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Abstract: The carbonation of concrete is the prime deterioration factor in reinforced concrete (RC)
structures. During carbonation, the atmospheric CO2 penetrates the concrete and lowers its alkalinity.
The problem in predicting carbonation is difficult to address, and a reliable probabilistic carbonation
assessment is required to consider different variables such as the concrete quality, the chemistry
of the reinforcing steel, and the quality of finishing materials. In the present study, we have used
different finishing materials on concrete to minimize the effects of carbonation with a field survey and
accelerated conditions. In one experiment, the measurement of the thickness of the concrete cover
and the application of the finishing materials were done on-site, whereas, in the other experiment,
these were done under accelerated conditions. The carbonation depth and the coefficient of silk
wallpaper (SWP) were reduced by half in an accelerated 5% CO2 experiment compared to the plain
ordinary Portland cement (OPC), owing to the external physical barrier that reduces the penetration
of CO2 through the pores of the concrete. We found that carbonation did not reach the embedded
rebar even after 100 years when SWP finishing material was used. The probability model predicted
that 51 years would be required for OPC and water paint (WP) to reach a 30% onset of corrosion
initiation through accelerated carbonation, while SWP would require 200 years.

Keywords: sustainable finishing materials; reinforced concrete structure; probability; carbonation
progress

1. Introduction

The replacement of cement with low calcium fly ash, coal fly ash, and green concrete composites
is a sustainable process that reduces CO2 emissions and imposes high compressive strength and
fracture toughness owing to their high pozzolanic activity and microstructure [1–3]. However, high
volume fly ash (HVFA) causes a harmful effect to the concrete structures which induces the corrosion
of embedded steel reinforcement due to carbonation [4,5]. The evaluation of emitted CO2 in concrete
is a very difficult task; However, Lee and Wang have determined the amount of emitted CO2 using the
total volume of concrete and unit carbon dioxide emission of materials equation [6].

Owing to the change in climatic conditions and the presence of aggressive ions in the atmosphere,
reinforced concrete (RC) deteriorates quickly [7,8]. The carbonation of concrete is a major detrimental
factor for RC structures [9–11]. During carbonation, atmospheric CO2 penetrates into the concrete and
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lowers its alkalinity [12]. This causes the corrosion of the reinforcing bars by destroying the passive
films surrounding them [13,14]. The carbonation can be expressed as:

Ca(OH)2+CO2→ CaCO3+H2O (1)

Owing to the reaction of atmospheric CO2 with hydroxyl ion (OH−), the pH of the pore
solution decreases, resulting in the enhancement of steel corrosion, cracking, or spalling of concrete
structures [15,16]. The overall carbonation reaction in concrete occurs through CaCO3 formation, and
it can be written as [17]:

CO2+H2O→ H2CO3 (2)

H2CO3+H2O→ HCO−3 +H3O+ (3)

HCO−3 +H2O→ CO2−
3 +H3O+ (4)

H2CO3+Ca(OH)2→ CaCO3 +2H2O (5)

The atmospheric CO2 reacts with water or OH− ion and forms H2CO3 (carbonic acid), as presented
in Equation (2). It reacts with water/OH− ions available in concrete (Equation (3)), and forms HCO−3
(bicarbonate ion) and H3O+ (hydronium ion). Once a building is constructed, this is an autocatalytic
and continuous reaction throughout the process. The primary cause for the reduction in pH is H3O+

formation [17]. Owing to the formation of H2CO3 and the reaction with the pore solution, CaCO3 and
H2O molecules are generated, see Equation (5). Thus, CaCO3 reduces the porosity of concrete [18,19]
and H2O facilitates the reaction to form H3O+, see Equations (3) and (4).

There are other hydrates present in the concrete such as silicates and aluminates which are also
affected by the carbonation. Thus, the C-S-H can be carbonated by the following reaction [17]:

1.7H2CO3 + 1.7CaO.SiO2.2.5H2O→ 1.7CaCO3 + 1.7SiO2.2.5H2O + 1.7H2O (6)

Therefore, the carbonation is an important factor for RC structures because once the passive film
is destroyed, the corrosion starts to occur. The corrosion of the reinforcing bars causes a lowering
of their tensile strengths [20]. According to the Pourbaix diagram, passive films are formed on the
reinforcing bars in concrete at a high alkaline pH, but they become destructive once the pH reaches
10.4; thus, causing corrosion [21]. Therefore, carbonation is an alarming factor that significantly affects
the durability of concrete structures. The corrosion of reinforcing bars causes expansion owing to the
increase in the volume of the corrosion products, thus leading to the cracking and spalling of concrete
that lowers the strength and decreases the durability of RC structures [20,22].

Different studies pertaining to carbonation prediction methods have been carried out to predict the
life expectancy of RC structures with HVFA when exposed to harsh environments [23]. Jiang et al. [24]
predicted the carbonation depth of concrete bridges in China under changing climatic conditions
and traffic loads by considering different parameters. Additionally, they established the numerical
carbonation model (NCM) and the simplified carbonation model (SCM) for fatigue-damaged concrete
through Monte Carlo simulations. The actual/real experiment would require a significant amount of
time and manpower to study the effects of carbonation on the durability of RC structures with/without
finishing materials. However, the probability model can perform the predictions while saving time
and manpower.
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1.1. Carbonation Prediction Equation

Equation (7) was proposed by Kisitani [25] for the carbonation prediction model of RC structures.
Through Equation (7), the carbonation depth can be calculated by considering the water/cement (w/c)
ratio. Meanwhile, the carbonation prediction equation, announced by the Architectural Institute of
Japan (AIJ) [26], is one in which the carbonation coefficient (A), can be predicted by the carbonation
depth (C), which is proportional to the square root of the elapsed time (t) (Equation (8)). The
carbonation coefficient, A, can predict the carbonation depth according to the w/c ratio, the admixture
type and use, the cement type, the curing degree, the carbon dioxide concentration in the atmosphere,
the temperature, the humidity, and type of finishing material (R) varied from 0.04 to 5.8.

t =
7.2

R2(4.6 w/c− 1.76)2 C2(w/c ≤ 0.6) (7)

C = A
(√

t + R2 − R
)

(8)

1.2. Probabilistic Carbonation Assessment

Different random variables such as the thickness of the protective covering, the carbonation
depth, the materials, the environment, and the engineering design determine the probability model
for the carbonation assessment of concrete [27]. Thiery et al. [27] have considered Papadakis [28]
and Bakker’s [29] models for the assessment of the carbonation depth through reliability theory of
a time-dependent approach. They input random variables into the Papadakis and Bakker’s models
for three different types of concrete in laboratory conditions for the assessment of the carbonation
depth. However, they did not consider the effects of the finishing materials. This is while the inhibiting
action of carbonation is also affected by the properties of the finishing materials [30]. In this case,
the variability of the carbonation depth, which increases over time, and the variability of the thickness of
the protective covering, are considered as normal distributions based on the reliability analysis of Izumi
and Fumio [31]. Figure 1 shows the probability distribution of the carbonation depth, which varies with
time and the thickness of the protective covering [26]. In this case, the probability distribution of rebar
corrosion initiation can be expressed by Equation (9) and the destruction probability by Equation (10).

f(D− Ct) =
1√

2π
(

Ct
2
υ2 + σ2

) × exp
−(D− Ct)−

(
D− Ct

)2

2
(

Ct
2
υ2 + σ2

) (9)

P(t) f =
∫ 0

−∞
f (D− Ct)d(D− Ct) (10)

where Ct is the carbonation depth, ν is the coefficient of variation of the carbonation depth, D is the
mean protective covering thickness, σ is the standard deviation of the protective covering thickness,
Nc is the probability distribution of the carbonation depth, ND is the probability distribution of the
protective covering thickness, and P(t) f is the endurance destruction probability over time. However,
the above equation of random variables is the endurance destruction probability equation for the
sound area, and the destruction probability equation of the sound and crack areas based on the survey.
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Figure 1. Probability distribution according to the carbonation depth variability [26].

Table 1 shows the estimated allowable values for the rebar corrosion initiation probability
according to the variability of the carbonation depth [26].

Table 1. Allowable rebar corrosion initiation probability [26].

Importance of
the Building

Column, Beam,
Primary Reinforcement

Other Rebars (Wall)

Subject to Damage Not Subject to Damage

Very important 3% or less 7% or less 15% or less
Important 5% or less 15% or less 30% or less

Normal 10% or less 30% or less 50% or less

RC structures face durability problems owing to carbonation and the ingress of aggressive species
from the atmosphere. However, the problems have recently been minimized using various repair
materials [30]. The Architectural Institute of Japan (AIJ) [26] and Köliö et al. [32] have studied the
effects of carbonation when finishing materials are used on concrete surfaces. Roy et al. [33] and
Huang et al. [22] found that a sufficient thickness of the cement mortar as the surface finishing
material could significantly reduce the carbonation depth because it increases the resistance to the
ingress of CO2. In addition, Park [34] used concrete specimens with surface coatings and found that
the carbonation resistance was improved by forming a dense surface structure and preventing the
penetration of CO2 into concrete. However, the carbonation assessment of RC structures in the real
field compared to the accelerated condition, i.e., laboratory experiments, may produce different results
owing to the involvement of different parameters such as different humidity, temperature, and the
content of aggressive ions.

Furthermore, it is difficult to predict the accurate carbonation service life with such deterministic
methods of analysis. Therefore, for the accurate assessment to the impact of carbonation on the
durability of RC structures, the concrete quality, variability of rebar placement, and the variation
in the quality of the different finishing materials must be considered [35]. Jiang et al. [24] have
established NCM and SCM by considering different loads on bridges, temperatures, and concentrations
of atmospheric CO2 in real conditions without using any finishing materials. We have, thus, attempted
to study the effects of the thickness of the concrete cover and the application of finishing materials
in an actual construction site in South Korea and accelerated experiments in the laboratory. Such
studies have not been carried out by other researchers in South Korea. Therefore, for the first time,
we are trying to determine the probabilistic carbonation and corrosion initiation of rebars in concrete
with/without finishing materials in a 5% CO2 accelerated environment.



Sustainability 2018, 10, 3814 5 of 15

2. Methods and Materials

2.1. Overview of Construction Site and Accelerated Experiment

To study the probabilistic carbonation assessment of concrete structures with/without finishing
materials, experiments were performed in accelerated conditions and at actual construction sites
in South Korea, for different thicknesses of the concrete cover and different finishing materials.
The details of the concrete mix used to construct the building are shown in Table 2. The w/c
ratio was 55% for the concrete mix as well as for the accelerated carbonation experiment in the
laboratory conditions. The dimensions of the concrete specimen for the accelerated experiment was
100 mm × 100 mm × 400 mm and it was cured in water for 28 days. The nominal compressive strength
was found to be 24 MPa.

The target buildings were the apartment buildings of the POSCO company located in Hanam city,
Gyeoggi-do, South Korea. The construction period was from July 2011 to October 2015. The apartment
buildings were composed of RC structures. There were two buildings whose heights varied from 25 to
29 floors.

Table 2. Concrete mix of the target buildings.

w/c (%) Unit Weight (kg/m3) Additive (%) Compressive Strength

Water Cement Fine Aggregates Coarse aggregate (MPa)

55 168 305 950 933 0.5 24

Figure 2 shows a schematic of the layout of the freshly erected building with the floor plan
and information of the finishing material. The staircase was finished with multicolor paint (MCP),
the indoor laundry room with water paint (WP), and the living room with silk wallpaper (SWP)
according to customer requirements.
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Three types of finishing materials, i.e., WP, MCP, and SWP were applied to the surface of the
concrete at the construction site. After the application of the finishing materials, the accelerated
carbonation tests were conducted in a laboratory according to KS F 2596 [36].

The carbonation depth of the concrete with each finishing material was measured, and the mean
value, the standard deviation, the carbonation coefficient, and the carbonation ratio were subsequently
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derived. The carbonation ratio was measured by dividing the carbonation coefficient of the finishing
materials by the carbonation coefficient of the concrete (without finishing materials). The details of the
carbonation ratio will be discussed in the results section.

Furthermore, the cover thicknesses of the concrete were measured at the actual sites, and the
mean values and the standard deviations were calculated.

The rebar corrosion initiation probability was predicted for the finishing materials by applying
the derived values to the rebar corrosion initiation probability model.

2.2. Measurement of Concrete Cover Thickness at On-Site

The thickness of the concrete cover was measured using Profometer®5+ (Model: S, Proceq Asia
Pte Ltd., Switzerland). The measurement was performed separately in 15 to 90 locations for the living
room, the laundry room, the first-floor balcony, and the staircase. As for the external wall, the thickness
was measured at the rooftop. The cover thickness of the concrete at each location was calculated by
considering the mean value.

2.3. Accelerated Carbonation Experiment in Laboratory

The accelerated experiment was performed in a carbonation chamber (Chom Dan Scientific
Ind. Co., Seoul, South Korea). The details of the setup are shown in Figure 3. This experiment was
performed according to the KS F 2584 standard: 20 ◦C (±2 ◦C) temperature, 60% (±5%) relative
humidity, and 5% (±0.2%) CO2 [37]. After fabrication of the concrete specimens, three different
finishing materials, i.e., WP, MCP, and SWP were applied, and the thickness was measured to predict
the carbonation progress and depth. The carbonation depth in the concrete was measured using a
Vernier caliper (Mitutoyo, Japan) at three different locations after breaking the specimens, and their
average values were recorded.
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The details of the properties and the minimum thicknesses of the finishing materials are shown
in Table 3. We used identical finishing materials to those at the construction site for fabricating the
specimens in the laboratory. WP, MCP, and SWP were applied and their thicknesses were 0.1, 0.2,
and 0.3 mm, respectively. We considered a plain OPC (without finishing materials) for comparison.
As shown in Table 3, WP is a liquid with 1.35 specific gravity and can easily penetrate the pores of the
concrete. Therefore, it is difficult to measure the exact thickness, and hence it shows the minimum
cover thickness. Meanwhile, MCP is viscous, with a specific gravity of 1, and easily adheres to the
concrete surface. Therefore, it shows a higher cover thickness compared to WP. The SWP is a thin
paper with silica doping acting as an external barrier, with a minimum thickness of 0.3 mm; it was
purchased from a market in Korea. The pH of WP and MCP was 9. Most of the finishing materials
were white, but MCP was available in different colors. In the present study, we selected black and
white MCP. It was difficult to maintain a uniform thickness for all the finishing materials owing to their
different properties. Therefore, the finishing materials showed different thicknesses when applied on
the concrete surface.

Table 3. Characteristics of finishing materials.

Finishing Materials Properties Minimum Thickness
on Surface (mm)Color Specific Gravity pH

WP white 1.35 9 0.1
MCP black and white 1 9 0.2
SWP White - - 0.3

Figure 4 shows the experimental flow chart that describes the method adopted to perform the
present study. After applying the finishing materials to the concrete surface, the carbonation depth
was measured at the ages of 1, 4, 8, and 13 weeks according to KS F 2596 [36].
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There are different steps involved in preparing the concrete specimens for the accelerated
carbonation experiment, from the preparation of the concrete mold to the application of the finishing
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materials. The specimens were subjected to underwater curing for four weeks; thereafter, they were
removed from the curing tank. Upon the completion of curing, the epoxy was applied to the five faces
of the specimens, and one face was open for the application of the finishing materials. The thickness
of the epoxy coating was 120 µm to resist the ingress or attack of aggressive species to the concrete
specimens. The finishing materials were applied on the concrete specimens after one week of epoxy
drying. The accelerated carbonation test was performed in a carbonation chamber at 20 ◦C (±2 ◦C)
temperature, 60% (±5%) relative humidity, and 5% (±0.2%) CO2 in triplicate sets of specimens [37].
The carbonation depth was measured at the ages of 1, 4, 8, and 13 weeks using 1% phenolphthalein
solution on each specimen at three different locations. The average was then calculated in accordance
with KS F 2596 [36] by cutting the concrete specimens.

3. Results and Discussion

3.1. Site Survey of Concrete Cover Thickness

Table 4 shows the results of the site survey for measuring the thickness of the concrete
cover, obtained from the target buildings at the construction site. The Korean concrete standard
specification [38] recommends that the cover thickness for the internal wall of a standard building
structure is 30 mm (±10 mm). We attempted to adhere to these recommendations. The internal wall
cover thickness of Building A was measured at different locations, and the mean thicknesses were 35.8,
37.5, and 40.3 mm for the living room, the laundry room, and the staircase, respectively. The standard
permissible difference value is ±10 mm. Meanwhile, for the external wall, the cover thickness must be
40 mm (±10 mm) according to the standard [38]. However, in the present study, the cover thickness
of the external wall at different locations was measured and was found to be 50.0 mm at the rooftop,
exceeding the standard by 10 mm, while the balcony was 48.3 mm. For Building B, the thickness
of the internal wall’s concrete covers was 39.8, 38.1, and 35.8 mm for the living room, the laundry
room, and the staircase, respectively; while 48.1 mm for the balcony, and 45.7 mm for the rooftop.
The cover thickness for the different parts exceeded the standard value by 5.8–10.3 mm, which made
them sub-standard. The values of the thicknesses of the concrete covers in Buildings A and B at
different locations are due to the customers’ requirements, and the utility of different locations in
the apartments.

Table 4. Concrete cover thickness at different locations in Buildings A and B (on-site).

Measurement Location Mean Cover
Thickness (mm)

Concrete Cover
Thickness (mm)

According to Korean
Concrete Standard
Specification [38]

Building A

Internal wall
Living room (SWP) 35.8

30 (±10)Laundry room (WP) 37.5

Staircase (MCP) 40.3

External wall
Rooftop 50.0

40 (±10)
Balcony 48.3

Building B

Internal wall
Living room (SWP) 39.8

30 (±10)Laundry room (WP) 38.1

Staircase (MCP) 35.8

External wall
Rooftop 45.7

40 (±10)
Balcony 48.1
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3.2. Accelerated Carbonation Experiment in the Laboratory

3.2.1. Carbonation Depth Measurement

Figure 5 shows the physical appearance after the carbonation test of concrete at different time
intervals for different finishing materials, using 1% phenolphthalein. The quantitative results of the
carbonation depth (C) and standard deviation are shown in Table S1. The standard deviation of
carbonation depth is between 0.41 to 1.56 mm. The results show that the concrete specimens after
one week of accelerated experiment exhibit approximately 3.31 mm penetration for plain OPC, see
Figure 5a. The penetration depth was approximately 3.22 mm for WP, see Figure 5b, 3.02 mm for
MCP, see Figure 5c, and 1.80 mm for SWP, see Figure 5d. However, once the duration of exposure in
the carbonation chamber was increased up to 13 weeks, the carbonation penetration depth increased
compared to the 1-week exposure in the order of plain OPC > WP > MCP > SWP. The carbonation
penetration can be observed from the color change of specimens at different times of exposure
interval in 5% CO2. Pink represents the non-carbonated area whereas the colorless surface represents
carbonation. Figure 5 shows that the plain OPC has a penetration depth after 13 weeks of exposure
that is over four times greater compared to that of 1 week. The carbonation penetration depth of plain
OPC (without finishing materials) is higher compared to that of MCP and SWP finishing materials at
different exposure periods because it does not contain any finishing materials and the CO2 directly
penetrates through the concrete pore. The WP’s penetration depth is almost identical to that of plain
OPC owing to its higher dissolution in the pore solution or liquid, and that it can easily penetrate the
concrete pores. As WP is a water-soluble paint, it diffuses and cannot create any stable barrier at the
concrete surface, making its carbonation penetration depth identical to that of plain OPC. Meanwhile,
among the finishing materials, SWP exhibits a smaller penetration depth of carbonation compared to
the others because it works as a strong barrier to CO2 penetration. The SWP is a 0.3 mm sand wall film
that can be observed at the outer surface of the specimen after 13 weeks, see the area indicated by the
arrow in Figure 5d. Therefore, it shows excellent resistance to the penetration of CO2. It is noteworthy
that the paper thickness, i.e., SWP, inhibits the penetration of aggressive ions. Other finishing materials
are liquid and have higher diffusion rates compared to SWP. Therefore, WP and MCP show higher
depths of penetration compared to SWP.
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3.2.2. Carbonation Coefficient Calculation

The carbonation coefficient of concrete with/without finishing materials is calculated using
Equation (11) [26]. Before calculation, it is necessary to normalize the carbonation coefficient in 5%
CO2 under the accelerated conditions according to the AIJ [26]. Therefore, the carbonation coefficient
was converted with 0.2% CO2 in an outdoor atmosphere [39,40] using Equation (11) [26].

C = A
√

CO2/5.0×
√

t (11)

where C = carbonation depth (mm), A = carbonation coefficient (mm/
√

year), CO2 = concentration of
CO2 (%) and t = elapsed time (year).

The carbonation coefficient of concrete with/without finishing materials was calibrated through a
mathematical regression process with exposure periods and results as shown in Figure S1. It is
considered that once the concrete and finishing materials are combined, the surface becomes
non-uniform. The R2 values of concrete with/without finishing materials at different exposure
times are 0.96 for SWP and 0.99 for concrete and other finishing materials which fall under the
acceptable value.

Table 5 shows the carbonation coefficient of concrete with/without finishing materials for
different exposure times under accelerated conditions. The carbonation coefficient of plain OPC
was 0.52 mm/

√
year after one week of exposure in accelerated conditions, which is applicable to the

external wall of the building. After the application of the finishing materials, WP, which was used for
the internal wall, was found to be 0.48 mm/

√
year for one week while it decreased to 0.37 mm/

√
year

after 13 weeks of exposure. We found, compared to plain OPC and the other finishing materials, SWP
showed the lowest carbonation coefficient for 1 to 13 weeks of exposure. This result correlates with
the carbonation depth measurement observations, where, after one week of the experiment, the SWP
penetration was at least two times slower than that of plain OPC. It can be seen from Table 5 that the
carbonation coefficient decreased gradually once the exposure periods were extended from 1 week to
13 weeks attributed to the slow rate of diffusion of CO2 in concrete.

Table 5. Average carbonation coefficients of concrete with/without finishing materials in accelerated
conditions for different exposure times.

Specimen Type Carbonation Coefficient (mm/
√

year)

1 Week 4 Weeks 8 Weeks 13 Weeks Average

Plain OPC 0.52 0.49 0.46 0.42 0.47
WP 0.48 0.45 0.41 0.37 0.43

MCP 0.45 0.42 0.36 0.32 0.39
SWP 0.27 0.25 0.19 0.14 0.21

3.2.3. Carbonation Ratio Measurement

The carbonation ratio of each finishing material can be found using Equation (12). The carbonation
ratio is obtained by dividing the average carbonation coefficient of the specimen with finishing material,
by the average carbonation coefficient of the specimen without any finishing materials [30].

Carbonation ratio =
Average carbonation coefficient with f inishing material

Average carbonation coefficient without f inishing material
(12)
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Through the carbonation ratio equation, it is possible to simultaneously assess the carbonation
inhibition or reduction by multiplying the carbonation ratio by 100. Figure 6 shows a comparison of
the carbonation inhibition or reduction of each specimen in accelerated conditions by considering the
average values of the carbonation coefficients, see Table 5. Assuming that the carbonation of plain
OPC is 100%, the carbonation inhibition of WP is 91.5%. Meanwhile, the carbonation inhibition for
SWP is the lowest at 44.7%, indicating that it is the finishing material that has the highest carbonation
inhibition effect and can be used to reduce the corrosion initiation of embedded steel rebar in concrete.
The results of carbonation inhibition corroborate the results obtained for carbonation depths and
coefficients, i.e., SWP is twice as inhibiting as plain OPC. This is due to the barrier-type inhibition
provided by SWP.
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Figure 6. Carbonation inhibition of finishing materials in accelerated conditions.

3.2.4. Carbonation Progress Prediction Model

We have followed C = A
√

t [26] to predict the carbonation model. The average A value obtained
was 0.47, 0.43, 0.39, and 0.21 mm/

√
year for plain OPC, WP, MCP, and SWP, respectively. The A value

is the average for the different exposure periods mentioned in Table 5. Figure 7 predicts the carbonation
depth of concrete with/without finishing material. Based on the 30-mm cover thickness of rebar in
concrete, it is assumed that the carbonation depth reaches the stated limits and the rebar position.
In plain OPC, carbonation would reach the rebar position after 40 years. In the case of finishing
with WP, carbonation is expected to reach the rebar position after approximately 50 years, indicating
the extension of the service life by approximately 10 years. In the case of SWP, it is expected that
carbonation would not reach the rebar position even after 100 years. Based on the cover thickness of
40 mm, carbonation was expected to reach the rebar position after approximately 70, 85, and 100 years
for plain OPC, WP, and MCP, respectively. In the case of SWP, it was expected that carbonation would
not reach the rebar position even after 100 years.
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Figure 7. Carbonation depth predictions of concrete with/without finishing material.

3.3. Probabilistic Carbonation Assessment

The probabilistic carbonation assessment model is shown in Table 6. It shows the mean cover
thickness, standard deviation, mean carbonation depth, and the coefficients of variation of the rebar
cover in the accelerated carbonation conditions using the site survey results. The thickness of the
finishing materials at the external wall was not considered. The mean cover thickness of plain OPC
and the finishing materials exceeded the mean carbonation depths of 40 mm for the external wall, and
30 mm for the internal wall. The exceeded value was approximately 8 mm for both the internal and
external walls.

Table 6. Probabilistic carbonation assessment variable input values.

Location
Mean Cover
Thickness
(mm) D)

Cover Thickness
Standard Deviation

(mm) (σ)

Mean
Carbonation

Depth (mm) (Ct)

Carbonation
Depth Coefficient

of Variation (ν)

External wall Plain OPC 48.03 13.8 40 0.25

Internal wall
WP

37.88 13.2
30 0.18

MCP 30 0.13
SWP 30 0.08

The rebar corrosion initiation probability was calculated by applying the coefficients of variation
for each finishing material according to Equation (10).

Figure 8 shows the probability of rebar corrosion of different finishing materials as well as that
for plain OPC. The initiation time of rebar corrosion was set to be the time at which the allowable
rebar corrosion initiation probability criterion of 30% was reached [26]. The onset of rebar corrosion
at 30% was predicted for plain OPC and WP, which was approximately 51 years. The WP shows
the fast onset of corrosion of embedded rebar compared to other finishing materials, owing to the
physical and chemical properties. It is less viscous and liquid and can easily penetrate into the pores of
concrete and does not form an external barrier at the top surface; therefore, it shows an early initiation
of corrosion and is identical to plain OPC. Further, 51 years is too long to dissolve WP in the pore
solution. Meanwhile, plain OPC does not contain any finishing materials; therefore, it has a greater
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likelihood of allowing the ingress of CO2 through the concrete pores. Therefore, plain OPC and WP
started the initiation of corrosion early and reached 30%, whereas MCP required more time to reach
the 30% onset of corrosion. A period of 60 years is required to reach 30% corrosion of the embedded
rebar. The onset of corrosion initiation for SWP is 200 years owing to the compact, thick, and sand
layers, which effectively inhibit the ingress of CO2 into the concrete pores.
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4. Conclusions

In this study, the carbonation and corrosion initiation of rebars in concrete with/without finishing
materials in a 5% CO2 accelerated environment was assessed to determine the probabilistic carbonation.
The following conclusions can be drawn from this study:

(1) The thickness of the concrete cover throughout the on-site buildings was maintained under the
limit (±10 mm).

(2) Silk wallpaper is the best among all finishing materials, and it reduced the carbonation depth
and coefficient by half compared to plain OPC owing to its function as a strong external physical
barrier for the penetration of CO2 in concrete.

(3) Silk wallpaper finishing material exhibited the minimum carbonation depth in the accelerated
conditions after 1 and 13 weeks of exposure while WP and plain OPC exhibited approximately
identical values.

(4) The carbonation depth prediction model showed that 40 years is required for plain OPC while for
SWP, it was expected that carbonation would not reach the rebar position even after 100 years.

(5) Finally, the accelerated carbonation experiment showed that 30% of the onset rebar corrosion
would begin after 51 years for plain OPC, and 200 years for SWP.
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