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Abstract: The permeable pavement is one of Low Impact Development technics that allows
stormwater to infiltrate through the pavement surface and the underlying base layer, thereby
reducing surface runoff and preventing water contamination. For permeable base layers of permeable
pavements, open-graded aggregates are often used to infiltrate and store stormwater in the pore of
aggregate base layers. The mechanical behavior of open-graded aggregates has not been a major
interest of pavement industry and society, and therefore there is much less information known for
behavior of compacted open-graded aggregates comparing to dense-graded materials. This study
aims at investigating the mechanical behavior of compacted permeable or open-graded aggregate
base materials based on field experiments. Five different open-graded aggregates were selected,
and they were compacted in the field up to 12 passes with a 10-ton vibratory compaction roller.
The mechanical behaviors of aggregates were evaluated by conducting plate load tests at 2, 4, 8, and
12 passes of roller. For the test conditions considered herein, the strain modulus at the first loading
seems to provide more consistent results with respect to aggregate types and level of compaction
than other stiffness measures from plate load tests.

Keywords: permeable pavement; low impact development; open-graded aggregate; field test; plate
load test

1. Introduction

Increase in impervious areas due to urbanization has adversely affected the hydrologic cycle by
reducing stormwater infiltration, increasing river peak flows, reducing groundwater baseflow, and
increasing urban pollutant inflows into rivers [1,2]. The permeable pavements, one of most widely
used Low Impact Development (LID) technics, is considered as an approach to solving this problem [3].
Unlike conventional impervious pavements, permeable pavements have pores that allow stormwater
to infiltrate through the pavement surface and the underlying base layer, thereby reducing surface
runoff and preventing water contamination [2].

For road pavements, compaction is a key process during construction because it directly affects
the stability and durability of the pavement aggregate bases [4]. Therefore, proper compaction
quality control (QC) is essential to achieving adequate engineering performance. In permeable
pavements, for stormwater infiltration and retention, the base layer is composed of open-graded
aggregates with even particle size distributions and large voids between particles unlike conventional
(dense-graded) aggregate base materials. Despite the wide application of permeable pavements,
reasonable specifications or standards for compaction QC of open-graded aggregate materials do
not seem well established. Generally, the compaction quality of pavement base layers is assessed
by density in terms of relative compaction, which is defined as the ratio of the field dry density to
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the maximum dry density [5]. The characteristics of these aggregates are different from those of
conventional base materials, and it is difficult to define the maximum dry density and field density
using conventional test methods [6–10].

With the recent adoption of the mechanistic-empirical pavement design (MEPDG) method, there
have been increasing efforts to monitor compaction quality by evaluating the stiffness or strength of the
compacted soil [4,11,12]. Modulus-based compaction QC directly measures the modulus, rather than
the density, of the on-site compacted fill. The measured modulus has the advantage of being directly
related to structural performance and design parameters. Various tests and devices for measuring
modulus have been developed and are currently in use, including the plate load test (PLT) [13,14], light
weight deflectometer (LWD) [15], soil stiffness gauge (SSG) [16], and dynamic cone penetrometer [17].
Several related studies using these tests and devices have also been conducted [4,5,12,18–27]. With these
trends, the Interlocking Concrete Pavement Institution (ICPI) [1] and the American Society of Civil
Engineers (ASCE) [28] have recommended assessing the compaction quality of permeable base layers
using devices such as the LWD and SSG. However, since there are no standards or target modulus
values for assuring proper compaction, it is difficult in practice to evaluate the quality of compaction
even when these devices are used. Seoul Metropolitan City [29], ICPI [1], and ASCE [28] have suggested
specifications based on the number of passes of a vibratory compaction roller, but it is hard to find the
basis published for selecting such a number.

Given the challenges of using density-based compaction QC, assessing the compaction quality of
pavement base layers by modulus-based methods can provide a valid alternative. However, there have
been few studies attempting to elucidate the compaction characteristics of permeable base materials
using the modulus values for proper quality control. The main objective of this study is to investigate
and understand the mechanical behavior of open-graded aggregates in the field based on PLT, which
can provide a valuable input in establishing the methods and specifications for QC of permeable
aggregate bases.

2. Permeable Base and Compaction Quality Control

2.1. Permeable Base and Open-Graded Aggregates

The base of a road pavement, which is the layer installed directly below the surface layer, plays
the important roles of receiving vehicular loads from the surface layer and supporting the surface layer
itself [30]. In addition to these key functions, a permeable base should ensure adequate stormwater
infiltration into the underlying pavement layers. Thus, unlike general base layers that are constructed
with dense-graded aggregates, permeable bases use open-graded aggregates (Figure 1). In the United
States, ASTM No. 57 aggregates are widely adopted for permeable base (choker course) [1,28]. In Korea,
for example, Seoul Metropolitan City [29] proposed its own specification of open-graded aggregates
bases for the permeable block pavements. Since open-graded aggregates have very uniform particle
size distributions, and the fraction of fine particles is negligibly small, the base layers constructed with
these aggregates contain large voids among particles. Stormwater infiltrates through or is retained in
these voids, thus satisfying the hydrologic requirements of the permeable base.
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2.2. Compaction Quality Control and Permeable Base

Compaction of the base layer is a significant process in the construction of permeable pavements
and a key step towards achieving the desired engineering performance. Inadequate compaction of the
base layer can undermine the stability and durability of the entire pavement [11]. Thus, compaction
quality must be properly assessed during the construction of permeable pavements.

The most common criterion for ensuring adequate road base compaction quality is the relative
compaction, the ratio of the field dry density to the maximum dry density. However, conventional
density-based compaction control is hard to implement for open-graded aggregate bases. During the
construction of the base layer, the relative compaction of the compacted lift should meet certain target
values. Typically, the maximum dry density is obtained by the Proctor compaction test [6,7] and
the field dry density is measured by the techniques such as sand-cone [8], rubber balloon [9], and
nuclear density gauge [10] methods. However, because the characteristics of permeable base materials,
which is open-graded aggregates, are different from those of typical soils, it is difficult to measure
the maximum dry density and the field dry density with these conventional test methods. First,
because the particles of open-graded aggregates are very large and uniform, it is difficult to meet the
specifications of the Proctor test [6,7]. Moreover, the impact hammer used in the Proctor compaction
test often breaks the large particles, and thus changes the specimens [31]. Second, in the sand-cone
method, the shape of the test hole cannot be maintained due to the collapse of the aggregate, and
sand replacement is not valid because the sand used for filling the test hole enters the voids and pore
openings [8]. The rubber balloon test is also highly challenging due to problems with maintaining the
shape of the hole, and the rupturing of the rubber due to the sharp edges of the aggregate particles [5,9].
The nuclear density gauge method may also be affected by the gravel and large particles or the large
voids in the permeable base, and has not been calibrated for such condition. The safety of radioactive
wave is also arguable resulting in implementation and management challenges [5,10,11].

As mentioned in the introduction, modulus-based compaction QC has received increasing attention
due to its merits and validity. Because the measurement of field dry density and maximum dry density of
open-graded aggregates is challenging, modulus-based compaction QC can make an effective alternative
method for monitoring the compaction quality of permeable base layers. However, very few studies
have been conducted on the modulus-based compaction QC of permeable base layers. Although some
permeable pavement specifications such as those of the ICPI [1] and ASCE [28] have suggested the use
of the LWD and SSG to assess compaction quality, there are no specific target modulus values in these
specifications to ensure proper compaction. In addition, the ICPI and ASCE [1,28] have proposed at
least four passes of a 10-ton vibratory compaction roller as a standard for achieving proper compaction,
but, the proposed standards do not elaborate the basis for this specification.

There are several studies that used the PLT to evaluate the modulus of dense-graded ground
materials. The results from literatures are summarized in Table 1. Examples of compaction QC
specifications with target modulus values that can be assessed with the PLT are presented in Table 2.

Table 1. Moduli of dense-graded ground materials evaluated by PLT 1 in literatures.

Literature Soil Type MDD 2

(g/cm3)
OMC 3

(%) RC 4 (%) MC 5 (%) Ev1
6

(MPa)
Ev2

7

(MPa)

Wiman [27]

Fine sand subgrade 1.72 3 14.4 3 99–101 5.3–9.9 35–36 97–107
Natural gravel 2.18 3 3.7 3 99.7 2.4 65 190

Crushed rock aggregate 2.17 3 4.7 3 99.8 2.7 61 185
Granular base 2.35 3 4.5 3 95.8 2.2 77.6 191

Kim and Park [18] Poorly graded gravel 2.27 - - 5.9 23–53 48–137

Kim et al. [32]
Silty sand - - - - 11~15 21~28
Lean clay - - - - 12~23 18~37

1 Plate load test; 2 Maximum dry density from the standard Proctor test; 3 Optimum moisture content from the
standard Proctor test; 4 Relative compaction; 5 Moisture content when PLT is conducted; 6 Strain modulus for first
loading cycle; 7 Strain modulus for second loading cycle.
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Table 2. Modulus-based compaction specifications.

Literature Country Material
Requirement Corresponding

RC (%)Ev2 (MPa) Ev2/Ev1 k2.5 (MPa/m)

ZTVE-StB 94 [33] Germany GW, GI, GU, GT 1 ≥70 - - ≥98
- - ≤2.5 - -

Standard specification for
road construction [34] Korea Subbase - - ≥294 2 ≥95

1 German soil classification according to DIN 18196 [35]; 2 Modulus of subgrade reaction defined at 2.5-mm
settlement using a 30-cm loading plate.

3. Field Test

3.1. Test Materials

Three types of open-graded aggregates were used in the construction of the permeable base test
bed; the maximum particle sizes of these aggregates were 40 mm (D40), 25 mm (D25), and 13 mm
(D13), as they are presented in Figure 2. These rhyolite aggregates were brought to the field in air-dried
condition two days before the test started. Two additional aggregates, “D40 + D25” and “D25 + D13”,
were prepared by mixing their component aggregates in equal proportions by volume. The mixing
was conducted by a backhoe excavator, and the volumes of the aggregates were approximated by the
excavator bucket. The volumetric compositions, basic properties, and particle size distributions of the
five open-graded aggregate test materials are presented in Table 3 and Figure 3. Figure 3 also presents
the lower and upper bounds of particle size distribution of two specifications, the ASTM No. 57 and
Seoul Metropolitan City [29]. The particle size distribution of D40+D25 was comparable to ASTM No.
57 (the material for choker layer in ICPI [1] and ASCE [28]) and specification of Seoul Metropolitan
City [29].
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Figure 2. Three types of open-graded aggregates used to construct the test bed. The maximum particle
sizes are: (a) 40 mm (D40); (b) 25 mm (D25); (c) 13 mm (D13).

Table 3. Basic information of the test materials.

Test Material Lithology
Material Composition by Volume

Cu
1 Cc

2 Specific Gravity Abrasion Rate (%)
D40 D25 D13

D40

Rhyolite

100% - - 2.88 1.19

2.67–2.75

12.8
D40 + D25 50% 50% - 2.99 1.08 9.8

D25 - 100% - 2.48 1.02 10.3
D25 + D13 - 50% 50% 2.84 1.16 11.2

D13 - - 100% 2.79 1.16 12.3
1 Coefficient of uniformity; 2 Coefficient of curvature.
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Figure 3. Particle size distribution of test materials and specifications.

3.2. Test Program

The test program in this study (Table 4) was set for each aggregate material. A 30-cm lift (first
lift) was laid and compacted by 12 passes of a 10-ton vibratory compaction roller. After 2, 4, 8, and 12
passes, two (duplicate) PLTs were performed on each compacted aggregate. Another 30-cm lift (second
lift) was laid on the first lift, and the previous compaction and PLT sequences were repeated. Thus, a
total of 80 cases of PLT (5 materials, 2 lifts, 4 numbers of passes, and 2 tests) were performed. From the
PLT results, the strain moduli for the first and second loading cycles (Ev1 and Ev2, respectively) and
the modulus of subgrade reaction (defined at 2.5 mm of settlement; k2.5) were obtained.

Table 4. Test program.

Test Materials Lift Number of Roller Passes

D40

First (30 cm)
Second (30 cm)

2
4
8

12

D40 + D25
D25

D25 + D13
D13

3.3. Test Bed Construction and Test Procedure

The test bed was constructed at a site on the Yangsan campus of Pusan National University in
South Korea. First, the site was excavated as shown in Figure 4. The overall plan dimensions of the
excavated area were 3.7 × 20 m with a trapezoidal vertical cross-section, except the excavation for
ramp needed for the entry of the construction and testing equipment. After excavation, the test bed
was divided into the five sections using rubber partitions to isolate each test material (Figure 5a).
The height of the lift (30 cm) was guided by the rubber partitions that has the same height with
the lift. The unloaded aggregates were evenly spread with the bucket of the excavator to level the
surface (Figure 5b). Thereafter, a 10-ton vibratory roller (Dynapac) was used to compact the aggregates
(Figure 5c). The roller operated along the longitudinal direction of the test bed. After the specified
number of roller passes (Table 4), the PLTs were performed for each test material to determine the
modulus of the compacted lift (Figure 5d). After the tests on the first lift were completed, the second
lift was laid on top of the first lift, and the compaction and PLT procedures were repeated.
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Figure 5. Test bed construction and test procedure: (a) Test bed excavation and test section separation;
(b) Lift construction; (c) Compaction; (d) PLT.

The PLT was carried out in accordance with DIN 18134 [14] with some modifications considering
the prevailing field conditions. In the loading process, a loading plate with a diameter of 30 cm
was used without applying seating sand because the surface of aggregates right after compaction
was very flat. The excavator was used to deliver the reaction force. The normal stress acting on the
plate was measured by reading the hydraulic pressure acting on the hydraulic jack with the pressure
measurement dial gauge. Before the test began, a preloading stress (~0.01 MPa) was applied for proper
seating of the plate, and the displacement measurement dial gauge was set to zero. The loading
cycle (first loading cycle) was applied in eight approximately equally spaced stages up to the planned
maximum stress (~0.5 MPa); then, the load was reduced to 50% and 25% of the maximum stress
successively, and finally back to the preloading stress. The reloading cycle (second loading cycle) was
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the same as the first loading cycle, but the last loading stage (the 8th stage) was not applied following
the DIN 18134 [14]. The magnitude of preloading and maximum stresses varied slightly among tests
accommodating equipment and field conditions. The test locations were offset from each other to
minimize interference among the PLT measurements (Figure 6). The location of PLT in each aggregate
bed is illustrated in Figure 6; the numbers 2, 4, 8, and 12 represent the number of roller passes, and the
symbol “a” and “b” represent the first and second tests. Additional PLTs were also conducted on the
subgrade by the test bed.
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4. Results and Discussion

4.1. Modulus Calculation

The values of the strain modulus at the first loading Ev1 and the strain modulus at the second
loading Ev2 were calculated based on the process specified in DIN 18134 [14]. The calculation method
uses a second-order polynomial regression analysis to determine the stress–settlement curve for the
first and second loading cycles. The determined curve is expressed by the following equation:

s = a0 + a1·σ0 + a2·σ2
0 (1)

where s is the settlement of the plate (mm), σ0 is the normal stress below the plate (MPa), a0, a1, and a2

is the constant determined from second-order polynomial regression analysis (mm, mm/MPa, and
mm/(MPa)2, respectively). The determined curves and constants are illustrated with the test results
shown in Figure 7. In Figure 7, “a” and “b” represent the duplicate of the tests (Figure 6). The values
of Ev1 and Ev2 were determined from the first and second regression curves, respectively, as follows:

Ev = 1.5·r· 1
a1 + a2·σ0max

(2)

where Ev is the strain modulus (MPa), r is the radius of the plate (mm), σ0max is the maximum normal
stress below the plate (MPa).

For the calculation of the modulus of subgrade reaction at 2.5-mm displacement (k2.5), the average
slope between the displacement of 0 and 2.5 mm on the regression curve of the first loading cycle
(Figure 7) was used. The following is the equation for calculating k2.5:

k2.5 =
∆σ0

s
(3)

where ∆σ0 is the difference between the preloading stress and the stress corresponding to 2.5-mm
displacement and s is the displacement (therefore, 2.5 mm or 0.0025 m).
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Figure 7. Examples of stress-settlement curves in the first lift: (a) D25 at locations “a” and “b” after 4
roller passes; (b) D25 at locations “a” and “b” after 12 roller passes.

4.2. Relationship Between Roller Pass and Modulus

Figure 8 summarizes the changes in Ev1, Ev2, k2.5 and Ev1/Ev2 for the successive roller passes at
which the PLTs were conducted. Each point in Figure 8 is the average of two test results (duplicate).
The values of Ev1, Ev2, and k2.5 steeply increase up to four roller passes for most of the test materials
and lifts. It is clear that Ev1 keeps increasing as the number of passes raises after four passes but with
declined trends. Ev2 and k2.5 seem to somewhat reflect the change in materials with increasing number
of passes, but they are not as sensitive or consistent to the number of passes as Ev1. It is noted that
Ev2 is the strain modulus during reloading process and the material may be compressed and become
denser during the first loading cycle, making Ev2 the consequence of the first loading rather than the
measure of roller compaction. k2.5 is the stiffness measure of the aggregate at relative smaller strain
level than Ev1, so that the effect of increased compaction level on highly nonlinear material may not
be captured well by k2.5. From Figure 8a–c, it can be found that the minimum of four roller passes
recommended by the ICPI and ASCE [1,28] is an efficient one, but one can expect hardening of the
open-graded materials for larger number of roller passes than four.

The underlying subgrade layer could affect the results of PLTs, and the values of Ev1, Ev2 and k2.5

of subgrade were 69 MPa, 196 MPa, and 143 MPa/m, higher than those of all open-graded aggregates.
Because the subgrade has a considerably higher stiffness than the permeable base layers, the Ev1 values
of the first lift, built directly on the subgrade, are slightly higher than those of the second lift for most
cases (Figure 8a), but certainly not significant. These differences are not captured by other modulus
measures such as Ev2 and k2.5.

The strain modulus at reloading cycle (Ev2) showed high dependency on the material type.
The permeable base layers composed of large particles at the lowest compaction level, in some cases,
has higher Ev2 than the smaller particles at the highest compaction level. For example, D13 with 12
passes showed considerably lower Ev2 than D25 with 2 passes (Figure 8b). These results indicate that
the selection of materials is very important, and the level of compaction does not compensate the
mis-selection of the materials.

When the values of Ev1 of open-graded aggregates are compared to those of conventional
(densely-graded) ground materials in literature (Table 1), Ev1 of open-graded aggregates are smaller
than those of dense-graded materials with similar particle sizes (gravel), but rather close to those of
dense-graded materials with smaller sizes (sand and clay). The values of Ev2 are, however, closer to
densely-graded gravel materials rather than the densely-graded sand or clay. As such, more permanent
deformation is expected in open-graded aggregates than in dense-graded aggregates, but the resilient
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deformation may be similar for these materials. When they are compared to the requirements in
German [32] and Korean [33] guides, all the materials tested meet the requirement for Ev2 but not
for Ev2/Ev1 and k2.5. This would be partially because the current requirements are setup focusing on
dense-graded materials. For open-graded aggregates, it will be necessary to develop more suitable
requirements for QC.
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Figure 8. Relationship between number of roller passes and modulus measures: (a) Ev1; (b) Ev2; (c) k2.5;
(d) Ev2/Ev1.

4.3. Relationship Between Materials and Modulus

The results in Figure 8 are reorganized in Figure 9 to present better the differences among materials.
The values of Ev1 are higher for larger size of particles with a few variations (Figure 9a). The D13
sample, the smallest particles among the investigated, has the lowest values of Ev1, Ev2, and k2.5 for
most cases. The values of Ev2 are mostly within a band of 80~130 MPa. The values of k2.5 do not seem
consistent, possibly because they represent the slope of stress and displacement at very narrow range
of displacement (2.5 mm).
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4.4. Variations Between Modulus Measurements

Figure 10 shows the examples of the modulus values obtained before averaging the measurements
at two locations “a” and “b”. It can be found that Ev1, which measures slope of stress and displacement
up to the maximum stress, presents more consistent results comparing to k2.5 that uses smaller portion
of the stress-displacement curve (Figure 7). For dense-graded materials, this gap may be less significant;
for open-graded materials that undergoes considerable amount of displacement, Ev1 and Ev2 give
more consistent results. Table 5 summarized the variations of duplicate measurements for all the tests
conducted, and for open-graded aggregates, Ev1 and Ev2 would be a more reliable measure for QC
than k2.5.
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Figure 10. Examples of modulus measurements before averaging: (a) Ev1 measurements at location a
and b in D40+D25 of first lift; (b) k2.5 measurements at location a and b in D13 of second lift.

Table 5. Coefficients of variation of modulus measures.

Modulus
Coefficient of Variation (CV)

Maximum (%) Mean (%)

Ev1 16.1 5.3
Ev2 22.4 4.5
k2.5 40.6 10.5

5. Conclusions

The mechanical behavior of open-graded aggregates has not been a major interest of pavement
industry and society, and therefore there is no much information available for behavior of compacted
open-graded aggregates. Sets of PLTs have conducted to investigate the mechanical behavior of
compacted permeable or open-graded aggregates. Based on the test results, the following findings
were made:

• The values of Ev1, Ev2, and k2.5 steeply increased up to four roller passes for most of the test
materials and lifts considered here. Ev1 clearly keeps increasing as the number of passes raises
after four passes but with declined trends. The minimum of four roller passes recommended by
the ICPI and ASCE [1,28] is efficient, but one can expect hardening of the open-graded materials
for larger number of roller passes than four.

• The strain modulus at the second loading cycle (Ev2) showed high dependency on the material
type. Large particles at the lowest compaction level, in some cases, had higher Ev2 than the
smaller particles at the highest compaction level. The selection of materials is very important, and
the level of compaction does not compensate the mis-selection of the materials.

• For open-graded aggregates that undergoes large deformation during PLT, the strain modulus
Ev1 and Ev2 measures much wider range of stress and displacement than k2.5. As such, Ev1 and
Ev2 give more consistent results. For open-graded aggregates, Ev1 and Ev2 would make a more
reliable measure for QC than k2.5.

• When the results are compared to the requirements in German and Korean guides, all the materials
tested meet the requirement for Ev2 but not for Ev2/Ev1 and k2.5. This would be partially because
the current requirements are setup focusing on dense-graded materials. It will be necessary to
develop more suitable QC requirements for the open-graded aggregate base.
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