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Abstract: This paper aims to simultaneously minimize logistics costs and carbon emissions.
For this purpose, a mathematical model for a three-echelon supply chain network is created
considering the relevant constraints such as capacity, production cost, transport cost, carbon emissions,
and time window, which will be solved by the proposed quantum-particle swarm optimization
algorithm. The three-echelon supply chain, consisting of suppliers, distribution centers, and retailers,
is established based on the number and location of suppliers, the transport method from suppliers to
distribution centers, and the quantity of products to be transported from suppliers to distribution
centers and from these centers to retailers. Then, a quantum-particle swarm optimization is described
as its performance is validated with different benchmark functions. The scenario analysis validates
the model and evaluates its performance to balance the economic benefit and environmental effect.
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1. Introduction

The operations in supply chain and logistics are vital tools for businesses to remain competitive in
today’s important economic activities. Transportation activities are significant sources of air pollution
and greenhouse gas emissions, with the former known to have harmful effects on human health and
the latter being responsible for global warming. These issues have raised concerns on reducing the
amount of emissions worldwide [1].

As today, the success measures for the companies are considered to be lower costs, lower emissions,
shorter production time, shorter lead time, less stock, larger product range, more reliable delivery time,
better customer services, higher quality, and providing the efficient coordination between demand,
supply, and production; however, the trade-off between cost investment and service levels may change
over time. Some leading companies are now proactively implementing “green” initiatives. They are
also trying to enhance their supply chain management capability to tackle environmental concerns
by focusing more on selecting appropriate facility locations and technologies. We are motivated to
study a green supply chain network design problem where an initial investment on environmental
protection equipment or techniques should be determined in the design phase. This investment
can influence the environmental indicators in the operations phase. Therefore, a trade-off exists
between the initial investment and its long-term benefit to environment. With such a concern,
decisions regarding facility location and capacity allocation have to be integrated with the decisions
regarding environmental investment.
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In recent years, there have been many studies solving the optimization problems of supply chain
and logistics that are related to design and operation. This research proposes an integrated supply
model of first-mile/last-mile delivery [2]. The author describes a real-time scheduling optimization
model focusing on the energy efficiency of the operation, and introduces a mathematical model of
last-mile delivery problems including scheduling and assignment problems [3]. Varamath proposed
modeling and optimization a three-echelon supply chain network using the particle swarm
optimization to address the demand uncertainty and constraints posed by every echelon in the
supply chain design operations [4]. The measurement of supply chain and logistics solutions is
performed allowing the quantification of availability, flexibility, efficiency, and plasticity indicators [5].
Studies show that unmanned aerial vehicles have the potential effectiveness to reduce CO2 emissions
compared to conventional transportation solutions [6]. Researchers have considered three critical
environmental issues, namely the energy used in production processes, greenhouse gas (GHG)
emissions from production, and transportation activities, and then presented two models (classical
and Vendor Managed Inventory coordination) for a two-level closed-loop supply chain [7]. Facing the
competitive global market, manufacturers are increasingly dependent on the supply chain network.
As one of the strategies of the supply chain, just-in-time greatly reduces the inventory in the workflow
through frequent production, which enhances the production efficiency of the enterprise [8]. However,
frequent small-scale production requires better responsiveness to transport demands, leading to
severe environmental pollution and high transport cost. Based on the just-in-time system [9], Hashem
proposed a multi-criterion decision model to optimize the production, quality, price, cost, equipment,
and technology of products, and verified that, with this model, both operation and delivery met
consumer demand and export quality standard [10]. A just-in-time decision system was put forward
that improves the sales, design, and production of the products of the company [11]. To ensure
delivery punctuality, Reference [12] Pedro developed a multi-objective mathematical model based on
the three-level distribution network, but the modeling process failed to consider the environmental
impact. In recent years, the concept of greenness has been introduced to supply chain management
to reflect the environmental impact on the management process [12]. The logistics directly bear
on the sources of environmental pollution such as greenhouse gas emissions. Despite the growing
awareness of green logistics, the environmental constraints are seldom adopted for actual logistics
operations. The multi-target fuzzy technique is the most desirable tool to build up a green supply chain
network. In general, the multi-target fuzzy models have two conflicting goals, namely, minimal cost
and minimal environmental impact. TakingtheCO2 equivalent as the indicator of the environmental
impact of logistics operations, an optimized closed-loop supply chain network was present, which
integrated the forward and reverse propagations. Since the classic production and distribution models
often pursued minimal cost, it is necessary to create a new combinatory optimization model based on
the objectives and constraints of green logistics [13].

In light of the above, this paper aims to minimize the logistics cost and carbon emissions
simultaneously. For this purpose, a mathematical model for a three-echelon supply chain network was
created considering the relevant constraints such as capacity, production cost, transport cost, carbon
emissions, and time window, which are to be solved by the quantum-particle swarm optimization
algorithm. The three-echelon supply chain, consisting of suppliers, distribution centers, and retailers,
was established based on the number and location of suppliers, the transport method from suppliers
to distribution centers, and the quantity of products to be transported from suppliers to distribution
centers and then to retailers. Then, the proposed model was applied to a real case of logistics
distribution. The results show that the supplier will opt for vehicles with low carbon emissions
with the increase in the replenishment time, distances between members of the supply chain, the rate
of carbon tax, and the number of retailers.
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2. Problem Definition and Modeling

As shown in Figure 1, the three-echelon supply chain network involves suppliers (S), distribution
centers (DC), and retailers (R). Let S = 1, 2, . . . , n be the set of suppliers, j = 1, 2, . . . , n be the set of
distribution centers, and I = 1,2, . . . , n be the set of retailers. The suppliers, which differ in capacity,
need to distribute products to the retailers through the distribution centers. Both environmental and
economic factors should be taken into account before making scientific decisions on the route, order
quantity, locations, and number of distribution centers of the delivery process [14]. The following
hypotheses were put forward:

(1) The location and capacity of each supplier is fixed. Suitable distribution centers should be
selected from multiple potential distribution centers, and the demand for the suitable ones obeys
random distribution.

(2) The carbon emissions in the supply chain network originate from the routes between the suppliers,
distribution centers, and retailers (S–DC–R), the site of distribution centers and the inventory
of retailers.

(3) The carbon emissions are measured by the amount of CO2 release.
(4) The demand for distribution centers and retailers should be met by the same vehicle; only one

vehicle is allowed on each distribution route; all of the vehicles share the same maximum
load capacity; each vehicle should return to the distribution center after completing the
distribution task.

(5) Each retailer can be supplied by multiple distribution centers.
(6) Each distribution center can be supplied by multiple suppliers.
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Figure 1. The three-echelon supply chain network.

Parameters are as follows:
S represents a collection of factories
J represents the collection of distribution lefts
I represents the set of distributors
V collection of transport vehicles
ui annual demand of distributor I
Qj order quantity of the distribution left j each time
Ni distributor I order quantity every time
wj distribution left j unit product inventory holding cost
α the probability of being out of stock, 1− α being the corresponding service level
Zα safety inventory coefficient
L advance order
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uj average demand in the distributor’s j cycle
σj the standard deviation in the distributor’s j cycle
dsj s ∈ S, j ∈ J, the transport distance of factory s to DCj
dei ∀e ∈ (I∪ J), i ∈ I, the transport distance of node e to node I
csj unit transportation cost of factory s to DCj
hji unit distribution cost of DCj distribution unit products to Ri
gj the fixed cost of establishing a potential distribution left
Cmax supply chain carbon emission quota
θ carbon emission limit penalty factor

Decision variables:
xsj represents the number of products shipped from factory s to the potential distribution center
yji represents the number of products delivered to distributor I by the potential distribution center
θ represents the carbon emission limit penalty factor

Decision variables:

Un
j

{
1 if DC j is open
0 if otherwise

j ∈ J

Rji

{
1 if Ri is open
0 if otherwise

i ∈ I

qeiv

{
1if vehicle v from node e to node i
0if otherwise

∀e ∈ (I ∪ J), i ∈ I

(1) Calculate the cost of location–route–inventory [10,11].
The fixed construction cost of distribution center location:

MDC = ∑
j∈J

∑
n∈Nj

f n
j

Un
j (1)

where f n
j

is the location cost of distribution center with capacity n.
Transportation cost:

MR = ∑
s∈S

∑
j∈J

csjxsjdsj + ∑
v∈V

∑
e∈(I∪J)

∑
i∈I

heiyeideiqeiv (2)

Inventory costs:

Ms =
N

∑
n=1

wj(
I

∑
i=1

yji
J

∑
j=1

xji

ujZji + zα

√√√√√√
I

∑
i=1

L
xji

J
∑

j=1
xji

σ2
i Zji) (3)

(2) Calculate the cost of carbon emission.

Facility location carbon emissions:

CEF =
2

∑
m=1

λmEm (4)

λm is the coefficient of carbon emissions, m is the total energy consumption, Em is the process of
building a facility for carbon emissions, affected by facility location scale and facilities nature, and Em

is the energy such as water, electricity, coal, and gas within the facility maintenance.



Sustainability 2018, 10, 3791 5 of 15

Transportation carbon emissions:

CE(xij) = c0e0 p(xij)dij (5)

where c0 is the unit carbon emission cost, e0 is the CO2 emission coefficient, p(xij) is the unit distance
fuel consumption, and dij is the distance from node i to node j. When c0 = 0, the cost of carbon
emissions is zero, which means that the cost of carbon emissions is not considered.

Inventory carbon emissions:

CE =
2
∑
m

∑
j=1

Um
j λmEm + ( ∑

j=1
c0e0 p(xsj)dsj + ∑

j=1

I
∑

i=1
c0e0 p(xei)qeivdei) + (ε ∑

j∈J
(

Qj
2 + zα

√
ltj ∑

i∈I
σ2

i Rij)) (6)

where ε is the comprehensive emission factor of each energy consumption.

Since

Object 1: Minimize the cost of the location–route–inventory.

minM = ∑
j∈J

∑
n∈Nj

f n
j

Un
j + ∑

s∈S
∑
j∈J

csjxsjdsj + ∑
v∈V

∑
e∈(I∪J)

∑
i∈I

heiyeideiqeiv + wjzα

√
ltj ∑

i∈I
σ2

i Rji) + ∑
j∈J

(Oj ∑
i∈I

uiRji/Qj + hjQj/2) (7)

Object 2: Minimize the cost of carbon emissions.

minCE =
2
∑
m

∑
j=1

Um
j λmEm + ( ∑

j=1
c0e0 p(xsj)dsj + ∑

j=1

I
∑

i=1
c0e0 p(xei)qeivdei) + (ε ∑

j∈J
(

Qj
2 + zα

√
ltj ∑

i∈I
σ2

i Rij)) (8)

s.t.
Qj + zα

√
ltj∑

i∈I
σ2

i Rij ≤ Nj (9)

∑
i∈I

ui∑
i∈I

qeiv ≤ VC (10)

∑
v∈V

∑
e∈(I∪J)

qeiv = 1 (11)

∑
v∈V

∑
e∈(I∪J)

qeiv ≤ 1 (12)

∑
e∈(I∪J)

qeiv − ∑
e∈(I∪J)

qiev = 0 (13)

∑
k∈K

xki ≥∑
i∈I

yij (14)

∑
j∈J

yij = ui (15)

Un
j = {0, 1}, j ∈ J (16)

Rji = {0, 1}, i ∈ I, j ∈ J (17)

qeiv = {0, 1}, ∀e ∈ (I ∪ J), i ∈ I (18)

Equation (9) indicates the DC power constraints, in which Nj is the known parameter, and
indicates DCj capacity. Equation (10) is the vehicle capacity constraints, in which VC indicates the
biggest capacity vehicle for a given parameter. Equation (11) guarantees that Ri is one and only one car
for its service. Equation (12) guarantees every car at most in the service of a DC. Equation (13) shows
that the vehicle can’t stay on a node. Equation (14) ensures that the number of products transported to
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the Retailer is greater than the amount of products shipped from the DC. Equation (15) guarantees the
DCi needs are met, and Equations (16)–(18) ensure that the decision variables are non-negative.

3. Materials and Methods

Inspired by quantum mechanics [15] and the trajectory analysis of particle swarm
optimization [16,17], in order to enhance the global searching ability, we combine the quantum-inspired
evolutionary algorithm (QEA) and particle swarm optimization (PSO), and propose a new
quantum-behaved particle swarm optimization (QPSO). In QPSO, to enhance the global searching
ability, the mean individual best-known position of the population, denoted as mbest, is introduced,
such that particle xi can be updated according to the following equations:

attratori,d = ϕ · pbesti,d + (1− ϕ)gbestd, d = 1, 2, . . . , D (19)

mbest(t) = (
1
N

N

∑
i=1

pbesti(t)) (20)

xi,d = attractori,d ± (α ·
∣∣mbesti,d(t)− xi,d(t)

∣∣) · ln( 1
u
) (21)

where pbesti and gbest are the individual and global best-known positions for particle xi, respectively,
while the attractor is the local attractor of particle xi based on the pbesti and gbest. d = 1, 2, . . . , D. D is
the dimension of the search space. N is the population size. ϕ is a random number within [0, 1]; α is the
contraction-expansion coefficient. The value of α is either a positive constant or a linearly decreasing
positive number. The latter is beneficial to the robustness of the algorithm. When the QPSO is applied
to real-world problems, detailed description of the contraction–expansion coefficient and its impact on
particles’ behavior from theoretical and experimental perspectives are provided [18]. It is shown that
the upper bound of the contraction–expansion coefficient is 1.781 approximately.

The useful information contained in the individual and global best-known positions of particles
is often overlooked. For a local attractor obtained by traditional means, the fitness is greater than its
individual and global best-known positions. By contrast, some elements of the attractor become worse
than those in the two positions. Thus, some elements may move in the wrong directions, leading to
deterioration in the next generation. Below is a simple example for the unwanted phenomena.

Let f (x) = X2
1 + X2

2 + X2
3 be a three-dimensional (3D) sphere function, whose minimum solution

is [0, 0, 0]. For particle xi, the current individual best-known position is pbesti = [0, 4, 8], and its global
best-known position is gbest = [8, 0, 2]. Traditionally, the local attractor of this particle is obtained by
Equation (21). For simplicity, the parameter ϕ was set to 0.5, turning the equation into:

attratori,d = 0.5 · pbesti,d + 0.5 · gbestd, d = 1, 2, . . . , D (22)

Now, it is necessary to find an efficient way to combine the good information in pbesti and
gbest. By the method of exhaustion, two-dimensional (2D) tests must be conducted to find the best
combination, which is very difficult and unrealistic in high dimensions. This calls for a strategy to
identify the suitable combination with fewer tests. Fortunately, the orthogonal test meets the above
requirements. Hence, this paper designs an orthogonal operator that combines the good information
in pbesti and gbest.

Another problem relates to how to increase the population diversity of the evolutionary algorithm
and prevent premature convergence. The premature convergence means that the algorithm has
converged at a position other than the global optimum. In this case, the current particle position of a
particle will be the same as the pbesti and gbest. Furthermore, a collaborative learning strategy was
adopted, in order to prevent QPSO falling into the local optimum trap. In this strategy, the mean
value of Gaussian distribution is pbesti. The standard deviation of Gaussian distribution is the distance
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between current pbesti and mean personal best position mbest. The mutation of pbesti is shown in
Equation (23):

np = N(pbesti, mbest− pbesti) (23)

The detailed procedure of QPSO is shown in Algorithm 1. The framework of the proposed
QPSO lies in the strategy to construct local attractors for particles. In QPSO, a particle uses the
collaborative learning strategy to acquire a local attractor only if its local best position pbesti has been
held. The procedure of QPSO is shown in Algorithm 1. The flowchart of QPSO is shown in Figure 2.

Algorithm 1. Procedure of QPSO

1: Initialize

(a) P(t) = (p1, p2, . . . , pn); % Pt is particle population, each particle in Pt is randomly initialized within the
range of the searching space

(b) Fit(Pt) = FitnessCalculation(Pt); % Calculate the fitness values of Pt
(c) pbest(t) = P(t); % The personal best population is initialized as Pt
(d) gbest(t) = FindBest(Pbest(t)); % gbest is the best individual in pbesti

(e) For each particle pi, let stayi = 0; % stayi represents the number of generations for which particle pi
has stays

2: Get attractori for each individual pi

(a) If stayi ≤ G, then get attractori according to Equation (22);
(b) stayi > G then %collaborative learning strategy

1©: For pbesti, get k mutation individuals by Equation (23).
2©: For each dimension j of pbesti, do

(i) Replace the jth dimension of pbestj with that of the k individuals obtained in Step 1, respectively.
Then, k new individuals (npbest1, npbest2, . . . , npbest(k)) are obtained.

(ii) Get the fitness values of (npbest1, npbest2, . . . , npbest(t)) and select the best one as npbest.
(iii) Take the jth dimension of best(t), pbest(t, as that of the attractori.

3: Update

(a) Update P(t+1) according to (20) and (21);
(b) Fit(t + 1) = Fitness Calculation(Pt + 1); % Calculate the fitness values of Pt+1;
(c) If Fit(P(t)) is better than Fit(Pbest(t)), then Pbest(t+1) = P(t + 1) and stayi = 0. Otherwise, pbest(t + 1) =

pbest(t)and stayi = stayi + 1;
(d) gbest(t + 1) = FindBest(pbest(t + 1); % gbest(t + 1) is the best individual in Pbest(t + 1)

4: If the stop condition is satisfied, then output gbest. Otherwise, go to Step 2.

QE [19] and PSO [20–23] are two state-of-the-art algorithms. We choose two benchmarking
functions to compare the results obtained by QE, PSO and QPSO; the results are representative and
helpful to make the comparisons more comprehensive and convincing.

Rastrigin f (x) = ∑n
i=1 [x

2
i − 10 cos(2πxi) + 10]

f (x∗i ) = 0 x ∈ [−5.12, 5.12]

Ackley f (x) = −20 exp(−0.2
√

1
n ∑n

i=1 x2
i )− exp( 1

n ∑n
i=1 cos(2πxi)) + 20 + exp(1)

f (x∗i ) = 0 x ∈ [−32, 32]

The spatial characteristics of the test function are shown in Figure 3.
As can be seen from the test data in Table 1, the optimal solution was found in all 30 independent

runs of QPSO. The power is 100%. Compared with QEA and PSO, it has the ability to search for more
accurate optimal value and find the optimal value. The number of iterations is much smaller than
QEA and PSO.



Sustainability 2018, 10, 3791 8 of 15

Figure 4 shows the average evaluation times and running time of three algorithms from 30 runs
to the optimal solution. It can be seen that the number of times that QPSO finds the optimal solution is
about 200 times, which is about four times less than QEA and PSO. However, the total running time
decreased a lot. It can be seen that the time complexity of QPSO is significantly lower than that of QEA
and PSO. Since the collaborative learning strategy prevents QPSO from falling into the local optimum
trap, this adopted operator can control and achieve the balance between exploitation and exploration.Sustainability 2018, 10, x FOR PEER REVIEW  8 of 15 
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Table 1. Function optimization test results. PSO: particle swarm optimization, QEA: quantum-inspired
evolutionary algorithm.

Function Best Mean Worst STD Gen(Mean) Success

Restrigin
QEA 0 7.56 × 10−2 9.93 × 10−10 2.45 × 10−1 932 6
PSO 0 1.08 × 10−11 2.01 × 10−10 4.02 × 10−11 845 27

QPSO 0 0 0 0 46 32

Ackley
QEA 0 4.69 × 10−6 7.63 × 10−6 2.52 × 10−6 878 6
PSO 0 0 0 0 742 37

QPSO 0 0 0 0 34 30Sustainability 2018, 10, x FOR PEER REVIEW  9 of 15 
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4. Case Study

The case study targets a large cold chain logistics enterprise in China. The enterprise runs many
breading and processing facilities in southeastern China; it manages 13 large cold warehouses, with a
total storage of 85,000 tons, and owns over 140 freezer cars. The distribution network of the enterprise
covers most of the provinces and regions in China. As a comprehensive food processor, this enterprise
engages in pig breeding, slaughtering, and processing, cold meat processing, and the manufacturing
of meat products (e.g., canned food). The enterprise has set up a logistics subsidiary to integrate
pig breeding, slaughtering, and processing, cold meat processing, and the manufacturing of meat
products, aiming to improve the service levels, shorten the delivery times, and ensure product quality.
Both economic and environmental factors were considered in the creation of a secondary supply chain
network between the plants, distribution centers, and retailers.

Tables 2 and 3 present the maximum capacity per cycle (15 days) of the three food processing
plants of the enterprises, assuming that the demand of each local retailer obeys normal distribution.
Table 4 presents the data of the distribution centers. Table 5 records the distribution of the demand per
cycle of the 10 retailers. Table 6 lists the data related to the regional distribution centers. For simplicity,
the construction cost of each distribution center was calculated by the 24 cycles of each year. Tables 3
and 4 respectively display the plant-distribution center distance, and the transport cost per unit of
product. During the transport, the carbon emissions varied significantly with the congestion degree,
road flatness, land slope, and fuel consumption. Therefore, the carbon emissions correlation coefficient
which Hao employed for further analysis [24]. Table 7 show the distribution center–retailer distance,
and the transport distance per unit of product. Tables 8–10 respectively present the relationship
between carbon emissions and the energy consumption per unit of product and the unit of distance for
the plant–distribution center and distribution center–retailer. Table 11 gives the fixed carbon emissions
of the distribution centers and the variable carbon emissions of the plants and retailers.

Table 2. The maximum production capacity within the S cycle of the processing plant.

Manufacturer Fuzhou Zhuzhou Chizhou

Maximum capacity (ton) 450 380 360
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Table 3. Basic parameters of R.

R Quantity Demanded (Unit: ton) Service Level (%) Demand Variance (Unit: ton)

Nanping 105 95% 14
Zhangzhou 118 95% 17

Taizhou 67 95% 11
Suzhou 87 95% 15

Hangzhou 98 95% 12
Taizhou 82 95% 14

Nanchang 120 95% 15
Pingxiang 86 95% 15

Fuyang 73 95% 13
Yichang 95 95% 12

Table 4. Data of the distribution centers (DCs).

Potential Distribution
Center (DC)

Maximum Storage
Capacity (Unit: ton)

Construction Cost
(Unit: yuan)

Unit Product Storage
Cost (Unit: yuan/ton)

Zhuzhou 585 78,000 270
Sanming 590 79,000 240
Quzhou 520 76,000 270

Hefei 450 75,000 300
Nanjing 550 82,000 250
Fuzhou 640 811,000 210

Table 5. The distance from the factory to the potential distribution center.

Factory Zhuzhou Sanming Quzhou Hefei Nanjing Fuzhou

Fuzhou 488 68 314 622 606 50
Zhuzhou 68 224 343 440 518 230
Chizhou 314 480 322 185 258 460

Table 6. Factory to potential DC unit distance transportation costs.

Zhuzhou Sanming Quzhou Hefei Nanjing Fuzhou

Fuzhou 3.8 3.1 3.2 3.2 3.3 2.9
Zhuzhou 3.2 3.1 3.1 3.3 3.2 3.1
Chizhou 3.3 3.2 3.2 3.1 3.1 3.2

Table 7. Distance between potential distribution center and distributor.

Distributor

Retailer
Zhuzhou Sanming Quzhou Hefei Nanjing Fuzhou

Nanping 358 167 371 664 668 129
Zhangzhou 403 205 549 813 833 247

Taizhou 709 851 507 281 173 773
Suzhou 459 658 321 259 114 593

Hangzhou 451 497 149 325 244 446
Taizhou 411 361 158 537 486 291

Nanchang 91 318 373 376 485 325
Pingxiang 151 279 505 573 665 321

Fuyang 566 751 479 123 163 705
Yicheng 429 581 281 121 93 521
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Table 8. DC to retailer (R) unit product unit distance transportation fee.

Distributor

Retailer
Zhuzhou Sanming Quzhou Hefei Nanjing Fuzhou

Nanping 3.8 3.1 3.2 3.4 3.3 3.1
Zhangzhou 3.3 3.2 3.3 3.3 3.4 3.2

Taizhou 3.5 3.2 3.2 3.2 3.3 3.2
Suzhou 3.2 3.2 3.3 3.2 3.2 3.2

Hangzhou 3.4 3.2 3.2 3.2 3.2 3.3
Taizhou 3.5 3.2 3.1 3.3 3.2 3.3

Nanchang 3.1 3.3 3.3 3.2 3.1 3.1
Pingxiang 3.1 3.1 3.4 3.4 3.3 3.2
Nanping 3.3 3.2 3.3 3.2 3.3 3.2

Zhangzhou 3.3 3.3 3.3 3.1 3.2 3.2

Table 9. The product unit of the factory to DC in carbon emissions.

Factory
Retailer

Zhuzhou Sanming Quzhou Hefei Nanjing Fuzhou

Fuzhou 0.11 0.08 0.09 0.09 0.08 0.09
Zhuzhou 0.05 0.11 0.08 0.08 0.05 0.11
Chizhou 0.08 0.09 0.05 0.08 0.05 0.11

Table 10. Carbon emissions of the DC to R unit product unit distance.

Distributor

Retailer
Zhuzhou Sanming Quzhou Hefei Nanjing Fuzhou

Nanping 0.12 0.12 0.1 0.12 0.08 0.12
Zhangzhou 0.12 0.12 0.1 0.12 0.08 0.12

Taizhou 0.08 0.08 0.06 0.08 0.06 0.08
Suzhou 0.08 0.1 0.08 0.12 0.06 0.08

Hangzhou 0.06 0.08 0.06 0.08 0.06 0.08
Taizhou 0.06 0.08 0.06 0.08 0.08 0.08

Nanchang 0.06 0.12 0.08 0.06 0.08 0.12
Pingxiang 0.06 0.12 0.08 0.08 0.12 0.12

Fuyang 0.08 0.08 0.08 0.12 0.06 0.08
Yicheng 0.08 0.08 0.08 0.08 0.06 0.07

Table 11. DC fixed carbon emissions and variable unit storage carbon emissions.

Potential Distribution Center Fixed Carbon Emission
(Unit: kg)

Unit Storage Carbon Emission
(Unit: kg/ton)

Zhuzhou 790 0.46
Sanming 780 0.43
Quzhou 750 0.48

Hefei 740 0.51
Nanjing 790 0.49

Fuzh 810 0.39

In this case, each retailer can be supplied by multiple distribution centers, and each center can be
supplied by multiple plants. Then, the proposed model was applied to simulate this case on Matlab 7.1.
The simulation parameters are as follows: the carbon emissions limit = 10,000 kg, the carbon penalty
coefficient = 10, the service level = 95%, the inventory safety coefficient = 1.65, and the pre-order period
= 6d. The simulated results (e.g., the optimal total cost, the economic cost, the carbon emissions, and
the carbon emissions penalty) are presented in Tables 12 and 13 below.
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Table 12. Distribution center to distributor.

Open DC Distribution Center Responsible
for Distributor Production Supply (Unit: ton) Base–DC–R Path

Fuzhou
Nanping distributor 161

Fuzhou–Nanping–Zhangzhou–
Fuzhou–Taizhou

Zhangzhou distributor 114
Taizhou distributor 107

Nanjing

Taizhou distributor 95

Chizhou–Nanjing–Taizhou–
Suzhou–Hangzhou–Wuhu

Suzhou distributor 149
Hangzhou distributor 165

Fuyang distributor 96
yicheng Distributor 49

Zhuzhou
Nanchang distributor 102 Zhuzhou–Pingxiang–Nanchang
Pingxiang distributor 85

Table 13. Cost and carbon emissions calculations.

Total Cost
(yuan)

Economic Cost
(yuan)

Carbon
Emission (kg)

Exceeds Carbon
Emissions

Carbon Penalty
Cost (yuan)

Carbon Cost
Ratio

1,417,264.5 1,407,330.2 29,885.4 19,885.4 19,885.4 12.3%

The calculation shows in Table 12 reveals that the distribution of the whole supply chain relies on
the regional distribution centers of Fuzhou, Nanjing and Huzhou. As shown in Table 13, the total cost,
the economic cost, the carbon emissions, and the excess carbon emissions were respectively 1,417,264.5
yuan, 1,407,330.2 yuan, 29,885.4 kg, and 19,885.4 kg. Hence, the carbon emissions penalty accounts
for 12.3% of the total cost. Table 14 shows the quantity of products delivered from each distribution
center to each retailer. It can be seen that the Fuzhou distribution center delivers products to Nanping,
Zhangzhou, and Taizhou, with the inventory safety coefficient of 195.7 tons; the Nanjing distribution
center delivers products to Taizhou, Suzhou, Hangzhou, Fuyang, and Yichang, with the inventory
safety coefficient of 243.9 tons, the Zhuzhou distribution center delivers products to Nanchang and
Pingxiang, with the inventory safety coefficient of 195.7 tons.

Table 14. Transportation of the plant to the selected distribution center.

The Factory The Factory Supplies the
Selected Distribution Center Supply (Unit: ton)

Fuzhou Fuzhou distribution center 392
Chizhou Nanjing distribution center 554
Zhuzhou Zhuzhou distribution center 187

According to the Table 15, when the carbon emissions limit was 10,000 kg and the carbon emissions
penalty coefficient was 10, the optimal distribution plan involves three distribution centers: Fuzhou,
Nanjing, and Zhuzhou. When the carbon emissions limit was 10,000 kg and the carbon emissions
penalty coefficient was 20, the optimal distribution plan involves two distribution centers: Nanjing
and Fuzhou. Comparing the two optimal plans, the two-center plan reduced the total cost by 101,506.3
yuan, increased the economic cost by 13,006.3 yuan and lowered carbon emissions by 5517.7 kg from
the level of the three-center plan. In addition, when the carbon emissions limit was 10,000 kg and the
carbon emissions penalty coefficient was 30, the optimal distribution plan involves two distribution
centers: Nanjing and Nanping. When the carbon emissions limit was 10,000 kg and the carbon
emissions penalty coefficient was 40, the optimal distribution plan involves two distribution centers,
they are Fuzhou and Hefei. Comparing the two optimal plans, the second plan increased the total cost
by 174,239.9 yuan, reduced the economic cost by 30,885.9 yuan, and reduced the carbon emissions by
172 kg from the level of the first plan. Summing up, the whole supply chain will emit less CO2 by
increasing the carbon emissions penalty.
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Table 15. The location scheme and total cost change under different carbon penalty coefficients.

Carbon Penalty Coefficient 10 20 30 40

Optimal site selection scheme. Fuzhou, Nanjing, Zhuzhou Nanjing, Fuzhou Nanjing, Fuzhou Zhuzhou, Quzhou
Total supply chain cost (yuan) 1,656,184.2 1,757,690.5 1,921,039.5 2,095,279.4

Economic cost (yuan) 1,457,330.2 1,470,336.5 1,470,337.5 1,501,223.4
Carbon emission (kg) 29,885.4 24,367.7 25,023.4 26,451.4

Exceeding the carbon emission limit. 19,885.4 14,367.7 15,023.4 14,851.4
Carbon emission cost (yuan) 198,854 287,354 450,702 594,056
Proportion of carbon cost (%) 12.0 16.3 23.5 28.4

Furthermore, according to the Table 16, when the carbon emissions limit was 30,000 kg and the
carbon emissions penalty coefficient was 10, the optimal distribution plan involves three distribution
centers: Fuzhou, Nanjing, and Zhuzhou. In this case, the carbon emissions (29,885.4 kg) was below
the carbon emissions limit, indicating that the carbon emissions penalty was zero. When the carbon
emissions limit was adjusted to 25,000 kg, the optimal plan involved two distribution centers: Nanjing
and Fuzhou. In this case, the carbon emissions (24,367.7 kg) was still below the carbon emissions limit,
and thus the carbon emissions penalty remained zero. Meanwhile, the carbon emissions dropped
to 5517.7 kg. When the carbon emissions limit was lowered to 20,000 kg, the optimal plan still
involved two distribution centers: Nanjing and Fuzhou. However, the carbon emissions (241,135.5 kg)
exceeded the limit, leading to a penalty of 41,135 yuan. Therefore, the reduction of carbon emissions
limit can pressurize the enterprise to cut down the carbon emissions of the supply chain through
low-carbon design.

Table 16. Site selection scheme and total cost change under different carbon limits.

Carbon Quotas (kg) 30,000 25,000 20,000

Optimal site selection scheme. Fuzhou, Nanjing, Zhuzhou Nanjing, Fuzhou Nanjing, Fuzhou
Total supply chain cost (yuan) 1,457,330.2 1,470,336.5 1,511,472.5

Economic cost (yuan) 1,457,330.2 1,470,336.5 1,470,337.5
Carbon emission (kg) 29,885.4 24,367.7 24,113.5

Exceeding the carbon emission limit. 0 0 4113.5
Carbon emission cost (yuan) 0 0 41,135

Overall, the total cost of the supply chain increased with the reduction of the carbon emissions
limit and the growth in the carbon emissions penalty coefficient. These laws will help enterprises
optimize the design of supply chain network, making it possible to strike a balance between economic
benefit and environmental effect.

5. Conclusions

It is common in the logistics and supply chain that the objectives of decreasing logistic costs,
carbon emissions, and increasing energy efficiency are targeted at the multi-level of the supply
chain’s members. This work has developed a methodology based on heuristic optimization to
minimize the logistics costs and carbon emissions based on relevant constraints, which aims to
improve enterprise’s interests.

The described model represents an integrated optimization problem including the assignment
of open tasks to scheduled routes, the scheduling of open tasks, and there scheduling of existing
delivery routes. The optimization problem, which is described by an objective function representing
the minimization of the logistic costs and carbon emissions and constraints, including loading capacity
limits and time frames, is a hard problem. For the solution of this problem, a quantum-particle swarm
optimization-based heuristic was developed. The developed heuristic is an improved version of
the quantum-inspired evolutionary algorithm and basic particle swarm optimization; its increased
performance is validated with benchmarking functions.

The integrated optimization model of the real-time scheduling of a multi-echelon logistics problem
is solved with these heuristics. As the scenarios showed, cooperation makes it possible to increase the
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energy efficiency through the minimization of carbon emissions under different constraints. In the
case of package delivery service providers, the time frame and the loading capacity of the package
delivery trucks are important constraints; as the mentioned scenarios show, they are influencing their
reliability, availability, flexibility, and economic footprints.

The described model framework and the optimization approach make it possible to support
managerial decisions; not only the operation strategy of the running trucks, but also the cooperation
strategy of different package delivery service providers are influenced by the results of the above
described contribution. Some recommendations for possible future studies are as follows: it would
be helpful to develop approaches that are beyond analyzing scheduling and assignment possibilities
and also consider other areas of interest, such as human resource strategies, delivery truck sizing, out
sourcing possibilities, or the rate of carbon tax.
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