devices. Also, we proposed CPU usage trends, which act as workload indicators, through deep
learning for efficient offloading execution decisions. We then used CPU usage distribution data to
model the workload through deep learning. The modeled CPU usage patterns reflect real-world usage
patterns, despite being simple. These predicted usage trends are indicators of offloading execution
decisions because they represent changes in workload. In the future, we will research memory usage
and energy usage prediction by applying the CPU usage prediction model proposed in this paper and
determining the offloading execution.

Author Contributions: Y.S. and J.J. contributed to writing the original draft and Y.S. also worked on the
conceptualization and methodology. J.J. performed the software and validation work. Y.L. contributed to
supervision and writing in the review and editing phase.

Funding: This research received no external funding.

Acknowledgments: This research was supported by the Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning
(No. 2016R1A2B4008392), by a National Research Foundation of Korea(NRF) grant funded by the Korea
government (MSIP; Ministry of Science, ICT & Future Planning) (No. 2017R1C1B5018257), and by a National
Research Foundation of Korea (NRF) grant funded by the Korea government (MIST)(No. 2018R1A5A7023490).

Conflicts of Interest: The authors declare no conflicts of interest.



Sustainability 2018, 10, 3955 14 of 15

References

1. Son, Y.; Lee, Y. A study on the smart virtual machine for executing virtual machine codes on smart platforms.
Int. J. Smart Home 2012, 6, 93–105.

2. Millani, C.E.; Linhares, A.; Auler, R.; Borin, E. COISA: A compact OpenISA virtual platform for IoT devices.
In Proceedings of the WSCAD’15; Florianopolis: Santa Catarina, Brazil, 18–21 October 2015.

3. Son, Y.; Lee, Y. A study on the smart virtual machine for smart devices. Information 2013, 16, 1465–1472.
4. Gavrin, E.; Lee, S.J.; Ayrapetyan, R.; Shitov, A. Ultra lightweight JavaScript engine for internet of things.

In Proceedings of the 2015 ACM SIGPLAN International Conference on Systems, Programming, Languages
and Applications: Software for Humanity, Pittsburgh, PA, USA, 25–30 October 2015; pp. 19–20.

5. Son, Y.; Kim, J.H.; Lee, Y. A design and implementation of html5 based svm for integrating runtime of smart
devices and web environments. Int. J. Smart Home 2014, 8, 223–234. [CrossRef]

6. Son, Y.; Jeong, J.; Lee, Y. Design and implementation of the secure compiler and virtual machine for
developing secure IoT services. Future Gener. Comput. Syst. 2017, 76, 350–357.

7. Botta, A.; De Donato, W.; Persico, V.; Pescapé, A. Integration of cloud computing and internet of things: A survey.
Future Gener. Comput. Syst. 2016, 56, 684–700. [CrossRef]

8. Dupont, C.; Giaffreda, R.; Capra, L. Edge computing in IoT context: Horizontal and vertical Linux container
migration. In Proceedings of the 2017 Global Internet of Things Summit (GIoTS), Geneva, Switzerland,
6–9 June 2017.

9. Son, Y.; Lee, Y. Offloading Method for efficient use of local computational resources in mobile location-based
services using clouds. Mob. Inf. Syst. 2017, 2017, 1856329. [CrossRef]

10. Kumar, K. A survey of computation offloading for mobile systems. Mob. Netw. Appl. 2013, 18, 129–140. [CrossRef]
11. Yang, K.; Ou, S.; Chen, H. On effective offloading services for resource-constrained mobile devices running

heavier mobile internet applications. IEEE Commun. Mag. 2008, 46, 56–63. [CrossRef]
12. Kumar, K.; Lu, Y. Cloud computing for mobile users: Can offloading computation save energy? Computer 2010,

43, 51–56. [CrossRef]
13. Shi, C. Cosmos: Computation offloading as a service for mobile devices. In Proceedings of the 15th

ACM International Symposium on Mobile Ad Hoc Networking and Computing, Philadelphia, PA, USA,
11–14 August 2014; ACM: New York, NY, USA, 2014; pp. 287–296.

14. Chun, B.G. Clonecloud: Elastic execution between mobile device and cloud. In Proceedings of the 6th ACM
Conference on Computer Systems, Ischia, Italy, 10–13 April 2011; pp. 301–314.

15. Dinh, H.T.; Lee, C.; Niyato, D.; Wangm, P. A survey of mobile cloud computing: Architecture, applications,
and approaches. Wirel. Comun. Mob. Comput. 2013, 13, 1587–1611. [CrossRef]

16. La, H.; Kim, S. A Taxonomy of offloading in mobile cloud computing. In Proceedings of the 7th IEEE International
Conference on Service-Oriented Computing and Applications, Matsue, Japan, 17–19 November 2014; pp. 147–153.

17. Wang, C.; Li, Z. A computation offloading scheme on handheld devices. J. Parallel Distrib. Comput. 2004, 64, 740–746.
[CrossRef]

18. Chen, H.; Lin, Y.; Chen, C. COCA: Computation offload to clouds using AOP. In Proceedings of the
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Ottawa, ON, Canada,
13–16 May 2012; pp. 466–473.

19. Lin, T.; Hsu, C.; King, C. Context-aware decision engine for mobile cloud offloading. In Proceedings of the
IEEE Wireless Communications and Networking Conference Workshops, Shanghai, China, 7–10 April 2013;
pp. 111–116.

20. Kovachev, D.; Yu, T.; Klamma, R. Computation offloading from mobile devices into the cloud. In Proceedings of
the IEEE 10th International Symposium on Parallel and Distributed Processing with Applications, Madrid, Spain,
10–13 July 2012; pp. 784–791.

21. Lin, T.; Guo, T.; Aberer, K. Hybrid neural networks for learning the trend in time series. In Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, Melbourne, Australia,
19–25 August 2017; pp. 2273–2279.

22. CPU-Load-Generator. Available online: https://github.com/beloglazov/cpu-load-generator (accessed on
29 October 2018).

http://dx.doi.org/10.14257/ijsh.2014.8.3.21
http://dx.doi.org/10.1016/j.future.2015.09.021
http://dx.doi.org/10.1155/2017/1856329
http://dx.doi.org/10.1007/s11036-012-0368-0
http://dx.doi.org/10.1109/MCOM.2008.4427231
http://dx.doi.org/10.1109/MC.2010.98
http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1016/j.jpdc.2003.10.005
https://github.com/beloglazov/cpu-load-generator


Sustainability 2018, 10, 3955 15 of 15

23. Nokia. An Internet of Things Blueprint for a Smarter World: Capitalizing on M2M, Big Data and Cloud; Strategic
White Paper; Nokia: Espoo, Finland, 2015; p. 13.

24. Mikalef, P.; Pateli, A. Information technology-enabled dynamic capabilities and their indirect effect on
competitive performance: Findings from PLS-SEM and fsQCA. J. Bus. Res. 2017, 70, 1–16. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jbusres.2016.09.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Research 
	IoT–Cloud Converged Virtual Machine System 
	Offloading 
	Context Information 
	TreNet 

	Adaptive Offloading Method 
	Static Profiler for Context Information 
	Context Information Synchronization 
	CPU Usage Trend Learning Model 

	Experimental Results 
	Conclusions and Further Research 
	References

